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Abstract. The microwave radiometers (MWRs) on board
the European Remote Sensing Satellites 1 and 2 (ERS-1
and ERS-2) and Envisat provide a continuous time series of
brightness temperature observations between 1991 and 2012.
Here we report on a new total column water vapour (TCWV)
and wet tropospheric correction (WTC) dataset that builds
on this time series. We use a one-dimensional variational ap-
proach to derive TCWV from MWR observations and ERA-
Interim background information. A particular focus of this
study lies on the intercalibration of the three different instru-
ments, which is performed using constraints on liquid water
path (LWP) and TCWV. Comparing our MWR-derived time
series of TCWV against TCWV derived from Global Naviga-
tion Satellite System (GNSS) we find that the MWR-derived
TCWV time series is stable over time. However, observa-
tions potentially affected by precipitation show a degraded
performance compared to precipitation-free observations in
terms of the accuracy of retrieved TCWV. An analysis of
WTC shows further that the retrieved WTC is superior to
purely ERA-Interim-derived WTC for all satellites and for
the entire time series. Even compared to the European Space

Agency’s (ESA) operational WTC retrievals, which incor-
porate in addition to MWR additional observational data,
the here-described dataset shows improvements in particu-
lar for the mid-latitudes and for the two earlier satellites,
ERS-1 and ERS-2. The dataset is publicly available under
doi:10.5676/DWD_EMIR/V001 (Bennartz et al., 2016).

1 Introduction

ESA’s altimetry missions are at the heart of significant
progress on oceanography. The combined coverage of high-
quality observations by the European Remote Sensing Satel-
lites 1 and 2 (ERS-1 and ERS-2) and Envisat spans over
more than 20 years from 1991 to 2012. During this period,
improvements in instrument data processing as well as or-
bit and geophysical corrections allowed reaching an accu-
racy/sensitivity of 1 cm on instantaneous sea surface height
(SSH) measurements and demonstrated the capability to ob-
serve a 3 mm yr−1 sea level rise (Ablain et al., 2009).
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A major source of uncertainty for radar altimetry is the
wet tropospheric correction (WTC). The spatial and tempo-
ral variability of water vapour is such that an instantaneous
estimation of its impact is needed. To provide the observa-
tions required for the WTC is the primary role of the nadir-
looking microwave radiometer (MWR) embedded into the
altimetry missions on board ERS-1, ERS-2, and Envisat. In
this context, requirements on accuracy, sensitivity, and long-
term stability of the atmospheric water vapour observations
are particularly strong since altimetry missions require a pre-
cision better than 1 cm in WTC (Eymard et al., 2005) and a
temporal stability better than 1 mm yr−1 (Ablain et al., 2009).
Note that a total column water vapour (TCWV) contribution
of 1 kg m−2 is equivalent to a WTC of about 6.4 mm.

Water vapour also is a highly important climate variable
in its own right. The atmospheric water vapour feedback is
believed to be the strongest feedback mechanism in climate
change, approximately doubling the direct warming impact
of increased CO2 forcing (Cess et al., 1990; Forster et al.,
2007). Various groups have reported trends in the amount
of columnar water vapour. In particular, over the oceans, a
strong trend in TCWV has been observed (Trenberth et al.,
2005). TCWV also appears to be a key factor regulating trop-
ical precipitation (Bretherton et al., 2004).

The importance of water vapour in the climate system is
recognized by the Global Energy and Water Cycle Experi-
ment (GEWEX), which is currently performing an assess-
ment of long-term water vapour products (the GEWEX Wa-
ter Vapour Assessment, G-VAP). Of particular importance
for the current study is the recent publication by Schroeder
et al. (2016), who provide an overview on existing TCWV
datasets and assess their long-term stability as well as issues
caused, for example, by changes in the observation systems.

The MWR instruments on board ERS-1, ERS-2, and En-
visat are based on very similar architectures and have mea-
sured water vapour over the ocean between 1991 and 2012
and therefore provide a dataset of 20+ years of water vapour
observations. Data continuity into the future is ensured with
ESA’s Sentinel-3 series of satellites, the first of which was
launched in February 2016. MWR’s two channels located
at 23.8 and 36.5 GHz allow for the simultaneous retrieval of
TCWV and cloud liquid water path (LWP) as outlined later
in this publication. Through the REAPER (REprocessing of
Altimeter Products for ERS) project (Gilbert, 2014)1, ESA
has provided significant efforts to produce an up-to-date data
record of well-calibrated MWR observations.

The efforts described herein build on the REAPER dataset
and address three interconnected issues. Firstly, the homoge-
nization and intercalibration of the MWR data record is stud-
ied and an improved intercalibration is developed. Secondly,
using state-of-the-art one-dimensional variational (1D-VAR)
retrievals, a TCWV data product is developed and made

1https://earth.esa.int/web/sppa/activities/
multi-sensors-timeseries/reaper/

Table 1. Main characteristics of the microwave radiometer series.

Absolute accuracy ca. 2.6 K
3 dB beam width 1.5◦

Spatial resolution 20 km (from an altitude of approx.
780 km)

Swath width 20 km (nadir-looking)
Frequencies 23.8 GHz and 36.5 GHz
MWR lifetime∗ ERS-1: 07/1991–06/1996

ERS-2: 04/1995–07/2011
03/2002–04/2012

∗ Envisat/RA-2/MWR Product Handbook: http://earth.esa.int/pub/ESA_
DOC/ENVISAT/RA2-MWR/ra2-mwr.ProductHandbook.2_2.pdf

available to the community. A revised WTC product accom-
panies this dataset also. Thirdly, the dataset is validated both
against Global Navigation Satellite System (GNSS) observa-
tions of TCWV as well as in terms of its mesoscale stability
with respect to WTC. The so-derived dataset is made avail-
able to the community.

This publication is organized as follows: in Sect. 2 we de-
scribe the MWR brightness temperature time series as well as
the methods used for retrieving TCWV and WTC. Section 3
addresses the central issue of intercalibration and Sect. 4
summarizes the validation results. The sensitivity of the re-
trieval with respect to the background (a priori) temperature
and water vapour profiles is discussed in the Appendix.

