
Atmos. Meas. Tech., 10, 1495–1509, 2017
www.atmos-meas-tech.net/10/1495/2017/
doi:10.5194/amt-10-1495-2017
© Author(s) 2017. CC Attribution 3.0 License.

Continuation of long-term global SO2 pollution
monitoring from OMI to OMPS
Yan Zhang1,2, Can Li1,2, Nickolay A. Krotkov2, Joanna Joiner2, Vitali Fioletov3, and Chris McLinden3

1Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20742, USA
2NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
3Air Quality Research Division, Environment Canada, Toronto, ON, Canada

Correspondence to: Yan Zhang (yan.zhang@nasa.gov)

Received: 5 July 2016 – Discussion started: 2 November 2016
Revised: 21 March 2017 – Accepted: 23 March 2017 – Published: 20 April 2017

Abstract. Over the past 20 years, advances in satellite re-
mote sensing of pollution-relevant species have made space-
borne observations an increasingly important part of atmo-
spheric chemistry research and air quality management. This
progress has been facilitated by advanced UV–vis spectrom-
eters, such as the Ozone Monitoring Instrument (OMI) on
board the NASA Earth Observing System (EOS) Aura satel-
lite, and continues with new instruments, such as the Ozone
Mapping and Profiler Suite (OMPS) on board the NASA–
NOAA Suomi National Polar-orbiting Partnership (SNPP)
satellite. In this study, we demonstrate that it is possible, us-
ing our state-of-the-art principal component analysis (PCA)
retrieval technique, to continue the long-term global SO2 pol-
lution monitoring started by OMI with the current and fu-
ture OMPS instruments that will fly on the NOAA Joint Po-
lar Satellite System (JPSS) 1, 2, 3, and 4 satellites in ad-
dition to SNPP, with a very good consistency of retrievals
from these instruments. Since OMI SO2 data have been pri-
marily used for (1) providing regional context on air pollu-
tion and long-range transport on a daily basis and (2) pro-
viding information on point emission sources on an annual
basis after data averaging, we focused on these two aspects
in our OMI–OMPS comparisons. Four years of retrievals
(2012–2015) have been compared for three regions: east-
ern China, Mexico, and South Africa. In general, the com-
parisons show relatively high correlations (r = 0.79–0.96)
of daily regional averaged SO2 mass between the two in-
struments and near-unity regression slopes (0.76–0.97). The
annual averaged SO2 loading differences between OMI and
OMPS are small (< 0.03 Dobson unit (DU) over South Africa
and up to 0.1 DU over eastern China). We also found a

very good correlation (r = 0.92–0.97) in the spatial distribu-
tion of annual averaged SO2 between OMI and OMPS over
the three regions during 2012–2015. The emissions from
∼ 400 SO2 sources calculated with the two instruments also
show a very good correlation (r =∼ 0.9) in each year during
2012–2015. OMPS-detected SO2 point source emissions are
slightly lower than those from OMI, but OMI–OMPS differ-
ences decrease with increasing strength of source. The OMI–
OMPS SO2 mass differences on a pixel by pixel (daily) ba-
sis in each region can show substantial differences. The two
instruments have a spatial correlation coefficient of 0.7 or
better on <∼ 50 % of the days. It is worth noting that consis-
tent SO2 retrievals were achieved without any explicit adjust-
ments to OMI or OMPS radiance data and that the retrieval
agreement may be further improved by introducing a more
comprehensive Jacobian lookup table than is currently used.

1 Introduction

Sulfur dioxide (SO2) is an important pollutant gas that has
significant impacts on the environment and climate at global,
regional, and local scales. It oxidizes to form sulfate aerosols
that reduce visibility, affect cloud formation, and lead to acid
rain and deposition. Anthropogenic sources of SO2, consist-
ing primarily of fossil fuel burning (Fioletov et al., 2015; Li
et al., 2010a, b), metal smelting (Carn et al., 2007), and oil
and gas refining (McLinden et al., 2014), contribute roughly
70 % of global SO2 emissions (Smith et al., 2011). The re-
mainder of SO2 emissions come from natural sources, e.g.,

Published by Copernicus Publications on behalf of the European Geosciences Union.



1496 Y. Zhang et al.: Continuation of long-term global SO2 pollution monitoring

volcanic eruptions and degassing and sea spray (Faloona et
al., 2010).

Space-based SO2 retrievals were first demonstrated for the
El Chichón volcanic eruption using the Total Ozone Mapping
Spectrometer (TOMS) (Krueger, 1983). Since then, satellite
retrievals of global SO2 pollution have undergone substan-
tial improvements. Satellite remote sensing using spectral fit-
ting techniques in the ultraviolet (UV) has been employed
for global retrievals of SO2 total columns (Eisinger and Bur-
rows, 1998; Fioletov et al., 2013; Krotkov et al., 2016; Li
et al., 2013; Theys et al., 2015). Measurements of anthro-
pogenic SO2 have been demonstrated using several hyper-
spectral UV spectrometers such as the Global Ozone Mon-
itoring Experiment (GOME) (e.g., Eisinger and Burrows,
1998), GOME-2 (Nowlan et al., 2011), SCanning Imag-
ing Absorption SpectroMeter for Atmospheric CHartogra-
phY (SCIAMACHY) (Lee et al., 2009), Ozone Monitoring
Instrument (OMI) (Krotkov et al., 2006, 2008, 2016; Li et
al., 2010a, b; Fioletov et al., 2015; McLinden et al., 2014,
2016a), and the nadir mapper of the Ozone Mapping and Pro-
filer Suite (OMPS) (Yang et al., 2013). However, it is chal-
lenging to build consistent, multi-satellite datasets necessary
for long-term monitoring and trend studies, as different char-
acteristics between satellite instruments must be accounted
for; relatively small inconsistencies in satellite radiance mea-
surements and calibration may introduce large retrieval bi-
ases. Previous studies also suggested that the spatial resolu-
tion of a satellite instrument is the main limiting factor in
detection of SO2 emissions from point sources (Fioletov et
al., 2013, 2015). This is because the coarse spatial resolu-
tion will dilute the derived SO2 columns or masses for point
sources as compared with fine spatial resolution. This causes
additional measurement differences in SO2 loading from dif-
ferent instruments. Stitching together satellite SO2 retrievals
from different instruments and processed with various algo-
rithms therefore usually requires empirical SO2 bias correc-
tions (Fioletov et al., 2013).

