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Abstract. Cloud detection is important for providing nec-
essary information such as cloud cover in many applica-
tions. Existing cloud detection methods include red-to-blue
ratio thresholding and other classification-based techniques.
In this paper, we propose to perform cloud detection us-
ing supervised learning techniques with multi-resolution fea-
tures. One of the major contributions of this work is that the
features are extracted from local image patches with different
sizes to include local structure and multi-resolution informa-
tion. The cloud models are learned through the training pro-
cess. We consider classifiers including random forest, sup-
port vector machine, and Bayesian classifier. To take advan-
tage of the clues provided by multiple classifiers and various
levels of patch sizes, we employ a voting scheme to com-
bine the results to further increase the detection accuracy. In
the experiments, we have shown that the proposed method
can distinguish cloud and non-cloud pixels more accurately
compared with existing works.

1 Introduction

With the trend of sustainable and green energy, there is a
growing demand for solar energy technology. To utilize so-
lar energy effectively, integrated and large-scale photovoltaic
systems need to overcome the unstable nature of solar re-
source (Gueymard, 2004; Heinemann et al., 2006; Lorenz et
al., 2009). The ability to forecast surface solar irradiance is
helpful for planning and deployment of electricity generated
by different units. Numerical weather prediction information
or satellite images are popular materials used for wide-range

prediction (Marquez and Coimbra, 2011; Perez et al., 2002,
2010; Remund et al., 2008). However, the resolution of pre-
diction with respect to space and time obtained by weather
prediction information or satellite cloud images is relatively
coarse compared to the resolution desired for photovoltaic
grid operators. For more refined spatial and temporal resolu-
tion of irradiance prediction, research that analyzes images
obtained from devices capturing skies has emerged. Ground-
based sky camera systems have been proposed to capture
the images of the sky (Sabburg and Wong, 1999), allowing
researchers to study the relationship between the sun and
clouds and the effect of clouds. Devices developed to moni-
tor the sky presented in some of the pioneering works include
whole sky imager (Kassianov et al., 2005; Li et al., 2004),
whole sky camera (Long et al., 2006), all-sky imager (Kub-
ota et al., 2003), and total sky imager (Pfister et al., 2003).
More recent commercial products include all-sky cameras by
Eko Instruments, Oculus, and SBIG. These devices are use-
ful to make up the deficiency of satellite cloud observations
in terms of spatial and temporal resolutions.

Cloud coverage, configurations, and types are critical fac-
tors that influence the solar irradiance. A category of research
works are devoted to detecting (Long et al., 2006), classify-
ing (Calbo and Sabburg, 2008; Heinle et al., 2010; Isosalo et
al., 2007; Liu et al., 2011; Martínez-Chico et al., 2011; Zhuo
et al., 2014), and tracking clouds (Marquez and Coimbra,
2013; Tapakis and Charalambides, 2013; Wood-Bradley et
al., 2012). The relationships between cloud coverage and sur-
face solar irradiance have been explored (Feister and Shields,
2005; Fu and Cheng, 2013; Pfister et al., 2003). It has been
shown that cloud fraction and surface irradiance are nega-

Published by Copernicus Publications on behalf of the European Geosciences Union.



200 H.-Y. Cheng and C.-L. Lin: Cloud detection in all-sky images

tively correlated under most conditions. In addition to pro-
viding cloud coverage information, accurate cloud detection
result could further improve the cloud type classification ac-
curacy (Cheng and Yu, 2015b). It has been established that
employing cloud type information in the process of short-
term irradiance prediction could yield more accurate predic-
tion results (Cheng and Yu, 2015a).

