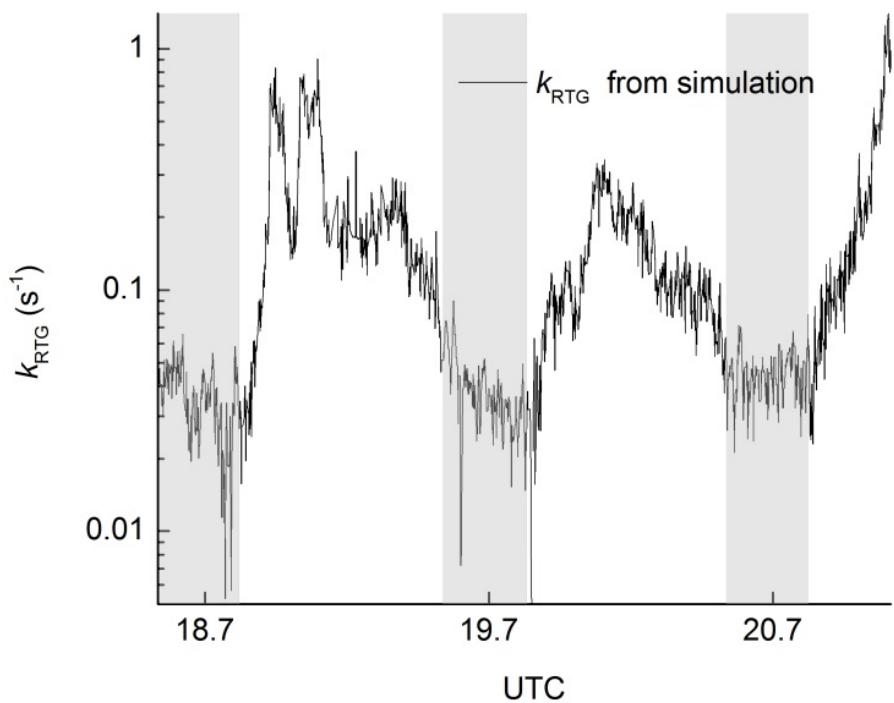


Supplement of

Measurement of ambient NO_3 reactivity: design, characterization and first deployment of a new instrument


Jonathan M. Liebmann et al.

Correspondence to: John N. Crowley (john.crowley@mpic.de)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

Fig S1: Upper and lower bounds to the uncertainty in the reactivity measurement calculated for a fixed minimal detectable change ($\text{MDC}_{\text{NO}_3} = 2.5 \text{ pptv}$) in NO_3 (initially $[\text{NO}_3]_t^{\text{ZA}} = 50 \text{ pptv}$) for different reactivities resulting in various measured NO_3 mixing ratios at 10.5 s ($[\text{NO}_3]_t^{\text{Amb}}$). The straight line ($y=1$) is the ideal case where the MDC_{NO_3} tends to zero. The square brackets indicate the dynamic range in which the uncertainty associated with signal stability is $< \approx 15 \%$. When $[\text{NO}_3]_t^{\text{Amb}}$ and $[\text{NO}_3]_t^{\text{ZA}}$ are very similar (reactivity tends to zero) or when NO_3 is entirely depleted (very high reactivity) the uncertainty increases rapidly.

Fig S2: As Figure 12 in the manuscript but showing only k_{RTG} derived from simulation and with the y-axis in log scale.