Recently, a principal component analysis (PCA) SO2 al-
gorithm was developed and applied to OMI (Li et al., 2013,
2017). This approach greatly reduces the noise and bias
compared with the previous band residual difference (BRD)
OMI SO2 algorithm (Krotkov et al., 2006), allows smaller
sources to be detected from space (Fioletov et al., 2015,
2016; McLinden et al., 2016b), and enables trends to be stud-
ied for more regions. One of the strengths of the PCA tech-
nique is that it does not require instrument-specific, explicit
corrections to satellite-measured radiance data. This makes
it relatively straightforward to adapt to other instruments and
reduces the chance of introducing retrieval biases between
different instruments. In this paper we apply the PCA tech-
nique to OMPS measurements (2012–2015) to examine the
feasibility of continuing the OMI anthropogenic SO2 dataset
with OMPS.

2 OMI and OMPS SO2 data

2.1 OMI operational PCA planetary boundary layer
(PBL) SO2

OMI is a nadir-viewing UV–visible spectrometer (Levelt et
al., 2006a) on board NASA’s Aura satellite launched in 2004
(Schoeberl et al., 2006). It measures sunlight backscattered
from the Earth and solar irradiance covering the wavelength
range from 270 to 500 nm at approximately 0.5–0.6 nm spec-
tral resolutions. The nominal pixel size of OMI is∼ 13 km by
24 km at nadir and ∼ 28 km by 150 km at the swath edges.
The swath is ∼ 2600 km wide and contains 60 cross-track
binned field of views (FOVs or “rows” on a two-dimensional
CCD detector). The current local Equator crossing time is
about 13:38 local time (LT). OMI measurement of SO2 is
one of the key objectives of the OMI mission (Levelt et al.,
2006b).

This study focuses on anthropogenic SO2 that is mainly
distributed within the PBL near source regions. There-
fore we use the OMI operational PCA PBL SO2 product
(OMSO2 v1.2.0). It employs a PCA technique applied to
OMI radiances between 310.5 and 340 nm to derive princi-
pal spectral features from the full spectral content. The prin-
cipal components (PCs) are used to represent various inter-
fering processes in spectral fitting. This greatly reduces the
OMI SO2 spatially dependent biases as compared with the
original OMI PBL product (Krotkov et al., 2006) and de-
creases retrieval noise by a factor of 2 (Li et al., 2013). De-
tails of the PCA algorithm and the OMI PBL SO2 data qual-
ity are provided in Li et al. (2013) and Krotkov et al. (2016).
The product is publicly available from the NASA Goddard
Earth Sciences (GES) Data and Information Services Cen-
ter (DISC) (http://disc.sci.gsfc.nasa.gov/Aura/data-holdings/
OMI/omso2_v003.shtml). It contains SO2 vertical col-
umn densities (VCDs) in Dobson units (1 DU= 2.69×
1016 molecules cm−2). Beginning in 2007, some OMI cross-
track positions have been affected by FOV blockage and scat-
tered light (i.e., the so-called the “row anomaly”) presum-
ably caused by material associated with the satellite outside
the instrument. We exclude pixels with nonzero values in
the XTrackQualityFlag data field in the L1B data to avoid
influence of the row anomaly. We also exclude pixels with
large FOVs at the edges of the swath (rows < 5 or > 54, zero-
based).

2.2 OMPS SO2 data

The mapping component of the OMPS is a nadir-viewing
UV spectrometer. The first model has been flying on board
the NASA–NOAA Suomi National Polar-orbiting Partner-
ship (SNPP) spacecraft since 2011 (Dittman et al., 2002;
Flynn et al., 2014; Seftor et al., 2014). SNPP continues some
of the long-term record of climate quality observations es-
tablished by NASA’s Earth Observation System (EOS) satel-
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lites. It crosses the Equator each afternoon at about 13:30 LT,
∼ 10 min ahead of the Aura Equator crossing time. OMPS
measures backscattered UV radiance spectra from the Earth
and solar irradiance in the 300–380 nm wavelength range at a
spectral resolution of ∼ 1 nm. It has a ∼ 2800 km cross-track
swath (110◦ FOV) with a nadir pixel size of 50 km× 50 km
in the nominal observation mode. Although it has coarser
spectral and spatial resolutions and expected higher detec-
tion thresholds for emissions from point sources as compared
with OMI (Fioletov et al., 2013), it is still suitable for mon-
itoring large anthropogenic SO2 pollution sources (Yang et
al., 2013; Krotkov et al., 2016).