2 Datasets and methods

2.1 The MWR dataset

The MWR flown on board the ERS-1, ERS-2 and Envisat
missions are two-channel nadir-pointing passive microwave
instruments measuring top-of-atmosphere (TOA) brightness
temperatures (see Table 1 for more details). A similar in-
strument is also flown on ESA’s current Sentinel-3 mission.
The MWR is nadir-pointing only as its main use to support
wet tropospheric correction for the collocated radar altime-
ter. ERS-1, ERS-2, and Envisat were flown in 98.4–98.5◦ in-
clination orbits at altitudes around 780 km, providing near-
global MWR coverage with the exception of a narrow region
near the poles.

The Envisat MWR brightness temperatures underlying the
have been generated by Collecte Localisation Satellite (CLS)
in 2014 in the framework of the Envisat MWR L1B Expert
Support Laboratory (ESL) activities funded by ESA. It con-
sists of a corrected dataset that removes the anomaly that
has been observed in version 2.1 (Ollivier and Guibbaud,
2014). The ERS-1 and ERS-2 MWR brightness tempera-
tures used herein are based on the REAPER project (Gilbert,
2014) but have been entirely reprocessed in the framework
of the EMiR (ERS/Envisat MWR Recalibration and Water
Vapour Thematic Data Record Generation) project. The so-
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called “first run” REAPER L1B data have been the basis for
this reprocessing. Land measurements are discarded and no
specific processing is applied in coastal areas so that con-
tamination from land may occur above coastal waters at dis-
tances of less than ca. 50 km from land. Such potentially
land-contaminated pixels are excluded from the analysis pre-
sented here.

2.2 GNSS dataset

MWR estimates of TCWV are evaluated against a 2-hourly
dataset of TCWV measured by ground-based GPS (Wang
et al., 2007), composed of the International GNSS Ser-
vice (IGS), SuomiNet, and GPS Earth Observation Network
(GEONET), and hosted by NCEP/NCAR. While the focus
of SuomiNet (see e.g. Ware et al., 2000) is the US and Cen-
tral America and GEONET (see e.g. Shoji, 2009) is based
on Japanese stations, IGS (see e.g. Byun and Bar-Sever,
2009) includes about 500 stations distributed globally2. The
methodology of how TCWV is derived from the measured
GPS zenith path delay is described in detail in Wang et al.
(2007). They also found the individual errors to be less than
1 mm and total errors to be less than 1.44 mm. The GNSS
database version 721.1 includes data from 1995 to 2014. In
total, 997 stations are specified. However, not all of them
cover the full period. Every station is characterized by lati-
tude, longitude and altitude and provides 2-hourly data that
contain day and time (UTC), surface pressure (hPa), atmo-
spheric weighted-mean temperature (K), TCWV, and infor-
mation about zenith delay.

2.3 Retrieval methods

2.3.1 TCWV and LWP

Combined TCWV and LWP retrievals were performed here
are based on a 1D-VAR scheme initially developed at
ECMWF by Phalippou (1996). This scheme originally fo-
cused on microwave observations from SSMIS and AMSU.
It was extended by Deblonde and English (2003) towards
a stand-alone scheme applicable to SSM/I, SSMIS, and
AMSU. This scheme was also used in the ESA DUE Glob-
Vapour project (http://www.globvapour.info). Here, it has
been modified to derive TCWV from brightness tempera-
tures specifically from the MWR sensor family on board
ERS-1/2 and Envisat over the ice-free ocean. All other com-
ponents of the retrieval scheme are identical to the Glob-
Vapour scheme. The underlying radiative transfer model is
the TIROS Operational Vertical Sounder radiative transfer
model (RTTOV, version 7) (Saunders et al., 2007; Hocking et
al., 2011), which is widely used both in the operational and
research community. All physical parameterizations includ-
ing absorption by gases and liquid water and rough ocean
surface scattering are used unchanged from RTTOV. The op-

2www.igs.org/network

timal estimation scheme follows optimal estimation theory
considering the uncertainties in the required meteorological
background information, forward modelling (radiative trans-
fer simulations), and satellite observations.

The 1D-VAR scheme employed here uses daily global
ERA-Interim (Dee et al., 2011) TCWV and atmospheric tem-
perature and cloud water content profiles and various surface
fields as a priori (background) and first guess information. In-
formation on the choices of various input parameters is found
in the next subsections.

For the particular case of the MWR, the observation vec-
tor consists of the two brightness temperatures at 23.8 and
36.5 GHz, from hereon referred to as 23 and 36 GHz. The
23 GHz channel is close to the 22.231 GHz water vapour line
and the 36 GHz channel only experiences weak continuum
absorption by gases but stronger absorption by cloud liquid
water. The 1D-VAR uses a 74-element state vector including
43 temperature levels, 26 moisture levels, surface air tem-
perature, surface specific humidity, sea surface temperature,
wind speed, and cloud liquid water path. While the interde-
pendencies especially of the vertical levels are constrained
by the background error covariance, the retrieval obviously
remains heavily under-constrained, so that ultimately only
TCWV and LWP are constrained by the two observations at
23 and 36 GHz.

Given just these two observations, care must be taken not
to overfit the solution by optimizing parameters only weakly
related to the two observables (say, the atmospheric tem-
perature profile). While the Jacobian matrix for such less-
constrained parameters is in any case small, a cleaner way
of eliminating this issue is to set the Jacobian to zero for all
parameters that are not desired to be retrieved. This was done
for this study for the atmospheric temperature profile and all
surface parameters. Therefore only the water vapour profile
and cloud liquid water are actively adjusted during the 1D-
VAR process, whereas all other parameters were treated as
fixed background parameters, set to the values prescribed by
ERA-Interim.

The cost function J (x) is defined as

J (x)=
1
2
(x− xb)

T S−1
b (x− xb)

+
1
2
(H(x)− y)T S−1

o (H(x)− y), (1)

where the first part on the right-hand side determines the cost
of the solution with respect to the background and the second
part determines the cost with respect to the observations. For
any given retrieval the expectation value of J (x) is equal to
the number of observations. In the above formulation y is
the observation vector, x the state vector, xb the background
state, H(x) the forward model, Sb the background error co-
variance matrix, and So the observation error covariance ma-
trix. For further details on optimal estimation, see Rodgers
(2000). For implementation details regarding Sb and So, see
Appendix B.
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Figure 1. Example of histograms of retrieved LWP and fitted Gaus-
sian for different bias correction values at 36 GHz. The example
shows MWR on Envisat, January 2005. For the example shown
here, the bias correction at 23 GHz is set to −3 K.

