
Atmos. Meas. Tech., 10, 1269–1280, 2017
www.atmos-meas-tech.net/10/1269/2017/
doi:10.5194/amt-10-1269-2017
© Author(s) 2017. CC Attribution 3.0 License.

Tandem configuration of differential mobility and
centrifugal particle mass analysers for investigating
aerosol hygroscopic properties
Sergey S. Vlasenko1, Hang Su2, Ulrich Pöschl2, Meinrat O. Andreae2,3, and Eugene F. Mikhailov1,2

1Department of Atmospheric Physics, Saint-Petersburg University, St. Petersburg State University,
SPbSU, SPbU, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
2Biogeochemistry and Multiphase Chemistry Departments, Max Planck Institute for Chemistry,
P.O. Box 3060, 55020 Mainz, Germany
3Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA

Correspondence to: Eugene F. Mikhailov (eugene.mikhailov@spbu.ru)

Received: 22 July 2016 – Discussion started: 23 September 2016
Revised: 2 February 2017 – Accepted: 3 March 2017 – Published: 30 March 2017

Abstract. A tandem arrangement of Differential Mobility
Analyser and Humidified Centrifugal Particle Mass Anal-
yser (DMA-HCPMA) was developed to measure the deli-
quescence and efflorescence thresholds and the water uptake
of submicron particles over the relative humidity (RH) range
from 10 to 95 %. The hygroscopic growth curves obtained
for ammonium sulfate and sodium chloride test aerosols are
consistent with thermodynamic model predictions and liter-
ature data. The DMA-HCPMA system was applied to mea-
sure the hygroscopic properties of urban aerosol particles,
and the kappa mass interaction model (KIM) was used to
characterize and parameterize the concentration-dependent
water uptake observed in the 50–95 % RH range. For DMA-
selected 160 nm dry particles (modal mass of 3.5 fg), we ob-
tained a volume-based hygroscopicity parameter, κv ≈ 0.2,
which is consistent with literature data for freshly emitted
urban aerosols.

Overall, our results show that the DMA-HCPMA sys-
tem can be used to measure size-resolved mass growth fac-
tors of atmospheric aerosol particles upon hydration and
dehydration up to 95 % RH. Direct measurements of par-
ticle mass avoid the typical complications associated with
the commonly used mobility-diameter-based HTDMA tech-
nique (mainly due to poorly defined or unknown morphology
and density).

1 Introduction

The interaction of atmospheric aerosol particles with water
vapour results in size changes that strongly affect the optical
properties of the aerosol particles and consequently their di-
rect radiative effect on the Earth’s energy budget (Waggoner
et al., 1981; Rastak et al., 2014, and references therein).
Furthermore, hydrophilic aerosol particles are able to act as
cloud condensation nuclei, thereby modifying the radiative
properties and lifetime of clouds (indirect aerosol effects)
(Twomey, 1977; Haywood and Boucher, 2000). Addition-
ally, hygroscopicity is an important factor in the chemical
reactivity of aerosols (Shiraiwa et al., 2013). Therefore, the
hygroscopic properties of aerosol particles have been of in-
terest throughout the whole history of aerosol study, with
respect to both the direct description of their hygroscopic
growth and the influence on their optical parameters (Orr
et al., 1958; Hänel, 1976; Rader and McMurry, 1986; Berg
et al., 1998; Cheng et al., 2008; Fierz-Schmidhauser et al.,
2010a, b; Zieger et al., 2013).

Humidified Tandem Differential Mobility Analysers (HT-
DMAs) are the most commonly used instrument to study
the hygroscopic behaviour of size-selected aerosol particles
(McMurry and Stolzenburg, 1989; Brechtel and Kreiden-
weis, 2000a; Gysel et al., 2002; Mikhailov et al., 2004; Eich-
ler et al., 2008; Swietlicki et al., 2008). The first DMA selects
particles of a specific size from the previously dried poly-
disperse aerosol. While the selected particles are not truly
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monodisperse due to multiple charging effects, non-ideality
of the DMA transfer function, etc., the width of the output
size distribution is small enough to consider the aerosol as
quasi-monodisperse. Then this aerosol is humidified to a set
RH. The number size distribution of the humidified sample is
then measured by a second DMA operated at the same RH as
the humidified sample. The HTDMA method is used for both
laboratory and field measurements, and typically covers the
particle mobility diameter in the range of 6–300 nm. How-
ever, this instrument classifies particles according to their
electrical mobility, and therefore the water uptake is calcu-
lated indirectly, with an uncertainty introduced by lack of
knowledge about particle shape and density (DeCarlo et al.,
2004; Gysel et al., 2004; Mikhailov et al., 2004).