Here, we apply the same PCA retrieval technique de-
scribed above to OMPS in order to obtain the total PBL SO2
VCDs. The main difference between the OMPS and OMI
PCA algorithms is that for the current OMI operational prod-
uct, we only retrieve SO2 for pixels with slant column ozone
(O3) < 1500 DU, while for OMPS we retrieve SO2 for all
pixels with solar zenith angle (SZA) < 75◦ in order to ob-
tain better spatial coverage at high latitudes in winter (par-
ticularly near the edge of the swath). We have tested OMI
retrievals using the same SZA threshold as OMPS and found
results to be very similar to the operational product. Similar
to the processing of OMI data, we also exclude OMPS pixels
with large FOVs at the edges of the swath (rows < 2 or > 33
zero-based).

Another difference is that in the spectral fitting for the
operational OMI product, up to 20 PCs derived from ra-
diance data are used. For OMPS, we use up to 15 PCs.
We found that fewer PCs are required in OMPS retrievals
to achieve a background bias reduction similar to that for
OMI. Both OMI and OMPS algorithms employ a simpli-
fied fixed SO2 Jacobian table, calculated assuming the same
surface albedo (0.05), surface pressure (1013.25 hPa), fixed
SZA (30◦), nadir-viewing zenith angle (0◦), and O3 and tem-
perature profiles representative of typical midlatitude condi-
tions (Krotkov et al., 2008). In the future, we plan to enhance
the lookup table for SO2 Jacobians to more accurately ac-
count for different measurement conditions.

2.3 OMI and OMPS data filtering and gridding

In order to account for different FOV sizes, we average both
OMI and OMPS SO2 pixels (level 2) to the same 0.5◦ latitude
by 0.5◦ longitude grid daily from 2012 to 2015. Only mostly
clear sky data, defined as pixels with effective cloud radiance
fraction < 30 %, are used. The effective cloud radiance frac-
tion is defined at each pixel as the fraction of the measured
radiance that is scattered by clouds. The values are calcu-
lated and reported in the OMI and OMPS total ozone prod-
uct. We also exclude large negative outliers in the data grid-
ding (<−1 DU for OMI and <−0.5 DU for OMPS). The use
of different thresholds accounts for the fact that the standard
deviation of OMI retrievals over the presumably SO2-free
equatorial Pacific (∼ 0.5 DU) is greater than that of OMPS

(∼ 0.2–0.3 DU). The small systematical differences between
retrievals from the two satellite instruments are mainly due
to differences in how the simplified air mass factors (AMFs)
relate to the true AMFs. In this paper, no empirical bias cor-
rections are applied to the gridded SO2 data. We plan to ex-
plore the use of empirical corrections to further improve the
retrievals in the future.

2.4 Emission from OMI and OMPS

Emissions in this paper are estimated statistically using
a “bottom-up” approach by fitting a parametric model
to the average oversampled satellite SO2 spatial patterns
in the vicinity of each point source using a reference
frame aligned with wind direction (Fioletov et al., 2015).
Here, u and v wind components from European Centre
for Medium-Range Weather Forecasts (ECMWF) reanalysis
data (http://data-portal.ecmwf.int/data/d/interim_full_daily)
are matched to each OMI FOV. All OMI data are rotated
about the known source location in order to align with their
wind vectors. This allows all OMI observations over a given
period (1 year in this case) to be analyzed together in or-
der to derive emissions by following the downwind decay
of SO2 plumes. These rotated OMI data along with wind
speed are then fit to a three-parameter plume-like function
that describes the crosswind distribution using a Gaussian
and the downwind distribution using an exponentially mod-
ified Gaussian. A decay constant, representing an effective
lifetime, and width parameter are specified, rather than fit, in
order to improve the stability of the fitting (Fioletov et al.,
2016). Values for these were derived by considering dozens
of well-behaved SO2 sources and found to exhibit a variabil-
ity of less than 50 %. Uncertainties of estimated annual emis-
sions from individual sources are about 50 %. However, com-
parisons with emissions measured directly at power plants
stacks in the eastern US indicate better agreement (∼ 20 %).
Local AMF corrections are applied to the OMI SO2 data in
the vicinity of each emission source as outlined in McLinden
et al. (2016b). The OMI emissions used in the comparison
below are taken directly from the global OMI SO2 emission
catalogue (Fioletov et al., 2016). OMPS emissions are calcu-
lated using a similar approach.

3 OMI and OMPS SO2 spatial and temporal
comparison

In this section, we compute two types of correlations. The
first is the correlation between OMI and OMPS annual aver-
aged SO2 loading, which is computed for each pixel within
a region. We refer to this as the OMI–OMPS “spatial corre-
lation”. We also compute the correlation between daily OMI
and OMPS SO2 masses in specific regions over an extended
time period; we refer to this as the OMI–OMPS “temporal
correlation”.
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Figure 1. Annual SO2 loading (unit: DU) in 2012 for OMI (a) and OMPS (b). Both OMI and OMPS SO2 maps are gridded to 0.5◦× 0.5◦

grid cells. The three black boxes are regions for eastern China, Mexico, and South Africa, respectively, that will be examined in more detail
below. The grey shaded area shows the area affected by the South Atlantic Anomaly.