2.3.2 WTC

The derivation of the WTC follows the analytical procedure
laid out in Appendix A. The value of the wet tropospheric de-
lay depends on the MWR-derived TCWV and on the value
Tm (Eq. 15), which in turn depends on the ERA-Interim tem-
perature profile and the MWR-derived TCWV.

2.4 Generation of gridded data

The individual retrievals discussed above were used to calcu-
late global fields of monthly averages of total column water
vapour, liquid water path, and brightness temperatures at 23
and 36 GHz on a 2× 2◦ as well as a 3× 3◦ latitude–longitude
grid.

Before calculating the monthly means, some filters were
applied. A retrieved data pixel was used if a valid total col-
umn water vapour retrieval was available, meeting two addi-
tional conditions: (1) liquid water path larger than−1 kg m−2

and (2) a cost function value lower than five. The last condi-
tion effectively removes heavily precipitation-contaminated
pixels as well as observations with remaining sea ice or land
contribution. Data of at least 20 days were required within a
grid cell for monthly-mean values to be reported.

In a first step, the grid was set up according to the con-
sidered spatial resolution (2◦× 2◦ or 3◦× 3◦ lat/long). For
each MWR footprint, the corresponding indices of the global
fields were calculated from the latitude–longitude informa-
tion. If all conditions were met (see above), the retrieved and
auxiliary values were added to the corresponding grid box.
The daily averages were then calculated as the arithmetic
mean of all observations within that grid box within 1 day.
If, for a given month and grid box, more than 20 days had
valid observations, the arithmetic mean of those was assigned
to be the monthly-mean value. The so-derived monthly-mean
fields, along with the individual retrievals, are part of the pub-
lished dataset. All analysis reported within this publication
was, however, performed on individual retrievals.
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Figure 2. The coloured contour plot in (a) shows contours of LWP
bias as function of bias correction values for 23 GHz (x axis) and
36 GHz (y axis). The coloured contour plot in (b) shows biases in
TCWV. In addition, labelled isolines of both TCWV bias (dashed)
and LWP bias (solid) are overlaid in both plots. Data are shown for
ERS-1, June 1994.

3 Intercalibration and bias correction

Retrieval of geophysical variables using physical models and
optimal estimation procedures requires the elements of the
observation vector to be on average unbiased compared to
the forward model applied to the true state of the atmosphere.
Comparing first guess simulations with observations, biases
include contributions from the following error sources:

– representativeness of the state vector in the first guess
(e.g. representation of clouds in the model);

– spatial and temporal colocation errors between first
guess and MWR observations;

– calibration biases/errors of the different MWRs;

– systematic errors and uncertainties in the surface emis-
sivity model;

– systematic errors and uncertainties in spectroscopy of
liquid water absorption, dry air absorption, and water
vapour absorption;

– impact of precipitation contamination and
precipitation–ice scattering not accounted for in
forward model,

While the first two items on this list have a significant im-
pact on the values reported here, they only play a secondary
role for the retrieval accuracy. As pointed out in Appendix B,
the retrieval is sufficiently independent from the first guess
to allow for valid retrievals even if the first guess and prior
are relatively far away from the true state of the atmosphere.
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Figure 3. Optimal bias correction values for the entire time series shown as coloured lines with filled circles marking each monthly value.
Also shown are the temporal mean values for each channel and instrument (straight lines in slightly lighter colours than the corresponding
monthly values) and a regression line (dashed lines). For ERS-2 two separate fits were performed. One corresponding to the period before
the 23 GHz gain drop and another one for the period after the gain drop. The blue arrow highlights the time the day drop happened (26
June 1996). A negative bias correction value means that the observations are warmer than the simulations and thus need to be corrected
downwards.

Figure 4. Overview of location and data density of GNSS stations
used for TCWV analysis.

Furthermore, the relaxed background error covariance crite-
ria formulated also in Appendix B allow for the retrieval to
converge to values corresponding to the observed brightness
temperatures.

The latter four items in the above list, while having smaller
contributions to the overall bias, are of crucial importance to
the accuracy and long-term stability of a climate data record.
These are addressed in an empirical bias correction scheme
as outlined below.

3.1 Method

Because of the low sensitivity of the retrieval to the first guess
as well as to the background state (see Appendix B), the bias
correction proposed here relies on two main assumptions.

First, the globally averaged TCWV from ERA-Interim is
considered reasonably accurate in terms of its absolute value
to provide a reference against which to gauge the average
brightness temperature biases of the MWR time series. Note
that we do not make any claims about the long-term stability
of the ERA-Interim TCWV or any trends and discontinuities
of the dataset. The only assumption we make is that ERA-
Interim TCWV on a globally and monthly averaged basis is
accurate to within ±2 kg m−2. This assumption is justified
from intercomparison efforts such as Schröder et al. (2013).

The second assumption is that histograms of instantaneous
retrieved LWP must show a significant fraction of nega-
tive retrieved LWP, which corresponds to measurement noise
around zero LWP for cloud-free situations. For typical bias-
free optimal estimation retrievals LWP for cloud-free cases
is centred around zero g m−2 with a standard deviation of
about 30–40 g m−2 (see e.g. Greenwald, 2009; Bennartz et
al., 2010).

These two constraints can be used to find an optimal bias
correction for both channels of each instrument in the follow-
ing way: for each instrument and month a certain amount of
observations out of all observations available were randomly
sub-selected. We chose 4 % of the total number of observa-
tions, which presented a compromise between statistical sig-
nificance and computational efficiency.

www.atmos-meas-tech.net/10/1387/2017/ Atmos. Meas. Tech., 10, 1387–1402, 2017
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Figure 5. Comparison of GNSS and MWR-derived TCWV. (a) and (c) show comparisons for all collocations. (b) and (d) show comparisons
for a subset of collocations where (1) MWR-retrieved LWP was smaller than 200 g m−2 and (2) the GNSS station height was below 50 m
above MSL. (a) and (b) show data density plots. (c) and (d) show time series of monthly-mean differences between MWR and GNSS for the
entire dataset. The blue lines give linear fits to the data.