A number of alternative detectors have been employed to
replace the second DMA to probe the hygroscopic proper-
ties of the size-selected atmospheric aerosol. Several stud-
ies used an optical particle counter (OPC) (Covert et al.,
1990; Hering and McMurry, 1991; Brand et al., 1992; Kreis-
berg et al., 2001). Sorooshian et al. (2008) proposed a
differential aerosol sizing and hygroscopicity spectrometer
probe (DASH-SP), which employs four OPCs to measure
the hygroscopic growth at three RHs simultaneously and
thereby reduces measurement time. Massling et al. (2007)
applied a Hygroscopicity Differential Mobility Analyser-
Aerodynamic Particle Sizer system (H-DMA-APS) to mea-
sure the hygroscopic properties of aerosol particles at or
near 1 µm dry diameter during ACE-Asia. Some other meth-
ods deal with polydisperse aerosol particles. Snider and Pe-
ters (2008) and Hegg et al. (2007) obtained growth factors
by comparing OPC size distributions measured at different
RHs. Many researchers employed humidity controlled neph-
elometers and estimated growth factors from the variation of
aerosol light scattering coefficients with changing RH (Magi
and Hobbs, 2003; Kim et al., 2006; Fierz-Schmidhauser et
al., 2010a, b). All of these methods rely on certain assump-
tions (particle morphology, density, refractive index, etc.) to
convert optical or mobility growth factor measurements into
a mass-based scale.

However, mass-based measuring techniques are more ap-
propriate to describe the water uptake of aerosols in conjunc-
tion with thermodynamic or parametric models (Mikhailov
et al., 2013). The single particle levitation technique is com-
monly used for the direct measurement of the water vapour
uptake/release by particles due to RH variations (Tang and
Munkelwitz, 1993, 1994; Peng and Chan, 2001). This tech-
nique enables high-precision measurements of the mass
growth factor in hydration and dehydration mode, but it is
applicable only to supermicron (typically 5–25 µm) particles
and can be used only in laboratory conditions. The other
mass-based techniques employ aerosol sampled on filters
(Lee and Hsu, 1998; Mikhailov et al., 2011). This approach
is suitable for measurements of ambient aerosol, but only in
offline mode, and therefore, the loaded filters require careful

handling to avoid possible particle mass loss between sam-
pling and measuring.

The most reliable online technique for measuring submi-
cron particle mass is based on the Ehara aerosol particle mass
analyser (APM; Ehara et al., 1996) in combination with a
DMA. The early studies based on this technique were used
to determine the density and shape factor of size-selected test
particles and atmospheric aerosols (McMurry et al., 2002;
Geller et al., 2006). Kondo et al. (2006) mounted a heater
upstream of the DMA and used the DMA+APM technique
to measure the relationship between mass and size of non-
volatile particles in ambient air. In the more recent publi-
cations, the DMA+APM technique was used to follow the
aging of soot particles and the change of effective density
due to condensation of organic (oleic acid and anthracene)
(Slowic et al., 2007) and inorganic (sulfuric acid and water)
species (Pagels et al., 2009; Johnson et al., 2015). In the lat-
ter work, the combination of DMA and CDMA was used to
measure the mass growth factor of tobacco smoke particles
as function of increasing RH. This technique is quite similar
to ours.

We present here an application of the DMA-HCPMA tan-
dem configuration to study the hygroscopic growth of aerosol
particles. A hygroscopicity centrifugal particle mass anal-
yser (HCPMA) was employed for direct measurements of
particle mass increase/decrease due to water uptake/release.
The concept has been briefly introduced in Vlasenko and
Mikhailov (2013). In this paper, we present a detailed de-
scription of the experimental procedure and results obtained
for both laboratory-generated particles and ambient atmo-
spheric aerosols. Our work is mainly focused on the appli-
cability of the tandem DMA-HCPMA set-up for investigat-
ing the hydration/dehydration of aerosol particles, including
deliquescence/efflorescence phase transitions.

2 Experiment

A sketch of the HCPMA system is shown in Fig. 1.
Aerosols were generated by nebulization of aqueous solu-
tions of the investigated pure substances in deionized wa-
ter (18.2 M�. cm, Millipore – Milli-Q plus 185) with a so-
lute mass fraction 0.01 %, using a constant output atomizer
(TSI, model 3075). The following reference substances were
used to prepare test aerosols for the proposed method: am-
monium sulfate ((NH4)2SO4, Fluka, > 99.5 %) and sodium
chloride (NaCl, Merck, > 99.5 %,). The solution droplets
were dried using a silica gel diffusion dryer (SDD) with
aerosol residence time ∼ 10 s; the residual relative humid-
ity was < 10 % throughout all experiments. The dry polydis-
perse aerosol was passed through a neutralizer (NL) (X-ray,
Model TSI 3087), and a quasi-monodisperse aerosol with
the desired initial dry particle mobility diameter (Db) was
selected by the differential mobility analyser (DMA, Model
TSI 3081). The resulting quasi-monodisperse particles were
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Figure 1. Experimental set-up of the hygroscopicity centrifugal par-
ticle mass analyser (HCPMA) system: SDD (silica gel diffusion
dryer), NL (aerosol neutralizer), DMA (differential mobility anal-
yser), NCW (Nafion conditioner with water), NCA (Nafion con-
ditioner with air), RHT (relative humidity and temperature sensor),
CPMA (centrifugal particle mass analyser), CPC (condensation par-
ticle counter).

then flowed at 0.5 L min−1 through a series of one or two
single-tube Nafion humidity exchangers.