3.1 Annual/regional average SO2

In Fig. 1, we show that global annual average (2012) SO2
columns from OMPS and OMI are generally consistent. Both
OMI and OMPS PCA SO2 data show regions with major an-
thropogenic pollution sources including eastern China, South
Africa, Mexico, the Persian Gulf, and India, as well as a
number of degassing and eruptive volcanoes (e.g., Mount
Etna). For the regional comparisons, we focus on eastern
China, Mexico, and South Africa. These are the regions af-
fected by anthropogenic SO2 pollution due to extensive emis-
sions from coal-fired power plants and industrial processes
(Krotkov et al., 2016). Mexico also has substantial volcanic
SO2 emissions from Popocatépetl volcano south of Mexico
City (de Foy et al., 2009). The regions are situated in dif-
ferent latitude bands/climate zones and have different SO2
loadings. This allows us to evaluate OMI and OMPS re-
trieval performance under a broad range of conditions. The
three regions are outlined as black boxes in Fig. 1, and the
coordinates are provided in Table 1. In the South Atlantic
Anomaly (SAA) region, SO2 data are screened by remov-
ing SO2 columns greater than 0.3 DU. In this region, Earth’s
magnetic field traps high-energy charged particles. These
particles can cause higher-than-normal irradiance to a low-
Earth-orbiting satellite detector (e.g., OMI) and decrease the
quality of measurements, notably in the UV.

Figure 2 shows that both OMPS and OMI capture the de-
tails of the annual average spatial distribution of the SO2
pollution over the three regions examined in 2012. The av-

Table 1. The coordinates of each region.

Latitude Longitude

Eastern China 30◦ N, 42◦ N 110◦ E, 122◦ E
Mexico 14◦ N, 25◦ N 105◦W, 92◦W
South Africa 30◦ S, 20◦ S 25◦ E, 35◦ E

erage SO2 pollution total columns over eastern China and
Mexico are higher than over South Africa. The OMPS data
show slightly higher SO2 loading over eastern China and
lower SO2 loading over Mexico and South Africa as com-
pared with OMI products. The annual regional averaged SO2
columns over eastern China are 0.79 and 0.69 DUs for OMPS
and OMI, respectively. On an annual basis the OMI–OMPS
spatial correlations are high. They are 0.96, 0.94, and 0.95
for eastern China, Mexico, and South Africa, respectively.
Particularly over Mexico, the spatial patterns of high SO2
(>∼ 1 DU) from OMPS and OMI are similar. Regional an-
nual average SO2 loadings are 0.58 and 0.51 DU for OMPS
and OMI, respectively, and the spatial correlation coefficient
is 0.94. South Africa shows the smallest SO2 loading and
the best overall agreement between OMI and OMPS as com-
pared with the other two regions. The regional annual aver-
age SO2 loading from OMPS is 0.29 DU and from OMI is
0.28 DU. The spatial correlation coefficient for SO2 loading
between the two instruments in this region is 0.95. Three dis-
tinct “hot” spots (SO2 loading > 0.53 DU) are captured by
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Figure 2. Annual SO2 loading (unit: DU) over eastern China (left), Mexico (middle), and South Africa (right) for OMI (top), OMPS (center),
and differences between OMPS and OMI (bottom, Diff=OMPS−OMI) in 2012. SO2 columns amounts are gridded to 0.5◦× 0.5◦ grid cells.

both OMPS and OMI in South Africa. These correspond to
clusters of coal-fired power plants also detected in OMI NO2
data (Duncan et al., 2016). We find that peak SO2 columns
from OMPS are smaller than from OMI, possibly due to the
lower OMPS spatial resolution. This is less of an issue for
eastern China, where the regional loading of SO2 pollution
is much higher and more homogeneous due to the numerous
sources.

The differences in the spatial distributions of annual mean
SO2 between OMPS and OMI over these regions in 2012
are also presented in Fig. 2. Larger differences between the
two instruments are found in areas with the strongest SO2
sources. The maximum SO2 differences between OMPS and
OMI are 0.64 DU (29 %), −2.0 DU (−61 %), and −0.54 DU
(−41 %) over eastern China, Mexico, and South Africa, re-
spectively. For eastern China, the SO2 loading is relatively
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Table 2. The averaged SO2 loading (unit: DU) in 2012–2015 from OMI and OMPS and their spatial correlations, r , for three regions: eastern
China, Mexico, and South Africa.

Eastern China Mexico South Africa

2012 2013 2014 2015 2012 2013 2014 2015 2012 2013 2014 2015

OMI 0.69 0.61 0.50 0.37 0.51 0.42 0.32 0.42 0.28 0.28 0.27 0.38
OMPS 0.79 0.67 0.52 0.36 0.58 0.45 0.34 0.41 0.29 0.29 0.28 0.35
r 0.96 0.96 0.95 0.92 0.94 0.97 0.95 0.94 0.95 0.96 0.97 0.95

high for the entire region due to the large cluster of point and
area sources. The higher loading in OMPS retrievals may
be due to the minor differences in algorithm implementa-
tion (see Sect. 2.2) and the different sampling between the
two instruments. As for Mexico and South Africa, the SO2
sources (and distributions) are more local. The negative bias
of OMPS as compared with OMI may reflect the effect of
different spatial resolutions between the two instruments and
their capabilities of resolving point sources. In addition, the
retrievals over Mexico are strongly affected by emissions
from the Popocatépetl volcano (elevation 5426 m above sea
level) and likely biased high since the volcanic plume is el-
evated while our retrievals assume a boundary layer pro-
file. The elevated volcanic plume may be transported rela-
tively quickly and the difference in sampling time between
OMI and OMPS may cause relatively large differences in
the spatial distributions. As a result, the difference between
the two instruments may be exacerbated by the retrieval as-
sumption of a boundary layer profile. The OMPS pixel size
is about the same size as the 0.5◦ grid boxes used for com-
parisons. Emissions from a point SO2 source could there-
fore alias into nearby grid boxes when we grid OMPS pixels.
This may produce differences in gridded SO2 data between
OMPS and OMI. The difference is the largest for 2012, when
Popocatépetl was most active with approximately 2 times
the emissions of 2013 and 2014 (Fioletov et al., 2016). For
these 2 latter years, the OMPS–OMI maximum differences
are −0.69 and −0.68 DU, respectively.