Cloud detection in all-sky image decides if a pixel be-
longs to a cloud. Traditionally, red-to-blue ratio (RBR) of
each pixel is used to indicate whether the dominant source
of the pixel is from clear sky or clouds (Chow et al., 2011;
Johnson et al., 1989, 1991; Long et al., 2006; Shields et al.,
2007, 2009). Then, a threshold is applied to RBR to deter-
mine cloud pixels in a sky image. The pixels whose RBRs
are lower than the threshold are classified as clear sky and
the pixels whose RBRs are higher the threshold are labeled
as clouds. Selecting a good threshold is very important for
RBR method. The work by Long et al. (2006) suggested that
different thresholds should be selected depending on the rel-
ative position of the pixel being classified in contrast to the
positions of sun and horizon. In addition to pure color char-
acteristics, Roy et al. (2001) tried a neural network approach
with a wider range of variables for cloud segmentation. West
et al. (2014) also used a neural network to classify pixels. The
features they used are colors and the distance of the pixel to
the sun. Under lower-visibility conditions, aerosol and thin
clouds tend to cause errors in cloud determination. To im-
prove the accuracy of the single threshold method, Huo and
Lu proposed an integrated method for cloud determination
under low-visibility conditions (Huo and Lu, 2009). The inte-
grated cloud-determination algorithm uses fast Fourier trans-
form, symmetrical image features, and self-adaptive thresh-
olds. Li et al. (2011) proposed a hybrid thresholding algo-
rithm (HYTA) for cloud detection on ground-based color im-
ages, aiming at complementing fixed thresholding and adap-
tive thresholding algorithms. HYTA identifies the ratio image
as either unimodal or bimodal according to its standard de-
viation. Then, the unimodal and bimodal images are handled
by fixed and minimum cross entropy (MCE) thresholding al-
gorithms, respectively. Kazantzidis et al. (2012) tuned multi-
ple heuristic thresholds on RGB (red, green, blue) color com-
ponents to detect clouds. The abovementioned works mostly
consider the features extracted from each single pixel but not
the local image patch and structure around the pixel. Ber-
necker et al. (2013) used color and texture as features. After
applying deep belief networks to learn the structure of the
features, a random forest classifier is used to classify image
patches into three classes: sky, cloud, and thick cloud. Ber-
necker et al. (2013) proposed to utilize information of im-
age patch. However, they used fixed-size patches for training
and classification without considering multi-resolution infor-
mation. Patches with sizes that are too large would include
features from both sky and clouds. In contrast, patches with
sizes that are too small might not include enough information
to represent the appearance of the clouds.

In this paper, we propose to perform cloud detection via
extracting features from local image patches with various
sizes. Patches of different sizes extract information at dif-
ferent levels of resolution. For classification, we utilize mul-
tiple supervised learning techniques. We regard the cloud
detection problem as a two-class classification problem. In
other words, we classify each pixel in the image as cloud or
non-cloud. The cloud models are learned through the train-
ing process. We consider classifiers including support vec-
tor machine (SVM), random forest, and Bayesian classifier.
To extract features from each pixel, we calculate the RBR
as well as the color components of various color models in-
cluding RGB, HSV (hue, saturation, value), and YCbCr. To
take advantage of the clues provided by multiple classifiers
and multi-level resolution, we employ a scheme to combine
multiple classification results to further increase the cloud
detection accuracy. The methodology, including the features
and the classifiers, is elaborated in Sect. 2. In Sect. 3, the
proposed system framework is validated using a set of exper-
imental images with manually labeled ground truth. The ex-
perimental results using different classifiers are demonstrated
and discussed. Finally, conclusions are made in Sect. 4.

2 Methodology

The proposed system framework is illustrated in Fig. 1. For
each all-sky image, Hough line transform is performed first
to detect the vertical line of the sun, which is caused by the
CCD device when capturing all-sky images. The pixels on
this line often has bright intensities and could be confused as
cloud pixels. After detecting and eliminating the vertical line
of the sun, the rest of the pixels in the image are classified
as cloud or non-cloud. The input images are RGB color im-
ages. For each all-sky image, the color components in various
color space are computed. The color models considered in
this work include RGB, HSV, and YCbCr. In addition to the
abovementioned color components, the RBR of each pixel is
also calculated and considered as a feature. To perform pixel-
wise classification, all the color components and the RBR of
the local image patches around a pixel are collected and con-
catenated as a feature vector for the pixel. Training samples
are obtained from manually labeled ground truth images.