In hydration mode, the outer tube of the humidity ex-
changer (2.4 m long) was supplied with humidified air at con-
trolled RH. The RH was increased stepwise from 15 to 95 %
by the mixing of dry air with an airflow saturated with water
vapour, varying the ratio of humidified to dry air to produce
a total flow of 2 L min−1. Water-saturated air was produced
by bubbling clean- and dry-filtered air (TSI 3074B) through
water heated to 36 ◦C (Mikhailov et al., 2004). The hydration
mode provides information about deliquescence phase tran-
sitions of dry particles and the hygroscopic growth of del-
iquesced particles (aqueous solution droplets) as a function
of relative humidity. The aerosol residence time in the condi-
tioner and subsequent lines leading to the CPMA is ∼ 10 s.

In dehydration mode, a series of two Nafion humidity ex-
changers was used for aerosol RH conditioning. The outer
tube of the first one (1.2 m long) was filled with water, which
caused the particles to deliquesce and form aqueous droplets.
The outer tube of the second one (2.4 m long) was supplied
with air at controlled RH that decreased stepwise from 95
to 15 % RH. The dehydration mode allows for studying the
hysteresis effect and efflorescence of aerosol particles.

The relative humidity (RH) and the temperature (T )
of the aerosol flow at the inlet and outlet of the CPMA
were measured with capacitive humidity sensors (accu-
racy ±2 % RH) and temperature sensors (accuracy ±0.1 K)
(ALMEMO 2390, Ahlborn FH A646-E1C).

The heart of the apparatus is a centrifugal particle mass
analyser (CPMA, Cambustion Ltd) designed for classifying
aerosol particles according to their mass-to-charge ratio. The
analyser consists of two rapidly spinning coaxial cylindri-
cal electrodes. The initially charged aerosol particles pass

through the annular interelectrode space, where they experi-
ence centrifugal and electrostatic forces acting in opposite di-
rections (Ehara et al., 1996). Depending on the rotation speed
and voltage applied, these forces are balanced for aerosol
particles with a certain mass-to-charge ratio. These particles
move through the analyser without precipitating on the elec-
trodes. The other particles are forced either to the inner or
to the outer electrode and adhere to their surfaces. Thus, a
CPMA selects particles with a mass (m∗), provided that the
charge on the particles is the same and known (Olfert et al.,
2006).

m∗ =
zeV

ω2
cr

2
c ln

(
r1
r2

) , (1)

where V is the voltage between inner and outer cylinders
with radii r1 and r2, z is the number of elementary charges e
on the particles, rc = (r1+ r2)/2 is the centre radius, and ωc
is the angular velocity at rc. To improve the transfer function
of the classifier, the outer electrode rotates slightly faster than
the inner one, producing a stable system of forces (Olfert and
Collings, 2005). The particle mass analyser was operated in
the step-by-step scanning mode, where rotation speed and
applied voltage are varied in a discrete way to scan the desir-
able particle mass range. The CMPA, in conjunction with the
condensation particle counter (CPC) (TSI model 3787), mea-
sured the particle-mass-based spectrum as a function of the
applied RH history. In the scanning mode, the detector (CPC)
registers at each step the total concentration, 1N , of parti-
cles passing through the CPMA. This concentration mainly
depends on the width and the amplitude of the CPMA trans-
fer function, which is essentially triangular in case of neutral
stability. The mass setpoint defined by Eq. (1) corresponds
to the centre of the transfer function. The width 1m of the
function at the half-maximum level determines the mass res-
olution of the CPMA. In scanning mode, the resolution pa-
rameter of the CPMA, R =m∗/1m is automatically main-
tained at the preset value. Therefore, the CPMA in fact pro-
vides the averaged mass spectral density −1N/1m or in
logarithmic scale1N/1 log(m)=1N/ log(1+1/Rm). The
resolution parameter of the CPMA depends on voltage, rota-
tional rate, airflow and indirectly on the desired mass range.
Its selection is a compromise between the opposing condi-
tions. For example, high resolution requires rapid electrode
rotation and high voltage, which increases heat production
and risk of discharge inside the CPMA. In the present work,
we used the default R = 5, which corresponds to geometric
standard deviations of 1.08 and 1.03 in the mass and size
domains respectively. The main experimental challenge was
caused by heat generation inside the CPMA due to the fric-
tion generated by the rotating cylinders and the heat pro-
duced by the electric motor. This led to a gradual warming of
the air passing through the CPMA and a corresponding RH
decrease. To minimize the difference in RH in the CPMA
analyser, the Nafion humidity exchangers and connecting
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tubes were immersed into a water bath circulator with con-
trolled temperature to provide a gradual heating of the hu-
midified aerosol flow in agreement with the CPMA internal
temperature growth. Usually the CPMA temperature stabi-
lized at 4–6◦ above room temperature after 3–4 h of contin-
uous operation, depending on average rotation speed. Addi-
tionally, a humidified aerosol flow (0.5 L min−1) was mixed
in downstream of the Nafion conditioner with air (NCA) flow
(1 L min−1) (Fig. 1). Using these operation modes, it was
possible to ensure an agreement between the RHs at the inlet
and outlet of the CPMA within 2 % RH.