Table 2 presents annual average SO2 loading for each re-
gion and the OMI–OMPS spatial correlation for each year
between 2012 and 2015. Over eastern China, the average
SO2 loading decreased significantly in 2015 as compared
with 2012 (from ∼ 0.69 DU in 2012 to ∼ 0.37 DU in 2015
for OMI), in agreement with Krotkov et al. (2016). We note
that the OMI–OMPS spatial correlation also decreases with
reductions in the average SO2 loading, possibly due to reduc-
tions in the SO2 variability and thus a decrease in signal as
compared with the noise.

3.2 Regional daily SO2

In this section we compare regional SO2 masses on a daily
basis derived from the two instruments. Daily regional SO2
masses are calculated as a sum of the SO2 masses from the

grid cells (0.5◦× 0.5◦) that satisfy our filtering criteria (see
Sect. 2.3). We only consider grid cells that have valid SO2
retrievals from both instruments. This ensures consistent spa-
tial sampling between the two instruments. We consider days
only with the number of nonempty grid cells > 25 % of total
grids cells in each region for both OMI and OMPS. Temporal
correlations (r) between OMI and OMPS in Table 3 are cal-
culated based on daily SO2 masses from the two instruments
that satisfy the above criteria. In Table 3, we show results
of linear regression analyses using reduced major axis fitting
that accounts for the uncertainties in both OMI and OMPS
data. Results of the ordinary least-squares linear regression
analyses are also provided in Table 3.

Figure 3 compares OMPS and OMI daily regional SO2
masses over the eastern China domain from 2012 to 2015.
The year 2013 has the best sampling (more than 200 days)
and the best temporal correlation and slope between the in-
struments (r = 0.88 and the regression slope is 0.98). The
other 3 years, despite reduced sampling, also have good
temporal correlations (r = 0.79–0.85) and linear regression
slopes close to unity (0.86 to 0.98). Although the SO2
columns over the region remain the world’s highest, the de-
creasing trend is also significant. Annual averaged OMI SO2
masses in this region were 8.4, 8.8, 6.2, and 4.1 kt (kiloton,
103 metric ton) (Table 5) in 2012, 2013, 2014, and 2015, re-
spectively. This is in line with a ∼ 50 % decrease over the
North China Plain region also derived from OMI (Krotkov
et al., 2016). Overall, OMPS SO2 masses are slightly higher
as compared with OMI. The temporal correlation between
OMI and OMPS reduces from r = 0.85–0.88 in 2012–2013
to r ∼ 0.79 in 2014–2015. The correlation decreases can be
explained by reduced SO2 emissions and pollution levels that
bring SO2 columns close to the OMI–OMPS detection limit
and therefore scatter around a remaining offset. The east-
ern China area is located in the midlatitudes. High values
of column O3 in cold season are a major interfering species
in SO2 retrievals. This, together with higher solar zenith
angles and possible snow events, leads to relatively large
noise and potential biases in retrieved SO2 in winter months.
When we restrict our analysis to the warm season (April–
October), the temporal correlation and regression slope be-
tween the two instruments improves especially for 2014 and
2015 (r = 0.82–0.87 and slope is 0.92–1.01; see Table 4).
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Table 3. The total number of days with valid SO2 for both OMI and OMPS for each year. Number of samples within ±50 and ±25 %
agreement and percentage of the total sample, temporal correlation coefficient (r), and the slopes and intercepts from reduced major axis
fitting and ordinary least-squares fitting for each year and all years. X represents OMI SO2 and Y represents OMPS SO2.

Eastern China Mexico South Africa

2012 Total days: 143 141 163
Reduced major axis: Y = 0.97X+ 0.75 Y = 0.99X+ 0.41 Y = 0.96X+ 0.32
Ordinary least squares: Y = 0.83X+ 2.56 Y = 0.95X+ 0.72 Y = 0.86X+ 0.78
Days within ±50 %: 129 (90 %) 121 (86 %) 145 (89 %)
Days within ±25 %: 75 (52 %) 88 (62 %) 96 (59 %)
r: 0.85 0.96 0.90

2013 Total days: 213 144 193
Reduced major axis: Y = 0.98X+ 0.93 Y = 0.99X+ 0.86 Y = 0.96X+ 0.25
Ordinary least squares: Y = 0.86X+ 2.27 Y = 0.94X+ 1.18 Y = 0.81X+ 0.93
Days within ±50 %: 189 (89 %) 120 (83 %) 168 (87 %)
Days within ±25 %: 109 (51 %) 79 (55 %) 108 (56 %)
r: 0.88 0.96 0.84

2014 Total days: 159 133 186
Reduced major axis: Y = 0.86X+ 1.40 Y = 0.91X+ 0.65 Y = 0.89X+ 0.28
Ordinary least squares: Y = 0.68X+ 3.00 Y = 0.83X+ 1.05 Y = 0.78X+ 0.77
Days within ±50 %: 134 (84 %) 109 (82 %) 164 (88 %)
Days within ±25 %: 71 (45 %) 66 (50 %) 101 (54 %)
r: 0.79 0.91 0.88

2015 Total days: 142 126 199
Reduced major axis: Y = 0.91X+ 0.41 Y = 0.95X+ 0.68 Y = 0.76X+ 0.93
Ordinary least squares: Y = 0.72X+ 1.64 Y = 0.89X+ 1.05 Y = 0.71X+ 1.22
Days within ±50 %: 120 (85 %) 106 (84 %) 181 (91 %)
Days within ±25 %: 78 (55 %) 75 (60 %) 116 (58 %)
r: 0.79 0.94 0.94