2.1 Hough line transform and sun position detection

Hough transform (Shapiro and George, 2001) is used to de-
tect the vertical line of sun in an all-sky image. The procedure
of detecting lines can be regarded as finding the coefficients
of the line equations using a voting mechanism. The proce-
dure of detecting lines via voting in the parameter space can
be achieved by dividing the parameter space into grids. Be-
cause all the pixels satisfying a certain line equation would
vote to the same grid, a high vote would appear in the cor-
responding grid in the parameter space. Hough transform
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Figure 1. System framework.

re-parameterizes the line equation as x cosθ + y sinθ = ρ
to avoid using the slope parameter for line equation y =

mx+ b. Because possible values for the slope parameter m
range from minus infinity to infinity, it would be infeasi-
ble to find the slope parameter m via grid search. After re-
parameterizing the line equation, the range of the parameter
ρ can be set according to the width and height of the im-
age. The range of the parameter θ is from −180◦ to 180◦.
Figure 2 displays an example of Hough line detection on an
image. After detecting the vertical line, the sun position is de-
termined by accumulating the intensities of the pixels along x
direction in a window with width w1. The position with the
highest accumulated intensity is the center of the sun. The
pixels in the line window with a fixed width w2 are elimi-
nated from the image. The pixels within the sun position and
the line window with width w2 are determined as non-cloud
pixels and do not have to go through the subsequent classi-
fication steps. The values of w1 and w2 are determined de-
pending on the size of the all-sky images. In our experiments,
we set w1 and w2 as 60 and 12 pixels, respectively.

2.2 Color models

RGB is a very common color model, being used in most
computer systems. It is an additive color model based on tri-
chromatic theory. RGB is easy to implement. However, it is
nonlinear with visual perception, and the specification of col-
ors is semi-intuitive. HSV is a color model that describes col-
ors in terms of hue, saturation, and value components (Gon-
zalez and Woods, 2002). Hue is expressed as a number from
0 to 360◦. The hue component of red starts at 0, green starts
at 120, and blue starts at 240. Saturation is the amount of gray
in the color. And the value component describes the bright-
ness or intensity of the color. YCbCr is a color space used in
video and digital photography systems. Y is the luminance

component, and Cb and Cr are the blue-difference and red-
difference chroma components. HSV and YCbCr color com-
ponents can be obtained from RGB color components using
color model transformation equations (Gonzalez and Woods,
2002; Poynton, 2003). Although the color models are not
independent and including color components from different
color models may introduce redundancy in the feature vector,
considering various color models still provides the classifier
more information that is beneficial to performing classifica-
tion.

2.3 Feature vector construction for local image patches
of various sizes

For each pixel, local image patches with various sizes are
used to extract features. The size of the image patch at level
i is Li ×Li , i = 1· · ·`, where ` denotes the total number of
levels. For each local image patch, the color components and
the RBR of all the pixels in the patch are concatenated to
form a feature vector. Consequently, the dimension of each
feature vector is Li ×Li × 10. There are ` feature vectors
constructed for each pixel.

2.4 Dimension reduction

We apply principal component analysis (PCA) (Duda et al.,
2001) on the feature vectors to reduce their dimensions.
Based on the assumption that the importance of the features
lies in the variability of the data, PCA chooses principal com-
ponents along the directions with the largest variance of the
data distribution first. The principal components are a set of
new orthogonal bases that can be used to re-express the data
in order to reduce the correlation among different variables.

Suppose that the original dataset has NSamples samples and
each sample has D1 variables. The data matrix X is estab-
lished with each sample as a column vector. Therefore the
data matrix X has NSamples columns and D1 rows. If we
would like to reduce the feature dimension to D2, then we
need to select D2 principal components. PCA constructs a
matrix XTX, which is a matrix proportional to the sample
covariance matrix of the dataset X. The first D2 eigenvec-
tors of XTX whose corresponding eigenvalues are largest are
chosen as principal components. To determine the desired
number of dimensionality D2, we check the eigenvalue ratio
Reigenvlaue:

Reigenvalue =

D2∑
k=1
|λk|

D1∑
k=1
|λk|

. (1)

In Eq. (1), λk denotes the kth eigenvalue of XTX. The first
D2 eigenvectors are preserved so thatReigenvalue is larger than
a threshold ThrPCA. The selection of ThrPCA is discussed in
the experiments in Sect. 3.
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Figure 2. Hough line transform and sun position detection.