The dry aerosol particle mass was determined at the
beginning of every measurement cycle. For this purpose,
the DMA-selected particles were introduced directly into
the CPMA, bypassing the humidity exchangers. Then, the
aerosol flow was redirected through the humidifier system
with preset RH, and, after stabilization of the aerosol RH, a
spectrum of particle concentration versus mass of the humid-
ified aerosol was measured by the CPMA. The total CPMA
scanning time over a measurement cycle depends on the de-
sired mass range and resolution. Due to mass distribution
broadening with increasing RH, more scanning steps are
needed to provide the same CPMA mass spectra resolution
over the entire RH range. In this study, the CPMA scanning
time varied within 10–20 min. The lower value refers to the
dry aerosol conditions.

Figure 2 is an example of the mass-based distribution of
ammonium sulfate particles measured at 10, 77, and 85 %
RH. It shows that upon hydration the initial narrow aver-
aged mass spectral density of the dry aerosol particles (modal
md = 0.18 fg) became broader, and the maximum of the dis-
tribution shifted to a larger mass range.

The hygroscopic mass growth factor is defined as the rela-
tive particle mass increase due to water uptake:

Gm =
mw+md

md
, (2a)

where md is the mass of the dry particles and mw is the mass
of water in the wet particles. To calculate the mass growth
factor from the CPMA data, we used the expression

Gm(RH)=
mmod(RH)

mmod(RH< 15%)
, (2b)

where mmod (RH) is the modal mass value of the averaged
mass spectral density measured at given RH, as specified in
Fig. 2.

Obviously, the concept of the described method is quite
similar to the widely used HTDMA technique. This ap-
proach deals only with modal values of relatively narrow
distributions, which makes it less sensitive to the effects of
such instrumental factors as transport losses, detection effi-
ciency and multiple charging. Following Rawat et al. (2016)
and Stolzenberg and McMurry (2008), the registered particle
concentration can be linked to the mass-based distribution
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Figure 2. HCPMA measured particle number mass distribution of
ammonium sulfate at different RH with initial dry particle modal
mass md = 0.18 fg. The indicated mmode is the modal value of the
particle mass distribution used for the mass growth factor (Gm) cal-
culation. Symbols and solid lines are experimental averaged mass
spectral density 1N/1 log(m). Dashed lines are mass-based distri-
bution function dn/dlog(m) after application of an inversion proce-
dure to the primary data.

function dn/dm through the equation:

1N(mi)=

∞∑
z=1

∞∫
0

ε(m)2(z,m,mi)f (z,m)
dn
dm

dm, (3)

where i is the number of the step in the CPMA scanning
mode, mi and 2 are the mass setpoints and the respective
transfer function, f (z,m), is the fraction of particles of mass
m with z elementary charges, ε(m) is the transport efficiency
through the system tubing. In most of our experiments, the
particle distribution was rather narrow with a mass geometric
standard deviation of about 1.10, which is slightly more than
the mass geometric standard deviation of the CPMA transfer
function. Firstly, it provides a clear resolution of the peaks of
multiple-charged particles (Symonds et al., 2011; McMurry
et al., 2002). For particles passed through the DMA with mo-
bility diameter setpointDb = 70 nm, the mass ratio of double
to single charged particles registered by the CPMA is about
1.7, which is considerably larger than the width of the parti-
cle distribution as well as the CPMA transfer function. Sec-
ondly, the variations in ε(m) and f (z,m) across the width of
the distribution function are relatively small, which ensures
a negligible shift in position of the maximums of 1N/1m
and dn/dm, although their amplitude values and widths are
different.

The Twomey–Markowski algorithm (Markowski, 1987;
Alofs and Balakumar, 1982) was applied to invert Eq. (3) and
estimate the mass-based distribution function, as described in
detail in the supplemental information to Rawat et al. (2016).
We used the expressions provided there for transport and
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detection efficiency, converted to the mass domain. For de-
convolution we employed the idealized triangular transfer
function recommended by the manufacturer and measured by
Olfert et al. (2006). The results are shown in Fig. 2 (dashed
curves). The deconvoluted functions are narrower than the
experimental distributions, but the modal mass values of
1N/1m and dn/dm agree within 2 %. This inversion proce-
dure was applied to the CPMA measurements, although we
consider this not to be critical in this study. Some exceptions
are discussed below.

The precision of the CPMA particle mass measurements
mainly depends on the uncertainties of voltage, rotation
speed, airflow rate and the profile between the electrodes.
The voltage and speed are software controlled inside the
CPMA within 0.02 % and registered in the data output files.
Calculated from this data (using Eq. 1), the mass setpoint un-
certainty was less than 0.1 %. The airflow rate seems the most
unstable factor, which fluctuated within 2–3 %. The flow rate
affects the CPMA resolution and not the mass setpoint, so its
contribution to the mass uncertainty is difficult to account for.
Practically, the mass uncertainty was determined as the stan-
dard deviation of repeated measurements, which took into
account the DMA setpoint uncertainty as well. There were
a lot of dry aerosol measurements distributed throughout the
experimental period, and for dry aerosol the mass uncertainty
was 5 %, which agrees with the results of other researches
(McMurry et al., 2002; Johnson et al., 2015). Naturally, the
number of repeated measurements at a other RHs is not as
large, and although the measured masses usually were scat-
tered within 5 %, we assumed the mass uncertainty in humid
conditions to be equal to the transfer function width (8 %).
According to Eq. (2b) this uncertainty translates into a 10 %
uncertainty in Gm.