2012–2015 Total days: 657 544 741
Reduced major axis: Y = 0.96X+ 0.68 Y = 0.97X+ 0.60 Y = 0.80X+ 0.82
Ordinary least squares: Y = 0.82X+ 2.04 Y = 0.92X+ 0.93 Y = 0.73X+ 1.16
Days within ±50 %: 572 (87 %) 456 (84 %) 658 (89 %)
Days within ±25 %: 333 (51 %) 308 (57 %) 421 (57 %)
r: 0.86 0.95 0.91

The Mexico region is located in the tropics where the
SO2 retrievals from the PCA algorithm are less influenced
by weather patterns and the total O3 columns are less vari-
able as compared with middle- and high-latitude regions.
Due to the high frequency of cloud occurrence in this re-
gion, the number of days with valid SO2 retrievals for each
year is less than that from eastern China. Figure 4 shows that
OMI and OMPS retrieved consistent SO2 masses in all 4
years. The temporal correlation between the instruments is
also the highest (r = 0.91–0.96) and regression line slopes
are 0.91–0.99; i.e., this indicates that OMPS shows a rela-
tively small multiplicative low bias as compared with OMI.
As mentioned above, the SO2 loading in Mexico region is
subject to Popocatépetl eruptions. The increased sensitivity
of the satellite instruments to SO2 at higher altitudes possi-
bly contributes to the OMI–OMPS SO2 agreement over the
Mexico region.

Compared with eastern China and Mexico, aver-
aged SO2 masses in South Africa are much smaller.
The maximum SO2 mass is less than 20 kt in 2012–
2014 as shown in Fig. 5. The SO2 mass exceed-
ing 30 kt in April–May 2015 resulted from the passage
of a volcanic SO2 plume from the April 2015 Cal-
buco eruption in Chile (http://so2.gsfc.nasa.gov/pix/special/
2015/calbuco/Calbuco_20150427_omiomps_1.html). After
removing those days (total of 3 days), the linear regression
slope increases from 0.76 to 0.83. The 2015 averaged SO2
mass in the South Africa region decreases from 4.6 to 3.6 kt
for OMPS and from 4.3 to 3.4 kt for OMI (see Table 5). Over-
all, SO2 masses in the South Africa region from the two in-
struments are in good agreement.

We also investigated the correlation between the spatial
distributions of the OMI and OMPS PCA retrievals on a daily
basis as shown in Fig. 6. We excluded SO2 masses < 2.5 kt
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Figure 3. (a–d) Eastern China regional daily SO2 mass (unit: kt) for OMI and OMPS for the years 2012, 2013, 2014, and 2015. Red solid
line is the 1 : 1 line and dashed lines are±25 %. Black line is the reduced major axis fitting of OMI and OMPS SO2 masses. r is the temporal
correlation coefficient. The number of samples within ±25 % is also presented here. (e) Time series of daily SO2 mass in the eastern China
region from 2012 to 2015 with valid data for both OMI and OMPS.

over the area since, for those unpolluted days, OMI and
OMPS retrievals are near their noise levels. Mexico shows
the best correlation among the three regions; 82 % of the
days have spatial correlation coefficient r > 0.6. The other
two regions also have more than half of all qualified days
with daily spatial correlation coefficients r > 0.6. These com-
parisons over the three regions suggest that the daily spatial
distributions of SO2 from OMI and OMPS PCA retrievals
are correlated for even moderately polluted days. All three
regions show that less than ∼ 50 % of the days have spa-
tial correlation coefficient r > 0.7. The discrepancy between
the two instruments is probably a result of different spatial

resolutions. OMPS large pixels can effectively cause SO2
to spill out into the adjacent areas when averaging over our
grid boxes. Li et al. (2017) used a volcanic case to demon-
strate how the OMPS low spatial resolution produced lower
SO2 columns as compared with OMI (Li et al., 2017, their
Fig. S8).

3.3 Instrument performance and trends

Instrument degradation may affect SO2 retrievals. We exam-
ined the trends in spatial standard deviation (SD) and stan-
dard errors (SE=SD divided by the square root of the num-
ber of daily observations) of the daily SO2 noise over three
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Figure 4. Same as Fig. 3 but for the Mexico region.

clean regions in the Pacific (150–120◦W). Figure 7 shows
the median and 25th and 75th percentiles of daily SO2 SD
and SE in August in each year. In addition to the tropical Pa-
cific region between 10◦ S and 10◦ N, we selected the same
latitudes as those of our eastern China and South Africa re-
gions (called north and south Pacific regions, respectively)
and similar filtering has been applied to the data. Over these
background regions, the SO2 levels are below satellite detec-
tion limits and, as expected, the medians of daily averaged
SO2 columns were statistically equal to zero for the regions
(−0.06–0.04 DU for OMI and 0.07–0.1 DU for OMPS). The
OMI SDs increased by ∼ 10 % from 2005 to 2015 over the
north Pacific and tropical Pacific regions, which can be ex-
plained by increased CCD detector noise after 12 years of
continuous operation in space. As expected the OMPS SDs