2.5 Classifiers

2.5.1 Random forest

Classification and Regression Tree (CART) is a systematic
procedure that learns decision trees proposed by Breiman et
al. (1984). The splitting rules of the tree include an attribute
value test at each node of the tree. Starting from the root
node, all training data are used to split the root node. The tree
is then built recursively. Considering all the possible splitting
rules, CART would construct the tree by selecting the split-
ting rule that can maximize the impurity drop when a node is
added. The impurity measures the condition of mixed class
labels at each node. The goal is to make the class labels at
each node as “pure” as possible. The splitting process stops
when all the samples in a node have the same class label or
when the measure of purity at the child nodes cannot be im-
proved compared with its parent node. After a decision tree
is built, it might need to be pruned using a cross-validation
procedure. The reason for pruning is that some branches of
the tree might overfit the training data. In our experiment, we
use 10-fold cross validation. Instead of growing a single de-
cision tree, random forest grows an ensemble of trees and lets
them vote for the most popular class label. In this work, we
adopt random split selection (Dietterich, 2000) to build the
ensemble of trees. At each node, the split is selected at ran-
dom from the K best splits. The features for the split rules
are randomly selected. It reduces the correlation between the
trees and improves the efficiency of training.

2.5.2 Support vector machine

The SVM learns a set of hyperplanes that maximize the mar-
gins between the hyperplanes and the training samples in or-
der to lower the classification error of unknown testing sam-
ples. The motivation of SVM is that an ideal decision bound-
ary should have the largest distance to the nearest training
sample of all the classes. However, it might be infeasible to
separate data samples using linear hyperplanes in practice.
Therefore, soft margins and kernel functions are applied in
the SVM in practice. We apply SVM with radial basis func-
tions as one of the classifiers in this work. For the details
of SVM, please refer to the work by Cristianini and Shawe-
Taylor (2000).

2.5.3 Bayesian classifier

Bayesian classifier aims at minimizing the probability of
misclassification by classifying a sample x to the class ωk
with the largest posterior probability P(ωk|x). Since the pos-
terior probability P(ωk|x) itself is unknown, we need to
transform the problem using the probabilities that can be
obtained via training samples. Bayesian classifier uses the
Bayes’ theorem to re-express the posterior probability using

P(ωk|x)=
P (ωk)P (x|ωk)

P (x)
. (2)

In Eq. (2), P(ωk) denotes the prior probability, which is in-
dependent of the testing sample. In other words, P(ωk) states
how likely a pixel belongs to cloud or non-cloud regardless
of its observed feature vector. It is possible to use meteoro-
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logical conditions and weather forecast report to determine
different prior probabilities P(ωk) for each day. However, we
use the same prior probabilities for both cloud and non-cloud
classes for simplicity, and no meteorological information is
required to be involved as prior knowledge in our decision
process. The class conditional probability P(x|ωk) in Eq. (2)
can be learned from the training samples. We use Gaussian
distributions

P (x|ωk)=
1

(2π)
p
2 |6k|

1
2
e−

1
2 (x−µk)6k(x−µk)

T

(3)

to model the class conditional probability P(x|ωk) for each
class. In Eq. (3), µk denotes the mean vector, 6k denotes the
covariance matrix, and p is the number of dimensionality of
x and µk , i.e., x ∈ <p and µk ∈ <p. To learn the parameters
of Gaussian functions, training samples from each class are
used to calculate the sample mean vector µk and the sample
covariance matrix 6k for the class. The probability of the
sample P(x) in Eq. (2) does not depend on the class label
and can be neglected in the decision process.

2.6 Combining results of multiple-level neighborhoods
and classifiers

The concept of a multiple expert system is to take advan-
tage of the clues provided by multiple classifiers. Instead of
majority voting, we use a different voting scheme to com-
bine the results of multiple-level patches and classifiers. The
voting is performed in a multi-scale neighborhood, which is
inspired by the works of Lowe (2004) and Bay et al. (2008).
As shown in Fig. 3, considering a 3×3 neighborhood around
a target pixel p at level i, its previous level i− 1 and its
next level i+ 1, voting is performed in the scale space of
its 3×3×3 neighborhood. That is, we consider the classifier
results of a target pixel p itself and its eight neighbors in the
3× 3 region at the current level i, the pixel p and its eight
neighbors in the 3× 3 region at the previous level i− 1, and
the pixel p and its eight neighbors in the 3× 3 region at the
next level i+1. For the pixels in level i−1 in Fig. 3a, the size
of the local image patch used for feature vector construction
is Li−1×Li−1 in Fig. 3b. Similarly, image patches of size
Li×Li andLi+1×Li+1 are used for level i and level i+1, re-
spectively. The voting scheme takes into account the classifi-
cation results from four classifiers: RBR thresholding, SVM,
random forest, and Bayesian classifier. In other words, there
are 27×4 votes for the pixel at each level. Let Vcloud(xLeveli )