3 Results and discussion

3.1 Ammonium sulfate and sodium chloride mass
growth

Ammonium sulfate ((NH4)2SO4) and sodium chloride
(NaCl) were chosen as reference substances to calibrate the
HCPMA set-up since their hygroscopic properties are well
known from measurements (Gysel et al., 2002; Mikhailov
et al., 2004, 2009; Kreidenweis et al., 2005; Biskos et al.,
2006a, b; Sorooshian et al., 2008) and theory (Clegg et al.,
1998a, b; Martin, 2000; Topping et al., 2005; Mikhailov et
al., 2013; Cheng et al., 2015). Figure 3 shows the results ob-
tained for (NH4)2SO4 and NaCl particles with initial mobil-
ity diameter Db = 60 nm and dry masses of 0.18± 0.01 and
0.21± 0.01 fg respectively. It illustrates the typical behaviour
of crystalline inorganic salt aerosol particles interacting with
water vapour (Martin, 2000).

Upon hydration, the deliquescence transition results
in a stepwise increase of the HCPMA-derived mass at

RH= 80± 2 % for ammonium sulfate and at RH= 75± 2 %
for sodium chloride. The obtained deliquescence relative hu-
midity (DRH) is in good agreement with literature data of
DRH for crystalline (NH4)2SO4: 79.9± 0.5 % and for NaCl:
75.3± 0.1 % (Gysel et al., 2002; Seinfeld and Pandis, 2006;
Mikhailov et al., 2009, and references therein). The measured
mass growth factors are in agreement with the “full Köhler
model” (Brechtel and Kreidenweis, 2000b; Rose et al., 2008;
Mikhailov et al., 2009) based on the water activity parame-
terization derived from the Aerosol Inorganics Model (AIM,
Clegg et al., 1998a). Averaged over the whole range of 40–
95 % RH, the mean relative deviations between measurement
and model results were within 10 %. It should be noted that
a 10 % deviation in mass growth factor corresponds to 3 %
accuracy in size growth factor, which is typical for HTDMA-
derived data (Duplissy et al., 2009). For NaCl particles at RH
above the DRH, the measured Gm values are systematically
below (by ∼ 5 %) those predicted in theory. Most likely, the
observed discrepancy was caused by the short residence time
in the humidifier system (∼ 10 s), so that the sodium chloride
droplets had not yet reached their equilibrium masses (Cruz
and Pandis, 2000; Chan and Chan, 2005; Duplissy et al.,
2009). For both ((NH4)2SO4) and NaCl particles, interme-
diate growth factors between dry and deliquesced particles
were observed (Fig.3 – blue crosses). This looks like the ap-
parently non-prompt phase transition that was previously de-
scribed by Mikhailov et al. (2004) and Biskos et al. (2006a).
The most reasonable explanation for the observed effect is
due to RH variability inside the CPMA. The 2 % RH un-
certainty is too high to accurately resolve the particles’ del-
iquescence point. The RH appears to vary slightly while the
aerosol particles pass through the CPMA. Thus, when mea-
suring near the deliquescence point, the initially solid par-
ticles may deliquesce somewhere inside CPMA if the local
RH exceeds the DRH. These inner deliquescence events lead
to observation of transitional particle mass spectra (Fig. 4a),
which seems to be an artefact of this technique.

In dehydration mode, both ammonium sulfate and sodium
chloride particles reveal hygroscopic hysteresis, but efflores-
cence of salt solution droplets in the CPMA experiments oc-
curred as a rule at much higher RH than the reference efflo-
rescence relative humidity (ERH): 35± 2 % for (NH4)2SO4
and 43± 3 % for NaCl (Seinfeld and Pandis, 2006). Approx-
imately in half of the measurements, an abrupt decrease of
solution droplet mass was observed at RH= 65± 5 % for
(NH4)2SO4 and at RH= 60± 3 % for NaCl. In this case,
the peaks of effloresced and non-effloresced particles were
merged into a unimodal distribution with intermediate modal
mass as illustrated in Fig. 4b. These mass distributions ac-
count for the transitional growth factor values observed dur-
ing efflorescence (Fig. 3, red crosses). The application of the
inversion procedure described in Sect. 2 to the experimen-
tal data reveals a multi-modal structure of the mass spectra
(dashed lines, Fig. 4b). Although both deliquesced and ef-
floresced transitional spectra are unimodal (Fig. 4a and b),
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Figure 3. The mass growth factor (Gm) of ammonium sulfate (a) and sodium chloride (b) aerosol particles observed as a function of relative
humidity (RH) compared to the full Köhler model: blue and red crosses represent apparent non-prompt deliquescence and efflorescence
thresholds.