For these 4 % we ran a series of retrievals with different
biases at 23 and 36 GHz. We ran retrievals for bias values
running from −8 to 0 K in steps of 1 K for both channels, so
that in total 9× 9= 81 retrievals were performed on the set
of 4 % of each data per month.

We then found the best choice of biases for 23 and
36 GHz, i.e. the combination of biases for which the dif-
ference between background TCWV (ERA-Interim) and re-
trieved TCWV is smallest and the LWP shows the Gaussian
behaviour around zero. This will be the optimal bias value
for this particular month.

Step 3 was repeated for all months and satellites to find
monthly optimal average bias values.

Figures 1 and 2 highlight some key methodological issues
related to the method. In particular, Fig. 1 shows how the
histogram of LWP shifts as the bias at 36 GHz varies. It also
shows the histograms fitted to the retrieved LWP histograms.
This fit was performed on the part of the histogram left of
its peak, assuming that all values left of the peak correspond
to cloud-free scenes. The super-Gaussian distribution to the

right of the peak corresponds to actual clouds. In the particu-
lar case shown in Fig. 1 the best bias value for 36 GHz would
be very close to−6 K, thereby centring the histogram on zero
as outlined above.

Figure 2 shows isoplots of TCWV and LWP histogram
biases for a full set of monthly retrievals and all combina-
tions of 23 and 36 GHz biases. The optimal set of biases can
now be inferred from this histogram as the intersect between
the zero TCWV bias isoline (thick, solid) and the zero LWP
histogram bias line (thick, dashed) and is located near (−4,
−7 K). The same analysis was performed for all months and
instruments. The results are shown in Fig. 3 and discussed in
the next section.

From Fig. 2 it is also noteworthy that the sensitivity
of TCWV to biases in 23 GHz brightness temperatures is
roughly 1 kg m−2 per 1 K bias. The sensitivity of LWP to bi-
ases at 36 GHz is roughly 25 g m−2 per 1 K bias. Note that
both variables also exhibit sensitivity to the other frequency
although the sensitivity is somewhat smaller as expected.

Atmos. Meas. Tech., 10, 1387–1402, 2017 www.atmos-meas-tech.net/10/1387/2017/
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Figure 6. Validation statistics for WTC sea surface height variability. Data shown here are for Envisat only. (a) and (c) show comparisons
against WTC derived purely from ERA-Interim. (b) and (d) show comparisons against the operational WTC retrieval from Envisat. (a) and
(b) show globally averaged monthly statistics. (c) and (d) show long-term spatial statistics. Values smaller than zero indicate an improvement.
Values larger than zero indicate a deterioration of the results relative to the comparison dataset.

Table 2. Summary of comparisons between ERA-Interim versus GNSS and MWR versus GNSS in terms of bias, RMSE, and stability of the
dataset.

Comparison Data selection Bias RMSE Stability absolute Stability relative
(kg m−2) (kg m−2) (kg m−2 decade−1) (% decade−1)

ERA-Interim versus GNSS All 0.78 4.87 0.28 0.96
LWP < 200, H < 50 −0.03 4.53 0.12 0.32

MWR versus GNSS All 0.63 4.68 0.21 0.68
LWP < 200, H < 50 −0.43 3.95 −0.12 −0.38

The sensitivities of brightness temperatures to changes in
LWP and TCWV together with the Gaussian plots shown
in Fig. 1 also allow for a rough estimation of the total un-
certainty of the brightness temperatures at 23 and 36 GHz
for cloud-free cases. The width of the Gaussian distributions
seen in Fig. 1 is 41 g m−2. Using the sensitivities of LWP
with respect to 23 GHz (∼ 14 g m−2 per 1 K) and 36 GHz
(∼ 25 g m−2 per 1 K) and Gaussian error propagation, an ob-
servation error of 1.01 K in both channels would explain the
resulting width of the cloud-free Gaussian histograms seen
in Fig. 1. As stated in Appendix B, in our retrieval we use a
diagonal observation error covariance matrix of 1 K for both
channels, which is consistent with this estimate.

3.2 Bias analysis

Figure 3 shows the outcome of the above-described bias anal-
ysis for all instruments and channels. Mean bias values as
well as slopes are also listed in Table 1. A negative bias cor-
rection value means that the observations are warmer than the
simulations, and thus the observations need to be corrected
downwards. We found the following:

– Biases correction values at 23 GHz are between about
−4 K for ERS-1 and−2 K for ERS-2 with Envisat being
in between these two values.

– ERS-2 23 GHz brightness temperatures show a signifi-
cant decrease in bias exactly at the time of the instru-

www.atmos-meas-tech.net/10/1387/2017/ Atmos. Meas. Tech., 10, 1387–1402, 2017
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Table 3. Mean optimal bias correction values and regression slopes for the all instruments and time periods. The values given here correspond
to the straight lines and dashed lines in Fig. 3. A negative bias correction value means that the observations are warmer than the simulations
and thus need to be corrected downwards.

Instrument Period Mean Regression slope∗ Regression offset∗

23 GHz 36 GHz 23 GHz 36 GHz 23 GHz 36 GHz
(K) (K) (K yr−1) (K yr−1) (K) (K)

ERS-1 10/1992–06/1996 −4.42 −7.25 −0.12 −0.04 −3.86 −7.05
ERS-2 10/1995–06/1996 −2.66 −4.28 −0.57 −1.72 +0.83 +6.24
ERS-2 07/1996–06/2003 −1.93 −0.09 −0.04 −1.02 −4.14
Envisat 05/2002–04/2012 −2.87 −5.68 +0.10 +0.06 −4.65 −6.65

∗ The regression bias is calculated using bias_corr(t)= slope ∗t+ offset, where t is the decimal year since 1990. For example, 2 July
1991 is day 183 in the year 1991 and therefore corresponds to a value of t = 1.5.