denotes the number of votes in the neighborhood classified
as cloud for pixel x at level i. The decision for a pixel at
level i is determined by Vcloud(xLeveli ) > Nv. In other words,
if there are more than Nv votes in the 3×3×3 neighborhood
of a pixel at level i, the pixel is classified as a cloud pixel at
this level. Considering the example illustrated in Fig. 3c, the
numbers represent the votes in the 3×3×3 neighborhood of
pixel p at level i. Summing up the numbers in Fig. 3c, we
obtain Vcloud(xLeveli )= 61. If the threshold Nv equals to 57,

then pixel p is classified as cloud at level i. For the bound-
ary conditions at level 1 and level `, there is no level i− 1 at
level 1, and there is no level i+1 at level `. There are 18×4
votes for the pixels at these two levels. When performing vot-
ing for pixels at level 1 and `, as long as the votes for a pixel
exceeds threshold Nv, the pixel is still classified as cloud as
that level in our implementation.

To combine the decision at different levels, the probability
P(x ∈ cloud|Num

i=1∼`
(xLeveli ∈ cloud)) is computed. The prob-

ability P(x ∈ cloud|Num
i=1∼`

(xLeveli ∈ cloud)) states the prob-

ability of pixel x belonging to cloud given the number
of levels that the pixel is determined as cloud. Suppose
Num
i=1∼`

(xLeveli ∈ cloud) denotes the number of levels at which

pixel x is determined as cloud among all levels i = 1
to`. If Num

i=1∼`
(xLeveli ∈ cloud) is 0, it means that the pixel

is not classified as clouds in any level. If Num
i=1∼`

(xLeveli ∈

cloud) is `, it means the pixel is classified as clouds in
all levels. If P(x ∈ cloud|Num

i=1∼`
(xLeveli ∈ cloud)) is larger

than P(x ∈ noncloud|Num
i=1∼`

(xLeveli ∈ cloud)), the final de-

cision would classify the pixel to be a cloud pixel. The
probabilityP(x ∈ cloud|Num

i=1∼`
(xLeveli ∈ cloud)) can be ex-

pressed as Eq. (4) using Bayesian rules of conditional proba-
bility. In Eq. (4), the term P(Num

i=1∼`
(xLeveli ∈ cloud)) is inde-

pendent of class label and would not affect the decision. The
prior probabilities P(x ∈ cloud) and P(x ∈ noncloud) are as-
sumed to be equal as stated in Sect. 2.5.3. The likelihood
term P(Num

i=1∼`
(xLeveli ∈ cloud)|x ∈ cloud) is learned from the

training dataset by constructing the normalized histogram of
Num
i=1∼`

(xLeveli ∈ cloud) using all ground truth cloud pixels.

P

(
x ∈ cloud|Num

i=1∼`

(
xLeveli ∈ cloud

))
=

P(x ∈ cloud)P
(

Num
i=1∼`

(
xLeveli ∈ cloud

)
|x ∈ cloud

)
P

(
Num
i=1∼`

(
xLeveli ∈ cloud

)) (4)

3 Experimental results

In this work, the device used to capture the all-sky images
is the all-sky camera manufactured by the Santa Barbara In-
strument Group (SBIG). The field of view is 185◦. The focal
length is 1.44 mm. And the focal ratio range is f/1.4–f/16.
The resolution of the bitmap images is 640× 480. We man-
ually marked the ground truth of cloud pixels in 250 images
for training and testing. These images are collected from Jan-
uary to June 2014 at the National Central University, Taiwan.
With the ground truth labels of the images, we are able to
calculate the detection accuracy at pixel level. We adopt 10-
fold cross validation to calculate the average detection ac-
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Figure 3. Voting in the scale space of a 3× 3× 3 neighborhood: (a) structure of the scale space neighborhood; (b) size of the local image
patch at different levels; (c) number of votes in the scale space neighborhood.

curacy, precision, and recall rate. Ten-fold cross validation
means that the dataset is divided into 10 none-overlapping
subsets. Nine subsets are used for training, and the remain-
ing one subset is used for testing. Then the training sub-
sets and testing subsets are rotated for 10 times. The aver-
age classification rate of these 10 experiments is the 10-fold
cross-validated accuracy. The definitions of detection accu-
racy, precision, and recall rate are listed in Eqs. (5) to (7).