Figure 4. Normalized particle number mass distributions of ammonium sulfate particles with initial dry modal mass md = 0.18 fg measured
at RH close to the deliquescence and efflorescence thresholds of (a) unimodal intermediate mass distributions observed near the DRH,
mdeliq. = 0.40 fg is the mass of fully deliquesced particles; (b) unimodal and (d) bimodal mass distributions observed for particle dehydration
at RH < 65 %; (c) mass distribution broadening for particle hydration (red), and dehydration (black). The RH uncertainty was estimated to
be ±1.5 %. Symbols and solid lines are normalized experimental averaged mass spectral density 1N/(N1 log(m)). Dashed lines are mass-
based distribution function dn/(Ndlog(m)) after application of an inversion procedure to the primary data.

their mass distribution shape and width are different. The hy-
dration transitional spectra are narrower than the dehydra-
tion ones (Fig. 4c), which is due to the irreversibility of the
particles’ efflorescence. As a result, the output aerosol in de-
hydration mode is a mixture of droplets and dry particles,
while in hydration mode it consists mainly of droplets. It is
important to note that as with the DMA, any change of the
particle water uptake inside the CPMA leads to a deflection

of the particle trajectory due to the disturbance of the force
balance. Therefore, all the transient mass spectra should be
considered unreliable.

The spatial variability of RH inside the CPMA induced
by the above-mentioned frictional warming appears to be the
most likely cause of the observed efflorescence at RH close
to the DRH. It is reasonable to suppose that the relative hu-
midity is minimally close to the electrode surface, and that
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at RH < DRH salt crystals may form first on the electrode
surface. The gap between the two cylinders is only ∼ 1 mm,
and due to force imbalance, some metastable droplets could
make contact with crystals on the surface, triggering an efflo-
rescence transition as specified in Fig. 5. Since the mass of
these newly formed effloresced particles is smaller than that
of the initial droplets, the electrostatic forces (Fe)will prevail
over the centrifugal forces (Fc), and the dry particles will ei-
ther move towards the inner electrode or pass through the gap
as shown in Fig. 5. In the latter case, the CPC will count these
particles as droplets with the preset mass, thus distorting the
actual mass distribution (Fig. 4b). It should be noted that con-
tact efflorescence inside the CPMA was suggested here as
the most plausible explanation for the observed early ERH.
Additional experimental and modelling studies are needed to
test this hypothesis.

Contact efflorescence is especially effective if the seed
crystal is of the same composition as the anticipated crys-
talline phase. In this case, due to the isochemical collision, no
activation barrier is required for nucleation, and efflorescence
will occur at ERH close DRH. Contact efflorescence experi-
ments by Davis et al. (2015) have shown that upon collision
of ((NH4)2SO4)solid with ((NH4)2SO4)droplet and NaClsolid
with NaCldroplet, the efflorescence of the metastable droplets
occurred at 79± 2 % RH for (NH4)2SO4 and at 74± 2 % RH
for NaCl. In contrast, heterochemical collision did not sig-
nificantly influence ERH. For example, single contact of a
metastable (NH4)2SO4 droplet with dry NaCl particles in-
duced (NH4)2SO4 crystallization at ERH= 38± 2 %, that
is only by ∼ 3 % RH higher than the homogeneous ERH
(∼ 35 %).

In some cases, the particle mass distribution measured by
the CPMA bifurcated into a bimodal one, indicating a par-
tial efflorescence of solution droplets. This is exactly the sit-
uation in which application of the data inversion procedure
makes the bimodal structure of distribution function more
prominent. Figure 4d shows the particle number mass dis-
tribution measured at relative humidities close to the efflo-
rescence threshold upon dehydration of the (NH4)2SO4 par-
ticles. The first distribution mode corresponds to the mass of
the initial dry particles (md = 0.18 fg) and represents efflo-
resced particles. The second mode represents non-effloresced
droplets. Its position is shifted to larger particle masses and
depends on RH. The ratio of the peak heights depends on
RH as well; i.e. the lower the RH, the more the effloresced
particle mode becomes predominant compared to the non-
effloresced one.

Since in this case effloresced and non-effloresced peaks
are resolved (Fig. 4d), their measured masses were used
to calculate the mass growth factor of the salt particles
(Eq. 1). This makes it possible to follow the dehydration
mode down to RH= 42± 2 % for sodium chloride (Fig. 3a)
and RH= 37± 2 % for ammonium sulfate (Fig. 3b) particles.
For NaCl particles the observed efflorescence relative hu-
midity is in good agreement with the HTDMA-derived val-

Contact  efflorescence

Salt crystals

Fe

Fc

Aerosol 
inlet

Aerosol 
outlet

Outer rotating electrode

Inner rotating electrode

Figure 5. Schematic representation of the metastable microdroplets
efflorescence when coming into contact with salt crystals deposited
on the electrode surface. Explanation and designations are given in
the text.

ues of ERH= 44± 2.5 % obtained by Biskos et al. (2006b)
for 60 nm particles. For (NH4)2SO4, the HCMPA-derived
value is at the upper end of the literature ERH values re-
ported for particles ≤ 100 nm ranging from 30 to 37 % RH
(Biskos et al., 2006a; Badger et al., 2006; Sjorgen et al.,
2007; Mikhailov et al., 2009).