Table 4. Retrieval statistics for the four different 1D-VAR configurations described in Sect. 2.3.1. Corresponding scatterplots are shown
in Fig. 8. Total number of retrievals was 35 584. Reported bias and RMSE values are for valid only for the fraction of retrievals with cost
function lower than 5.

Experiment Bias with respect RMSE with respect Percent Mean Tb residual Percent with Tb
to ERA-Interim to ERA-Interim retrieved after retrieval residual larger

(kg m2) (kg m2) (%) (K) than 1 K (%)

FIXED_NEW 0.88 4.80 68.5 0.23 0.02
FIXED_OLD 0.46 3.99 45.7 0.42 1.52
ERA_NEW −0.01 5.06 97.9 0.07 0.91
ERA_OLD 0.00 3.53 87.2 0.41 6.24

ment’s gain drop (indicated by the blue arrow in Fig. 3)
and a downward trend in bias (slope) for the period
afterwards. This strong drop prompted us to separate
ERS-2 in a pre- and post-gain time period for which
performed a separate analysis (listed in Table 1).

– Envisat shows a slight upward slope possibly over the
first half of its lifetime or over its entire lifetime.

– Brightness temperature biases at 36 GHz are compara-
bly stable over time for both ERS-1 and ERS-2; i.e. the
regression slopes are very small.

– Envisat shows a strong annual cycle in bias at 36 GHz,
which diminishes somewhat after 2008. It also shows a
similar trend as it does for 23 GHz. There was no expla-
nation for this behaviour at the time of writing.

The bias values given here are based on optimal compari-
son between retrieved versus background TCWV as well as
constraints made on the histogram of retrieved LWP. While
these constraints are physically reasonable and justifiable on
average, it is not advisable to perform monthly bias correc-
tions based on the individual values derived for that particular
month. This would by example of TCWV likely result in an
overfitting to the ERA-Interim time series.

However, different biases between two instruments ob-
served in their overlap periods can be clearly attributed to the

instrument calibration, as the background is identical. Sim-
ilarly the mean bias values reported in Table 1 provide for
a reasonable way of addressing the principal error sources
outlined above. A first-order bias correction is therefore per-
formed by subtracting the bias values in Table 1 from the
observations.

We note here that biases on the order of−2 to−5 K (simu-
lations too warm compared to observations) are also reported
by ECMWF for monitoring of AMSU-A against their oper-
ational forecasting system3. It is therefore likely that ERS-2
is calibrated to within the absolute calibration accuracy of
3 K stated for the instrument. In contrast, ERS-1 and Envisat
both show much larger biases, which might be indicative of
remaining calibration issues.

As pointed out above, no assumptions about the long-term
stability of ERA-Interim should be made in this analysis. The
regressions listed in Table 1 therefore cannot conclusively be
interpreted as being caused either by natural variability in
TCWV or by instrument drifts.

While a conclusive statement of the origins of the regres-
sion slopes and related trends cannot be made, it is interesting
to relate the slopes back to the aforementioned retrieval sen-
sitivities. Ignoring the relatively short ERS-2 period before

3http://www.ecmwf.int/en/forecasts/charts/obstat/?facets=
Parameter,Allskyradiances On this website select AMSU, radi-
ances from AMSUA (time-averaged geographical mean) channel
1, AN departure.
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the gain drop, the regression slopes found in Table 1 show
values between−0.12 and+0.1 K yr−1. Factoring in the sen-
sitivities of the retrieval the retrieved TCWV, trends observed
in global TCWV between the constant bias correction and
the regression are expected to be different by roughly −1.2
to+1.0 kg m−2 decade−1. These numbers provide bounds on
how large observed TCWV trends have to be in order to be
considered real, if the current dataset were being used.

4 Validation

4.1 TCWV

MWR-retrieved TCWV was validated against TCWV de-
rived from coastal GNSS stations. Validation was performed
in terms of biases and root-mean-square errors (RMSE) as
well as in terms of long-term stability of the dataset. A total
of 30 712 valid collocations were found. The temporal col-
location difference was chosen to be at maximum 1 h. Note
that our dataset excludes observations close to land, so that
the distance between a coastal GNSS station and the nearest
MWR observation is somewhere around 100 km. The maxi-
mum collocation distance was chosen to be 150 km. Figure 4
shows the coastal GNSS stations used. Figure 5 and Table 1
summarize the validation results. For the entire dataset, we
find a relatively small bias of 0.63 kg m−2 and an RMSE of
4.68 kg m−2. If the comparisons were restricted to exclude
MWR retrievals with high LWP (> 200 g m−2) and GNSS
stations with altitudes higher than 50 m above mean sea
level (MSL) were also excluded, the RMSE was reduced
to 3.95 kg m−2. LWP values larger than about 200 g m−2

likely represent precipitating clouds (e.g. Wentz and Spencer,
1998). We therefore reason that remaining issues with precip-
itation contamination might deteriorate the TCWV retrievals.

The lower panels in Fig. 5 provide time series of average
relative differences between MWR and GNSS. These were
calculated by first computing the relative difference for each
individual observation and then averaging these individual
relative differences. Note that for the same absolute differ-
ence relative differences are larger if the absolute value is
smaller; e.g. for an absolute value of 20 kg m−2, an abso-
lute difference of 2 kg m−2 would correspond to a 10 % rel-
ative difference, whereas for an absolute difference value of
60 kg m−2 that same absolute difference would only corre-
spond to a 3.3 % relative error. Therefore relative biases can
be different from absolute biases as can be observed in Fig. 5.
We provide the stability here in relative terms because the
World Meteorological Organization’s (WMO) Global Cli-
mate Observing System (GCOS) requirements for tempo-
ral stability of TCWV are formulated in relative term as
well (GCOS-107, 2006). Comparing time series of MWR–
GNSS, the expected stability (i.e. the slope of regression
line) should be zero. The observed long-term stabilities are
+0.68 % decade−1 and−0.38 % for the entire dataset and for
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Figure 7. Zonally averaged patterns of improvement (green) and de-
terioration (red) of our retrieval over the operational ESA retrieval.

the reduced LWP < 200 dataset respectively. Both stability
values are not statistically significantly different from zero
(P values for two-sided t test are 0.148 and 0.572 respec-
tively), so that at least for the comparison against GNSS the
dataset can be considered stable over time.