Accuracy=
TP+TN

TP+TN+FP+FN
(5)

Precision=
TP

TP+FP
(6)

Recall=
TP

TP+FN
(7)

In Eqs. (5) to (7), true positive (TP) is the number of cloud
pixels correctly detected. True negative (TN) is the number
of non-cloud pixels that are correctly classified. False pos-
itive (FP) is the number of non-cloud pixels that are incor-
rectly classified as clouds. False negative (FN) is the number
of cloud pixels that are incorrectly classified as non-cloud.

In this work, the RGB thresholding method proposed by
Long et al. (2006) will be used as the baseline method for
comparison. In Long’s work, an RBR threshold is recom-
mended for the whole sky camera and several thresholds
are suggested to be used for the total sky imager. Since
the desired threshold varies due to different devices and
weather conditions, we perform an experiment to test the
best threshold for our all-sky camera. Also, to avoid false
positive detection at highlighted regions around the sun, we
employ an upper bound threshold. Therefore, two thresh-
olds, Thrupper and Thrlower, are used in the experiments. A
pixel is classified as cloud if its RBR is higher than Thrlower
and lower than Thrupper. We perform experiments on sev-
eral thresholds to select the best thresholds for our dataset.

Figure 4. Cloud detection accuracy using various RBR thresholds.

In Fig. 4, we can observe the trade-off between precision
and recall. As the thresholds become stricter, the precision
increases and the recall drops. Precision rate and recall rate
cannot be used alone to measure the accuracy since precision
does not consider false negatives and recall does not con-
sider false positives. Therefore accuracy defined in Eq. (5)
is used as the conclusive metric to measure the performance.
As shown in Fig. 4, we have observed that Thrlower = 0.8
and Thrupper = 0.9 yield the best detection accuracy for our
dataset. In the rest of the experiments, we use RBR thresh-
olding with Thrlower = 0.8 and Thrupper = 0.9 as a baseline
method for comparison. However, even with the best selected
RBR thresholds, the cloud detection result is not satisfy-
ing. The thresholds Thrlower = 0.8 and Thrupper = 0.9 might
cause some false positives for certain images while caus-
ing some false negatives for other images. Therefore, neither
raising or lowering the threshold could improve the detection
results by thresholding.

To observe classification results of different classifiers,
the detection accuracy of different classifiers based on sin-
gle pixel color information are plotted in Fig. 5. Compared
with other classifiers, RBR thresholding with Thrlower = 0.8
and Thrupper = 0.9 has the lowest detection accuracy. Major-
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Figure 5. Comparisons of detection accuracy using different classi-
fiers with single pixel color information.

ity voting of the four detection methods can yield better ac-
curacy. We also compare with the classification accuracy of
using only single RGB color model as the feature vector to
validate that adding other color models in the feature vector
can yield better classification results. With voting schemes
that combine the information from multiple classifiers, the
accuracy can be enhanced compared with individual single
classifiers. However, utilizing only single pixel color infor-
mation is not sufficient to give satisfying detection accuracy.
Applying features extracted from local image patch is able to
further enhance the detection results.

When applying the proposed cloud detection method, we
use five levels of local image patches with different sizes, i.e.,
`= 5. The size at each level is L1 = 5, L2 = 10, L3 = 15,
L4 = 20,L5 = 25. To observe the effect of parameter ThrPCA
for dimension reduction at each level, we perform an experi-
ment using the feature vector constructed at each single level
with SVM as the classifier for different settings of ThrPCA.
The value of ThrPCA is typically between 90 and 99 % and
is selected empirically. Typically, the accuracy of classifica-
tion would increase as the value of ThrPCA goes from 100 %
(which means no dimensionality reduction at all) to 99 %.
The accuracy of classification would continue increasing un-
til ThrPCA reaches a certain value, which is caused by the
benefit of dimensionality reduction. After that, the accuracy
of classification would start to decrease due to too much in-
formation loss. We plot the cross-validated detection accu-
racy in Fig. 6. From Fig. 6, we can observe that the de-
tection accuracy at single level using SVM is highest for
ThrPCA = 97 % at levelsL1 andL2. At levelsL3,L4, andL5,
the parameter ThrPCA = 95 % yields better results. There-
fore, for levels L1 and L2, ThrPCA = 97 % is selected; for
levels L3, L4, and L5, ThrPCA = 95 % is selected.