3.2 Ambient aerosol measurements

The DMA-HCPMA set-up was used to determine the hygro-
scopic properties of ambient atmospheric aerosol particles.
The sampling site (59◦88′ N, 29◦82′ E) was located in a sub-
urban forest environment at Petrodvoretz, about 35 km south-
west of Saint Petersburg, Russia (SPB sample). The measure-
ments were carried out in the daytime on 25 and 26 March
2014. The ambient aerosols were first dried by a silica gel dif-
fusion dryer to a residual RH < 10 % and then entered into the
DMA-HCMPA system. The measurement procedure was the
same as used for single component solutes. During the sam-
pling campaign, the particle mass distribution was relatively
stable. A modal mobility diameter of Db = 160 nm was se-
lected for the hygroscopic growth measurements, which cor-
responds to md = 3.5 fg. The precision of the particle diam-
eter measurements was generally about ±10 % and the total
uncertainty of the mass growth factor was estimated to be
14 %. Concurrent chemical analysis of the aerosol fractions
in the size range of 20–300 nm indicated that the SPB sample
consisted mostly of inorganic ions, generally in the form of
ammonium sulfate (fAS ∼ 0.45), and organics (fOC ∼ 0.52)
(Mikhailov et al., 2017). Inserting these mass fraction values
(fi) and densities of ρOC = 1.4 g cm−3 (Kostenidou et al.,
2007), ρAS = 1.77 g cm−3 (Lide, 2005) in Eq. (4) yields an
average weighted bulk density of ρd = 1.6 g cm−3.

ρd =

(∑
i

fi

ρi

)−1

(4)

Figure 6a shows the mass growth factors, determined as a
function of relative humidity for hydration and dehydration.
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Figure 6. Hygroscopic properties of ambient atmospheric aerosols with preset md = 3.5 fg (Db = 160 nm): (a) mass growth factor (Gm)
observed as a function of relative humidity compared to KIM; (b) mass-based hygroscopicity parameter (κm) calculated as a function of
mass growth factor. The data points are from two repetitive experiments of hydration (blue circles) and dehydration (red circles). The lines
are fits of KIM Eqs. (5) and (6). The labels I (Ia,Ib), II (IIa, IIb) indicate different regimes of hygroscopicity (Eqs. 5 and 6); the borders of
the corresponding fit intervals are indicated by blue (hydration) and red (dehydration) bars (b).

The onset of deliquescence was noticeable at ∼ 63 % RH
and then water uptake gradually increased, reaching a mass
growth factor value of 2.2 at ∼ 93 % RH. Upon dehydra-
tion, the mass growth factors were slightly larger than those
observed for the hydration mode, and at ∼ 62 % RH parti-
cles underwent efflorescence. Both deliquescence and efflo-
rescence transitions were not pronounced. Most likely, the
observed reversible stepwise particle mass change in the hy-
dration and in the dehydration experiments was related to a
phase transition between collapsed and swollen semi-solid
organic structures (Mikhailov et al., 2009). In the framework
of the κ-mass interaction model (KIM), this transition can
be regarded as a quasi-eutonic threshold between metastable
amorphous phases (Mikhailov et al., 2013).

Figure 6b shows the mass-based hygroscopicity parame-
ter (κm) plotted against the mass growth factor. The con-
centration dependence of κm was calculated as specified in
Mikhailov et al. (2013). Briefly, in analogy with the volume-
based hygroscopicity parameter (Petters and Kreidenweis,
2007), we define a mass-based hygroscopicity parameter, κm:

1
aw
= 1+ κm

md

mw
, (5)

where aw is the activity of water, md is the total mass of the
dry particle material, and mw is the mass of water in the wet
particle (aqueous droplet). By combining Eqs. (1) and (5) we
obtain

aw =

(
κm

Gm− 1
+ 1

)−1

. (6)

Based on Eq. (6) an approximate mass-based κm–Köhler
equation can be written as follows (Mikhailov et al., 2013):

RH
100 %

≈

(
κm

Gm− 1
+ 1

)−1

exp

(
4σwMw

RT ρw

[
πρw

6Gmmd

] 1
3
)
, (7)

where Mw, σw, and ρw are the molar mass, surface tension,
and density of pure water, R is the universal gas constant,

T is the temperature. From the measurement of the Gm(RH)
data, we derived the κm values (Fig. 6b) using Eqs. (6) and
(7) at md = 3.5 fg.

For mixed organic-inorganic particles, KIM describes
three distinctly different regimes of hygroscopicity: (I) a
quasi-eutonic deliquescence and efflorescence regime at low-
humidity, where substances are just partly dissolved and also
exist in a non-dissolved phase; (II) a gradual deliquescence
and efflorescence regime at intermediate humidity, where
different solutes undergo gradual dissolution or solidifica-
tion in the aqueous phase; and (III) a dilute regime at high
humidity, where the solutes are fully dissolved approaching
their dilute hygroscopicity. In each of these regimes, the con-
centration dependence of κm can be described by simplified
model equations.
Regime I:

κm = k1 (Gm− 1) (8)

Regime II:

κm = k2+k3 (Gm− 1)+k4(Gm− 1)−1
+k5(Gm− 1)−2 (9)

Regime III:

κm = k5(Gm− 1)−2
+ k6. (10)

Here, k1 to k6 are fit parameters related to the solubility
and interaction coefficients of all involved chemical com-
ponents (Mikhailov et al., 2013; Eqs. 39–44). In the dilu-
tion mode (III), κm decreases with increasing Gm and be-
comes concentration independent at very high values of Gm
(Eq. 6). According to Eq. (10), the fit parameter k6 can be
regarded as the dilute hygroscopicity parameter of the inves-
tigated sample of particulate matter (κ0

m). In this experiment,
the dilution mode (III) was not clearly pronounced, gener-
ally because in the DMA-HCPMA set-up the upper RH value
does not exceed ∼ 95 %. Therefore, only quasi-eutonic deli-
quescence (Ia)/efflorescence (Ib) and gradual deliquescence
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Table 1. KIM fit parameters for the SPB sample with dry particle mass of 3.5 fg (Db = 160 nm). The columns n and R2 give the number of
data points and the coefficient of determination of the fit.

Regime n R2 Fit Best fit parameter
equation ± standard error

Quasi-eutonic deliquescence (Ia) 11 0.89 6 k1 = 0.61± 0.04

Gradual deliquescence (IIa) 60 0.63 7 k2 = 0.33± 0.01
k3 =−0.007± 0.001
k4 =−0.009± 0.0002
k5 = 2.35× 10−4

± 1.08× 10−4

Gradual efflorescence (IIb) 62 0.66 6 k2 = 0.18± 0.02
k3 =−0.049± 0.017
k4 =−0.017± 0.005
k5 = 5.67× 10−4

± 3.42× 10−4

Quasi-eutonic efflorescence (Ib) 11 0.91 7 k1 = 0.63± 0.03

(IIa)/efflorescence (IIb) regimes have been considered by us-
ing KIM model Eqs. (8) and (9) to fit the data points (Fig. 6b,
solid lines). The obtained best-fit parameters k1–k5 are listed
in Table 1.

By inserting KIM-derived values of κm andGm in Eq. (7),
we obtained the Gm(RH) dependences displayed in Fig. 6a
(solid lines). It can be seen that the model curves are in
good agreement with the measurement data. Note that, for
the quasi-eutonic regime (I), the combination of Eqs. (6)
and (8) yields a constant water activity value given by aw =

(k1+ 1)−1. This relation yields the following quasi-eutonic
RH values characterizing the deliquescence (Ia) and efflores-
cence (Ib) phase transitions: 62.7 and 61.9 % (Fig. 6a, b).

Under the volume-additivity assumption, the mass-based
parameter, κm, can be converted to the Petters and Kreiden-
weis (2007) volume-based parameter, κv , by the relation:

κv = κm
ρd

ρw
(11)

For the calculation of κv we chose the κm fit value of
0.11± 0.04, which is the intercept of the model curves at
Gm = 2.1 (Fig. 6b). This κm value corresponds to the most
dilute solution concentration in the particles achieved in
the given experiment. Inserting κm = 0.11± 0.04 and the
estimated density ρd = 1.6 g cm−3 in Eq. (11) yields κv =
0.18± 0.08. The obtained value is in reasonable agreement
with the CCNC-derived κv = 0.22± 0.12 averaged from 21
to 31 March 2014 measured at the same site for 100 nm
particles (Mikhailov et al., 2017) and κv ∼ 0.2 reported by
Zhang et al. (2014) and Rose at al. (2010) for freshly emit-
ted aerosols from urban pollutants. Most likely, the low κv
value we obtained arises from mixed particles with coatings
by hydrophobic organics, produced from fossil fuel combus-
tion and biomass burning (Andreae and Rosenfeld, 2008).

4 Conclusion

A new DMA-HCPMA technique for measuring the hygro-
scopic properties of laboratory and ambient aerosols is in-
troduced. Laboratory tests with inorganic compounds were
conducted to verify the proposed technique in hydration and
dehydration modes. Ammonium sulfate and sodium chlo-
ride particles were used as reference inorganic aerosols. A
fairly good agreement was observed between measured mass
growth factors and those calculated with a full Köhler model.
The difference between experimental results and theoreti-
cally predicted liquid particle growth factor values does not
exceed 10 %. The measured DRHs of ammonium sulfate and
sodium chloride aerosols are in agreement with literature val-
ues within 2 % RH uncertainty. In the dehydration experi-
ment, efflorescence occurred at higher RH than the ERH of
homogenous nucleation. This effect appeared to be associ-
ated with contact efflorescence initiated by collision between
metastable micro-droplets and salt crystals deposited on the
electrode surface.

The DMA-HCPMA tandem system was also applied to
measure mass growth factors of urban aerosol particles.
The kappa mass interaction model (KIM) was used to
characterize and parameterize non-ideal solution behaviour
and concentration-dependent water uptake by atmospheric
aerosol samples in the 50–95 % RH range. Overall, both test
results and field measurements have shown that the DMA-
HCPMA system described above can be applied to aerosol
size-resolved mass growth factor measurements in hydration
and dehydration modes up to 95 % RH.

Data availability. Data used in this study can be made available
upon request to the author.
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