Several other tests including separation of daytime from
night-time observations did not yield any additional insights
into the uncertainties.
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Figure 8. Scatterplots of retrievals obtained with the four different 1D-VAR configurations described in Sect. 2.3.1. In all four panels the
retrieved TCWV is plotted against ERA-Interim TCWV. The green line is the 1–1 line. The red error bars show the mean and standard
deviation in bins of 5 kg m−2. The vertical line in the upper two plots shows the TCWV of the fixed climate background used for these plots
(mid-latitude summer atmosphere). Total number of retrievals was 35 584. Reported values are for valid retrievals with cost function lower
than 5. Corresponding statistics are listed in Table 2.

Table 1 further compares the validation against GNSS for
between the MWR retrievals and the ERA-Interim profiles
used as a background. For the less stringent screening includ-
ing all GNSS-matches, the RMSE is reduced only slightly
from 4.87 to 4.68 kg m−2. For the more stringent screen-
ing (LWP < 200, H < 50), the RMSE for the MWR-retrieved
TCWV is reduced to 3.95 kg m−2, compared to 4.53 kg m−2

when directly compared to ERA-Interim. The retrieval biases
show a less clear improvement. While the RMSE shows im-
provements, the assessment of the bias is inconclusive, with
an improvement in bias on average for all cases but degra-
dation in bias, if the more stringent screening criteria are ap-
plied. The long-term stability of the dataset of the differences
also shows somewhat inconclusive results. It has to be noted
though that none of the stability estimates are statistically
significantly different from zero.

4.2 Wet tropospheric delay

To assess the accuracy of WTC, we employ the “cross-over
approach” outlined by Legeais et al. (2014). The idea of this
approach is to find cross-over points over the same region
within a relatively short time period (10 days or below). The
SSH is assumed to be on average constant within this rela-
tively short time interval. Thus, sequential SSH observations
should ideally give the same answer within the expected un-
certainties. Based on this analysis method, the accuracy of

different WTC retrievals can be compared. In particular, the
WTC retrieval showing the smallest variability in retrieved
SSH will be most accurate.

Here, we compare our WTC retrieval with two indepen-
dent retrievals. Following Legeais et al. (2014), we compare
our WTC retrieval firstly to WTC calculated only on the ba-
sis of ERA-Interim observations. Secondly, we compare to
ESA’s operational retrieval, which employs a neural network
for WTC retrieval and, importantly, uses the MWR bright-
ness temperatures together with altimeter-derived informa-
tion about the state of the sea surface (the altimeter backscat-
ter coefficient). This additional information allows for a bet-
ter characterization of surface emissivity and is not used in
our retrieval.

Figure 6 summarizes the validation results for Envisat.
Comparisons against ERA-Interim WTC show overall im-
provements over the entire data record consistent with sim-
ilar results shown in Legeais et al. (2014) for other sensors.
The lower left panel of Fig. 6 shows improvements nearly
everywhere over the oceans with the exception of the Gulf
Stream off the coast of North America, the Falkland current,
and the confluence areas of the Agulhas and Benguela cur-
rents. All of these areas show exceptionally high variability
in SSH and might therefore pose particular challenges to the
validation method used here.

Comparing our retrievals with the operational Envisat re-
trievals (Fig. 6, upper and lower right panels), our algorithm
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performs slightly inferior than the operational algorithm in
most areas and only shows some improvements in the South-
ern Ocean near the ice edge. Between the three satellites
studied here, Envisat shows the strongest deterioration of
results compared to the operational retrieval. In fact, ERS-
1 and ERS-2 show consistent improvements over the oper-
ational retrieval in the northern and southern mid-latitudes
(see Fig. 7). We note that in contrast to ESA’s operational
retrieval our algorithm does not use any altimeter informa-
tion to constrain sea surface emissivity and solely relies on
the MWR observations and ERA-Interim as background in-
formation. We therefore expect our algorithm to perform
slightly worse than ESA’s operational algorithm. In this con-
text it is surprising that our results in terms of WTC are im-
proved for significant areas of the globe at least for ERS-1
and ERS-2.

5 Conclusions

We have established a new long-term (1992–2012) dataset of
TCWV and WTC over the global oceans, which is readily
available for users. The main difference between our dataset
and earlier datasets, such as ESA’s operational dataset, is that
we explicitly intercalibrate the MWRs on the three different
satellite platforms. Such an intercalibration is a key require-
ment for the generation of satellite-based climatologies. We
have introduced a novel intercalibration method that allows
for the adjustment of biases between the different satellites
based on environmental conditions over ocean. Similar to op-
erational data assimilation systems, we estimate calibration
offsets at 23 and 36 GHz by comparing simulated and ob-
served cloud-free brightness temperatures over the lifetime
of each satellite. We only adjust for long-term, global cal-
ibration trends and offset but do not perform any regional,
monthly, or seasonal bias corrections.

A potential disadvantage of our intercalibration method is
that it hinges the long-term mean retrieved TCWV to the
TCWV fields that were used in the simulations used in the in-
tercalibration process (in our case ERA-Interim). While this
does limit the use of our dataset to assess the global long-
term mean TCWV as well as linear trends, the dataset can be
used for anomaly analyses and to provide WTCs for altime-
ter correction. We note that limitations on absolute accuracy
or linear trends are in no way unique to our dataset. For ex-
ample, Schroeder et al. (2016) investigate trends and discon-
tinuities in six different global TCWV climatologies and find
significant artefacts that inhibit trend analyses in nearly all
datasets.