To combine results of multiple-level patches and classi-
fiers, the threshold for votingNv needs to be determined. The
detection accuracy of combining the results using different
Nv settings is plotted in Fig. 7. As shown in Fig. 7, when Nv
ranges from 50 to 70, the detection accuracy is higher. We
select Nv = 57 for the proposed method.

Figure 6. Detection accuracy with different ThrPCA settings in
Eq. (5) at each level using SVM.

Figure 7. Detection accuracy with different Nv settings.

To test the number of levels required to yield better de-
tection results, we plot the detection accuracy using different
number of levels in Fig. 8. Note that for the sixth level and
seventh level, the size of the local image patch isL6 = 30 and
L7 = 35. We can observe that using four or five levels results
in better detection accuracy. When involved with levels with
image sizes that are too large, the detection accuracy drops.

Selected cloud detection results are shown in Fig. 9b. The
proposed method using features from multi-scale local image
patches can accurately detect clouds in the all-sky images.
The pixels within the vertical line and the solar disk would
not be detected as clouds even though their intensities are
high. The Hough line detection and sun position detection
successfully eliminated those pixels before performing clas-
sification. Compared with detection results of RBR 0.8–0.9
in Fig. 9c, the proposed method can detect cloud pixels with
satisfying accuracy with the proposed multi-level local patch
feature extraction mechanism and combination of multiple
expert decision.

To summarize the detection accuracy, the detection ac-
curacy of various methods are plotted in Fig. 10. We com-
pare the proposed method with ANN (Roy et al., 2001) and
HYTA (Li et al., 2011). ANN utilized a feed-forward back-
propagation neural network to perform detection. HYTA em-

www.atmos-meas-tech.net/10/199/2017/ Atmos. Meas. Tech., 10, 199–208, 2017



206 H.-Y. Cheng and C.-L. Lin: Cloud detection in all-sky images

Figure 8. Detection accuracy using different number of levels.

Figure 9. Selected results: (a) original images; (b) detection results
of the proposed method; (c) detection results of RBR 0.8–0.9.

ploys dynamic thresholding based on MCE when necessary.
The ANN and HYTA methods outperform traditional RBR
thresholding. Nevertheless, the accuracy of ANN and HYTA
still has room for improvement. Using the single pixel color
components described in Sect. 2.2 and utilizing SVM as
the classifier can yield slightly improved accuracy compared
with ANN and HYTA. Incorporating feature vector extracted
from single level 15× 15 neighborhood patch can further im-
prove the accuracy compared with using only information
from single pixel. The proposed method utilizing features ex-
tracted from multi-level neighborhood yields the best accu-
racy since multiscale information is considered.

4 Conclusions

With the development of all-sky cameras, the cloud condi-
tions in the sky can be monitored and useful information
can be extracted for solar irradiance prediction with refined
spatial and temporal resolutions. Clouds play a critical role

Figure 10. Comparisons of different methods.

in affecting the amount of solar irradiance penetrating the
atmosphere. With more accurate cloud detection schemes,
subsequent prediction modules that forecast solar irradiance
could benefit a lot from the enhanced detection results. In this
work, supervised learning methods are utilized to train var-
ious classifiers that can distinguish cloud pixels from non-
cloud pixels in all-sky images. The classifiers implemented
in this work include RBR thresholding, SVM, random for-
est, and Bayesian classifier. We propose to use features ex-
tracted from multi-level local image patches with different
sizes to include local structure and multi-resolution informa-
tion. Final decision is made according to multi-level classi-
fication results by various classifiers. A challenging dataset
with ground truth labels is used to validate the detection
schemes. Experiments have also shown that the proposed
detection method yields better results than both fixed and
dynamic RBR thresholding. Combining the information of
multiple classifiers using voting can improve the detection
accuracy. It is also validated that using color information in
multi-level local neighborhood instead of only a single pixel
is very helpful to improve the detection accuracy. To apply
the proposed method on different all-sky cameras, images
captured by various cameras can be added into the training
set to enhance the robustness of the detector. For the selec-
tion of parameters ThrPCA and Nv for different devices and
sites, if the number of levels and feature length are fixed, the
desired parameters should not be seriously affected even if
the training samples are changed.

5 Data availability

The data are available at https://drive.google.com/open?id=
0B38yagaBviZYNmxReVBIQkVJYkk (Cheng, 2017).
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