do not show significant changes during its first 4 years in
space. We note that OMPS SDs (∼ 0.3 DU) are roughly half
the OMI values (∼ 0.5=−0.7 DU), which can be explained
in part by the larger OMPS FOV that results in higher signal-
to-noise ratio as well as OMI long-term degradation. OMPS
large FOVs may also reduce errors generated by variability
in observation conditions (by smoothing them out) that affect
our simple fixed AMF assumptions, e.g., geometry, cloudi-
ness, and surface conditions. We plan to re-examine this is-
sue with future versions of the PCA algorithm that will have
more detailed AMF calculations. OMI SEs in 2005 are ac-
tually smaller than OMPS in 2012, which may be explained
by higher OMI spatial resolution and a resulting larger num-
ber of measurements over the same region. However, the
OMI SEs increased after 2008 due to the row anomaly that

www.atmos-meas-tech.net/10/1495/2017/ Atmos. Meas. Tech., 10, 1495–1509, 2017
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Figure 5. Same as Fig. 3 but for the South Africa region.
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Figure 6. Probability distribution functions (PDFs) of daily spatial correlations over eastern China (a), Mexico (b), and South Africa (c)
from 2012 to 2015.
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Table 4. Same as Table 3 but for the warm season (April–October)
over eastern China.

2012 Total days: 105
Reduced major axis: Y = 0.92X+ 1.00
Ordinary least squares: Y = 0.80X+ 2.21
r: 0.87

2013 Total days: 132
Reduced major axis: Y = 0.95X+ 1.62
Ordinary least squares: Y = 0.83X+ 2.67
r: 0.87

2014 Total days: 101
Reduced major axis: Y = 0.98X+ 1.12
Ordinary least squares: Y = 0.83X+ 2.09
r: 0.85

2015 Total days: 96
Reduced major axis: Y = 1.01X+ 0.46
Ordinary least squares: Y = 0.83X+ 1.34
r: 0.82

Table 5. Averaged SO2 mass (unit: kt) over eastern China, Mexico,
and South Africa in 2012, 2013, 2014, and 2015 for both OMI and
OMPS.

2012 2013 2014 2015

Eastern China OMI 8.4 8.8 6.2 4.1
OMPS 9.1 9.8 6.4 4.0

Mexico OMI 5.9 4.2 3.2 4.0
OMPS 6.3 4.9 3.4 4.4

South Africa OMI 3.3 3.3 3.2 4.6
OMPS 3.4 3.3 3.1 4.3

decreased the number of available observations. OMI and
OMPS SEs became comparable in recent years. In other
months, SDs and SEs show similar trends as those shown for
August. But winter months (October–February) show more
interannual variations compared to other months (see Sup-
plement) because winter months are more likely influenced
by pollution transport from other regions as compared with
other months.

4 Emission comparison of SO2 emissions estimated
from OMI and OMPS PCA retrievals

In this section, we evaluate OMPS’ ability to continue space-
based monitoring of SO2 emissions from large point sources.
It has been recently demonstrated that, by combining wind
data and OMI PCA PBL SO2 retrievals, one can quan-
tify emissions from more than 490 anthropogenic and vol-
canic sources around the globe (Fioletov et al., 2015, 2016).
This top-down approach is independent of the conventional
bottom-up method and has helped to uncover a number of
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Figure 7. Standard deviation (SD, a) and standard error (SE, b)
of SO2 noise (DU) averaged over clean background regions in the
Pacific (150–120◦W), in the north between 30 and 42◦ N (Red),
in the tropics between 10◦ S and 10◦ N (black), and in the south
between 30 and 20◦S (blue) in August of each year from 2005 to
2015. Solid lines are medians of daily SO2 SD from each month
(31 days), and dashed lines are 25 and 75 % of daily SO2 SD from
each month, respectively. OMI data start in 2005 and OMPS data
start in 2012. The OMI SD peak in 2008 over north Pacific results
from the Okmok and Kasatochi eruptions (Krotkov et al., 2010).

SO2 sources that are missing or underreported in some lead-
ing emission inventories using OMI data (McLinden et al.,
2016b). Here we apply the same method to OMPS SO2 data
to estimate emissions for the same point sources and compare
the OMPS-based emission estimates with those from OMI.
It should be noted that the OMPS-based results presented
in this section are preliminary, as the emission derivation
method has been developed and optimized for use with OMI.
In particular, the method includes a step in which local bias is
estimated and removed from satellite data. Since OMPS has
a much larger footprint and far less pixels as compared with
OMI, its local bias has to be estimated from a much larger
domain. Nonetheless, the comparison in this section should
offer some insights into the performance of SNPP OMPS in
SO2 emission monitoring.

Figure 8a shows the locations of∼ 400 large point sources
and their average annual SO2 emissions during 2012–2015
estimated from OMI retrievals. OMPS-based emission es-
timates for these sources (Fig. 8b) show a generally simi-
lar spatial distribution, with numerous large anthropogenic
sources in China, India, and the Middle East, as well as
a number of active degassing volcanoes around the Pacific
Ocean. This similarity is not surprising given that the an-
nual mean SO2 loadings derived with the PCA algorithm
is largely consistent between the two instruments (Fig. 1).
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Source type
Smelter
Power plant
Oil & gas
Volcano

-1

Figure 8. (a) Average annual SO2 emissions during 2012–2015
estimated from the operational OMI PCA PBL SO2 retrievals for
403 point sources worldwide. (b) Same as panel (a) but with emis-
sions estimated from OMPS retrievals. Color represents the magni-
tude of the estimated emissions while source types are marked with
different symbols.