Independent validation of our dataset was performed
against GNSS radiosondes. This validation shows the TCWV
dataset to be stable over time and generally yielding an im-
provement in RMSE over the background TCWV used in the
retrievals. The dataset has also been submitted to the ongo-
ing G-VAP (Schroeder et al., 2016) for evaluation in the con-

text of several other TCWV datasets. A crossover analysis of
altimeter corrections using the here-derived WTC provided
further insights into the accuracy of the dataset. We found
that for ERS-1 and ERS-2 the results of our WTC retrievals
are superior to ESA’s operational WTC retrieval for the mid-
latitudes and inferior for the tropics. For Envisat, ESA’s oper-
ational WTC retrieval is generally slightly better than our re-
trieval. ESA’s retrieval does use additional collocated altime-
ter backscatter information to constrain sea surface emissiv-
ity. In contrast, our algorithm currently relies only on ERA-
Interim surface wind speed, so that a slight deterioration of
our results compared to ESA’s should be expected. A 1D-
VAR retrieval of surface wind speed, water vapour, and cloud
liquid water based on combined radar altimeter and MWR
data could also be envisioned. This will likely have a sig-
nificant positive impact on retrievals from both instruments.
It would require extending the surface emissivity model as
well as the 1D-VAR retrieval to include altimeter backscat-
ter, which would also have to be intercalibrated.

A number of further limitations exist: in the current imple-
mentation, ERA-Interim fields are only used once a day at
12:00 UTC as background profiles. Rapid changes of atmo-
spheric conditions and surface properties are not accounted
for. We have studied the impact of the background state on
retrieval quality (see Appendix B) and conclude that this lim-
itation has only a marginal impact on data quality, as the al-
gorithm is only weakly dependent on the choice of the back-
ground.

Since MWR is nadir-looking only, it does not provide any
polarization information. Compared to other microwave sen-
sors, its spectral range is also limited the two frequencies at
23 and 36 GHz. Therefore, screening observations affected
by frozen hydrometeor scattering will not be possible. Thus,
in cases of moderate to heavy frozen hydrometeor load, such
as in deep convective cores, retrieval results will likely be de-
graded. Here we employ a screening based on the final value
of the cost function, which has proven efficient in eliminating
outliers. However, validation results show that the compar-
isons against GNSS are deteriorated for larger LWP, which
would be indicative of remaining issues with precipitation
screening.

An extension of the approach outlined here to include the
MWR on board the Sentinel-3 satellites and potentially other
altimeter/radiometer combinations appears highly desirable
and would allow extending the current time series forward
in time. Feedbacks between improved calibration efforts for
single instruments and subsequent intercalibration need to be
accounted for. Ideally, a processing chain would be set up to
allow for re-processing the intercalibration for a single in-
strument if the underlying calibration for that instrument had
improved.
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Appendix A: Calculating WTC

A1 General overview

The altimeter path delay along a path H is directly related to
the real part of the refractive index of moist air n:

1z=

H∫
0

(n− 1)dz. (A1)

Expressing this it terms of refractivity N , with N in ppm
being

N = 106(n− 1), (A2)

we get

1z= 10−6

H∫
0

Ndz. (A3)

Assuming H is the satellite altitude (nadir view), Tv is the
virtual temperature, and using hydrostatic equilibrium we get

1z= 10−6 RAIR

g

pSFC∫
0

N
Tv

p
dp. (A4)

The refractivity N can be parameterized following references
cited in Mangum (2009):

N = ad

pd

T
+ aw

e

T
+ bw

e

T 2

ad : 0.776890
ppm ·K

Pa

aw : 0.712952
ppm ·K

Pa

bw : 3754.63
ppm ·K2

Pa
. (A5)

The variable p is the total pressure and pd represents the
pressure of dry air, where the total pressure p = e+pd, with
e being the water vapour partial pressure. With these defini-
tions we can write the total path delay as

1z= 10−6 RAIR

g

pSFC∫
0

ad

pd

T

Tv

p
dp+

pSFC∫
0

aw

e

T

Tv

p
dp

+

pSFC∫
0

bw

e

T 2
Tv

p
dp

 . (A6)

The first term in the brackets in Eq. (A7) can be split as fol-
lows:
pSFC∫

0

p− e

T

Tv

p
dp =

pSFC∫
0

p

T

Tv

p
dp−

pSFC∫
0

e

T

Tv

p
dp, (A7)

so that Eq. (A7) can be expanded to become

1z= 10−6 RAIR

g

pSFC∫
0

ad

p

T

Tv

p
dp

︸ ︷︷ ︸
Dry tropospheric delay

+10−6 RAIR
g

pSFC∫
0

(aw − ad )
e

T

Tv
p

dp+

pSFC∫
0

bw
e

T 2
Tv
p

dp


︸ ︷︷ ︸

Wet tropospheric delay

. (A8)

Note that Tv/T ' 1.

A2 Dry delay

Integrating the dry tropospheric part of Eq. (A9) yields

1zd = 10−6
·
RAIR

g
· ad ·pSFC. (A9)

The dry delay is on the order of 2.3 m for a straight vertical
path through the atmosphere whereas the wet tropospheric
delay is only on the order of 0.4 m at maximum.

A3 Wet delay

Integrating the wet tropospheric terms in Eq. (A9) yields

1zw = 10−6 RAIR

g

pSFC∫
0

(aw − ad)
e

T

Tv

p
dp

+

pSFC∫
0

bw

e

T 2
Tv

p
dp

 . (A10)

The water vapour mass mixing ratio is defined as

r =
RH2O

RAIR

e

p
. (A11)

Replacing e/p accordingly with r into Eq. (A11) yields

1zw = 10−6 RH2O

g

(aw − ad)

pSFC∫
0

rdp

+bw

pSFC∫
0

r

T
dp

 . (A12)

The TCWV is defined as

TCWV=
1
g

pSFC∫
0

rdp. (A13)

We further define a “water-vapour-averaged mean inverse at-
mospheric temperature”, Tm, as

Tm =

pSFC∫
0

r

T
dp/TCWV

−1

. (A14)
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With these two quantities, Eq. (A13) becomes

1zw = 10−6RH2O

(
(aw − ad)+

bw

Tm

)
·TCWV=

(
A+

B

Tm

)
·TCWV

A : 10−6
·RH2O · (aw − ad) :

− 2.95077 · 10−5
[m/(kgm−2)]

B : 10−6
·RH2O · bw : 1.73276 [m/(K · kgm−2)].

(A15)

The wet tropospheric delay is on the order of 0.4 m for high
water vapour content.

Appendix B: Sensitivity to a priori and background
error covariance matrix

The observation and background error covariance matrices
perform two major functions:

– Firstly, the trace of the observation error covariance ma-
trix compared to the trace of the background error co-
variance matrix determines the relative weight of the ob-
servations compared to the background.

– Secondly, the background error covariance matrix de-
termines the relative weight of the individual entries in
the state vector with respect to each other. Similarly, the
observation error covariance matrix determines the rel-
ative weight of the single observations in the observa-
tion vector with respect to each other. These “internal”
weights are independent of any common multiplicative
factor that can be extracted from the error covariance
matrix.

Thus, by multiplying e.g. the background error covariance
matrix by a scalar factor larger (smaller) than unity, the 1D-
VAR can be forced to converge farther away from (closer
to) the a priori. This property of the covariance matrices is
of importance for example when a reanalysis background is
exchanged for a climate background profile, the former likely
being a much better representation of the actual state of the
atmosphere than the latter.

B1 Sensitivity studies

Subsequently, we study the impact of fixed versus variable a
priori as well as the impact of relaxation of the background
error covariance matrix over the values established in earlier
studies (Schröder et al., 2013), which are used as a reference.
In all cases the observation error covariance matrix is diago-
nal and held constant at 1 K for both channels. In order to un-
derstand the sensitivity of the retrievals to different choices
of background state vectors (xb) and background error co-
variance matrices (Sb), the following series of retrieval tests

was performed on a single day of Envisat MWR observations
(1 December 2011). The following four tests were run.

1. ERA_OLD: ERA-Interim background with existing
constraints (see below) on water vapour and liquid wa-
ter background error covariance.

2. ERA_NEW: ERA-Interim background but with less
tight constraints on water vapour and liquid water. Con-
straints were relaxed by a factor of 2 in water vapour
and 5 in cloud liquid water.

3. FIXED_OLD: A fixed mid-latitude summer atmo-
spheric background profile was used for all retrievals.
The same existing constraints on error covariance ma-
trices as in 1 were used.

4. FIXED_NEW: The same fixed background profile as in
3 but with less tight constraints on background error co-
variance (as in 2).

The fixed background was simulated using a mid-latitude
standard atmosphere as first guess and background for all re-
trievals. Only surface wind speed and sea surface tempera-
ture were still used from ERA-Interim for the climate back-
ground. The FIXED scenario represents an extreme case of a
climatological background profile in which the background
is kept fixed regardless of location and season. This extreme
case has been chosen because it allows study of the algo-
rithm performance under a most restrictive scenario with a
fixed background.

The modified background error covariance matrix for tests
2 and 4 was implemented by expanding the background stan-
dard deviation for cloud liquid water from 0.2 to 1.0 kg m−2

and by multiplying the lnQ sub-matrix of the background er-
ror covariance by a factor of 2, where lnQ is the logarithm
of the water vapour mixing ratio, which is the water vapour
control variable in the applied 1D-VAR retrieval scheme. For
all cases we counted retrievals as valid if, after convergence,
the final cost function value was lower than 5, i.e. at maxi-
mum 2.5 times larger than the expectation value of the cost
function for valid retrievals.

The results of these tests are summarized in Table 2 and
Fig. 8. Both FIXED retrievals show critical deficiencies. Nei-
ther the original nor the modified settings allow for a good fit
using just one constant climate-like profile as background. In
both FIXED cases only about 50 % of the retrievals actually
converge and large biases occur both at the high and low end
of TCWV. These issues can be mitigated by further increas-
ing the lnQ sub-matrix of the background error covariance by
a factor of 10 instead of 2 and also by increasing the number
of iterations in the minimization process from a current up-
per limit of 5 to 40. However, even with these newly revised
parameters the number of converged profiles remains lower
than for the ERA background.

An important finding from the FIXED cases is the relative
insensitivity of the retrieval to the choice of the background.
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As can be seen in Fig. 8. As long as the actual TCWV is
less than 5–10 kg m−2 away from the chosen background,
the retrieval will perform quite well, especially under relaxed
background error covariance conditions. This is due to the
high information content of the passive microwave observa-
tions with respect to both TCWV and LWP.

We note that the use of a single global background pro-
file is not necessarily the best choice for a climatological
background. A possible compromise could consist of less
stringent choices of climatological backgrounds, allowing
the background water vapour and temperature profile to vary
with geographical position and latitude.

Compared to the FIXED cases both the ERA-NEW and
ERA-OLD case show much better results. The trade-off here
lies mainly between an increased RMSE (NEW) and an in-
creased number of profiles with large remaining Tb residu-
als after convergence (OLD). The ERA_NEW case allows
the 1D-VAR to find low-cost solutions further away from
the background water vapour profile. This will enhance the
RMSE because we compare the retrieved TCWV to the
background TCWV. ERA_NEW in contrast provides tighter
constraints on the background error covariance matrix and
thus minimizes the RMSE better but at the cost of having a
larger fraction of retrievals not converge as closely toward
the observed brightness temperatures. For the particular case
shown here 6.24 % of retrievals still show a residual devia-
tion of simulated from observed Tb-s larger than 1 K.

A design choice for the final retrieved time series was
therefore the extent to which it adheres to the prescribed
background compared to perfectly minimizing the observed
brightness temperatures. We note that in an ideal world with
perfect knowledge about background and observation error
covariance matrix this choice could not be made and the re-
trieval would provide a perfect a posteriori estimate of the
true state of the atmosphere accounting for correct back-
ground and observational information. However, as is always
the case the actual retrieval will have to be tuned to some de-
gree. In particular, one wants to minimize the risk of artifacts
in the background data to affect the final TCWV time series.
Such artifacts can include slight discontinuities in the ERA
TCWV time series at time steps where new sensors are added
to the reanalysis.

With these considerations in mind we have chosen the
ERA_NEW 1D-VAR set-up to be used as the basis for the
full time series. The modified background error matrix al-
lows for large deviations from the background profile; i.e. it
gives stronger weight to the observations. At the same time, it
provides good convergence over the entire range of variabil-
ity of TCWV and allows for a high number of converged pro-
files, therefore providing very little sensitivity to the choice
of the background profile. In particular, the choice of the
background profile is uncritical as long as it represents the
general conditions for the geographical region and season.
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