However, one may notice that OMPS-based emission esti-
mates tend to be smaller than OMI. A linear regression anal-
ysis (Fig. 9) indicates that for all 4 years in our study pe-
riod, the emissions estimated using OMPS and OMI data
are highly correlated, with correlation coefficient of 0.91–
0.97. The slope ranges between 0.88 and 0.97, suggest-
ing that OMPS underestimates emissions as compared with
OMI. The OMI- and OMPS-based annual emissions agree to
within ±25 % of each other for about one third of the large
403 sources (i.e., 132–149 for different years). If we exclude
volcanic sources from the regression analysis, the OMI and
OMPS-based emission estimates for anthropogenic sources
are still in relatively good agreement, with correlation coef-
ficients of 0.93–0.94 and slopes of 0.85–0.98 for all years.

It has been shown that point sources emitting more than
∼ 30–40 kt SO2 each year can be detected from OMI PCA
retrievals (Fioletov et al., 2015). Detection of smaller sources
may be possible in some cases but is more uncertain. Indeed,
if we require that, for a source to be considered as being de-
tected, its estimated annual emissions must be greater than
or equal to twice the associated emission uncertainty (esti-
mated by the emission estimation algorithm), only ∼ 20 of
those sources detected by OMI in 2012 have emissions below
30 kt yr−1 (Fig. 10a). Based on this criterion, OMPS is only
capable of detecting a fraction of these OMI-detected sources
(Fig. 10a). This fraction increases with the strength of emis-
sions (Fig. 10b). It is generally below 50 % for sources of
10–50 kt yr−1, but it grows to ∼ 60–80 % for sources of 60–

130 kt yr−1. For even larger sources, this fraction is close to
100 %.

Overall, our comparison between SO2 emissions derived
from the two instruments suggests that OMI- and OMPS-
based emissions are highly correlated and that OMPS-based
emissions are slightly smaller, probably reflecting its reduced
sensitivity to anthropogenic sources due to coarser spatial
resolution. The OMPS detection limit for point sources is
probably ∼ 80–100 kt yr−1, greater than the previously esti-
mated OMI detection limit of 30–40 kt yr−1 (Fioletov et al.,
2016). Despite these differences, OMPS is capable of de-
tecting the majority of point sources detected by OMI as
compared with only 30–40 sources that are detectable with
GOME-2 and SCIAMACHY (Fioletov et al., 2013). This is
due in part to the relatively low noise level of OMPS that
partially compensates for its larger footprint; unlike OMI,
OMPS does not have significantly more pixels in the fitting
area as compared with GOME-2 or SCIAMACHY. However,
the uncertainty in derived SO2 emissions tends to be smaller
for OMPS as compared with GOME-2 or SCIAMACHY.
Global total anthropogenic emissions (for the 403 sources)
are 24 Tg yr−1 from OMPS and 30 Tg yr−1 from OMI;
bottom-up inventories indicate total anthropogenic emissions
of 100–110 Tg yr−1, albeit for an earlier period (Janssens-
Maenhout et al., 2015; Klimont et al., 2013). This suggests
OMPS is able to detect roughly 25 % of the total anthro-
pogenic source.

5 Conclusions

Taking advantage of the 4-year overlap between OMI and
OMPS local afternoon measurements and applying the same
PCA algorithm to retrieve SO2, we demonstrate that OMI
and OMPS SO2 retrievals are highly consistent for the
world’s most polluted regions from 2012 through 2015. The
annually averaged OMI–OMPS spatial correlation coeffi-
cients of SO2 loading over eastern China, Mexico, and South
Africa are greater than ∼ 0.9 in each year. The daily regional
SO2 temporal correlation coefficients are 0.86, 0.95, and 0.91
for eastern China, Mexico, and South Africa, respectively.
The difference of regional averaged SO2 mass is less than
10 % between the two instruments for the three regions in
each year except over Mexico in 2013, when the difference
is 14 %. The comparison of ∼ 400 global anthropogenic and
volcanic SO2 emissions, derived from OMI and OMPS re-
trievals using a top-down approach, indicates that the cor-
relations between OMI and OMPS annual emissions are
high (r& 0.9). OMPS is capable of detecting sources about
50 % of sources with emissions of 10–50 kt yr−1 that are de-
tected with OMI and close to 100 % of sources larger than
130 kt yr−1 detected with OMI. Good consistency between
the two instruments provides confidence that the OMPS nadir
mapper currently flying on board the SNPP satellite and sim-
ilar future instruments planned for the follow-up JPSS 1, 2,
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Figure 9. Scatterplots comparing the annual SO2 emissions estimated using OMPS and OMI retrievals for 403 sources (see Fig. 8 for
their locations) indicate generally good agreement between the two datasets, with correlation coefficients between 0.91 and 0.97 and slopes
between 0.88 and 0.97.

-1

Figure 10. (a) Red (blue) bars: the number of SO2 sources within
different emission bins detected using OMI (OMPS) PCA retrievals
for 2012. For a source to be counted as a successful detection, its es-
timated annual emissions have to be at least twice the associated un-
certainty; (b) the percentage of OMI-detected sources within each
bin that is also detected by OMPS in different years.

3, and 4 NOAA operational satellites with improved spatial
resolution similar to OMI, can be used to continue long-term
OMI SO2 record started in 2004.

Data availability. The OMI PBL SO2 product (OMSO2 v1.2.0) is
publicly available from the NASA Goddard Earth Sciences (GES)
Data and Information Services Center (DISC) (http://disc.sci.
gsfc.nasa.gov/Aura/data-holdings/OMI/omso2_v003.shtml; NASA
GES DISC, 2017).

The OMPS PBL monthly SO2 product is publicly available from
NASA/GSFC Aura Validation Data Center (AVDC) (http://avdc.
gsfc.nasa.gov/index.php?site=1868800100; NASA/GSFC AVDC,
2017).
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