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Abstract. A spatially explicit mapping of rainfall is nec-
essary for southern Africa for eco-climatological studies or
nowcasting but accurate estimates are still a challenging
task. This study presents a method to estimate hourly rain-
fall based on data from the Meteosat Second Generation
(MSG) Spinning Enhanced Visible and Infrared Imager (SE-
VIRI). Rainfall measurements from about 350 weather sta-
tions from 2010-2014 served as ground truth for calibra-
tion and validation. SEVIRI and weather station data were
used to train neural networks that allowed the estimation of
rainfall area and rainfall quantities over all times of the day.
The results revealed that 60 % of recorded rainfall events
were correctly classified by the model (probability of detec-
tion, POD). However, the false alarm ratio (FAR) was high
(0.80), leading to a Heidke skill score (HSS) of 0.18. Esti-
mated hourly rainfall quantities were estimated with an av-
erage hourly correlation of p = 0.33 and a root mean square
error (RMSE) of 0.72. The correlation increased with tem-
poral aggregation to 0.52 (daily), 0.67 (weekly) and 0.71
(monthly). The main weakness was the overestimation of
rainfall events. The model results were compared to the In-
tegrated Multi-satellitE Retrievals for GPM (IMERG) of the
Global Precipitation Measurement (GPM) mission. Despite
being a comparably simple approach, the presented MSG-
based rainfall retrieval outperformed GPM IMERG in terms
of rainfall area detection: GPM IMERG had a consider-
ably lower POD. The HSS was not significantly different
compared to the MSG-based retrieval due to a lower FAR
of GPM IMERG. There were no further significant differ-
ences between the MSG-based retrieval and GPM IMERG in

terms of correlation with the observed rainfall quantities. The
MSG-based retrieval, however, provides rainfall in a higher
spatial resolution. Though estimating rainfall from satellite
data remains challenging, especially at high temporal resolu-
tions, this study showed promising results towards improved
spatio-temporal estimates of rainfall over southern Africa.

1 Introduction

The dynamics of rainfall play an important role in south-
ern Africa, especially in the arid and semi-arid areas where
farming is the main source of income and the quality of
the pastures mainly depends on water availability (Fynn and
O’Connor, 2000). Accurate nowcasting of rainfall at high
temporal and spatial resolutions is therefore of interest for
the farmers in southern Africa and would help them to assess
the carrying capacity of their land. It is of further importance
as a baseline product for a variety of environmental research
studies as rainfall is a key variable for many ecological and
hydrological processes.

Rain gauges are still considered the most accurate way
to measure rainfall. Southern Africa features a network of
rain gauges operated by the weather services of the individ-
ual countries as well as by a variety of research projects.
However, the network does not feature a sufficient density to
capture spatially highly variable rainfall dynamics. To obtain
spatially explicit data, ground-based radar networks are well
established to measure rainfall in other parts of the world
(e.g. RADOLAN in Germany, Bartels et al., 2004). A radar
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network covering the entire region of southern Africa, how-
ever, is currently not available and the existing radar-based
rainfall estimates in South Africa are still afflicted with many
uncertainties IPWG, 2016). A satellite-based monitoring of
rainfall is therefore an obvious alternative.

A number of global satellite-derived products have been
developed in the last decades (e.g. TRMM, CMORPH, PER-
SIANN; see review in Kidd and Huffman, 2011; Prigent,
2010; Thies and Bendix, 2011; Kidd et al., 2011; Levizzani
et al., 2002). Since 2014, the latest product from the Global
Precipitation Measurement (GPM) mission, a successor of
the Tropical Rainfall Measuring Mission (TRMM), provides
the most recent global estimates of precipitation at high spa-
tial and temporal resolutions. It might be expected that the
GPM products would feature a high degree of accuracy since
the TRMM-3B42 product has been identified as the most
accurate retrieval at least for eastern Africa (Cattani et al.,
2016).

In addition to global rainfall retrievals, a number of re-
gionally adapted retrievals were developed in the last decades
(Kiihnlein et al., 2014b, a; Meyer et al., 2016; Feidas and Gi-
annakos, 2012; Giannakos and Feidas, 2013). Kiihnlein et al.
(2014a, b) and Meyer et al. (2016) presented a methodol-
ogy to estimate rainfall from optical Meteosat Second Gen-
eration (MSG) Spinning Enhanced Visible and InfraRed Im-
ager (SEVIRI) data for Germany. In this approach, machine
learning algorithms were used to relate the spectral proper-
ties of MSG to reliable radar data as a ground truth. Though
the retrieval showed promising results, such spatially com-
prehensive ground truth data are lacking for southern Africa.
An adaptation of the retrieval technique to southern Africa
hence requires a model training that relies on sparse weather
station data as a ground truth.

This study aims to test the suitability of a MSG and ar-
tificial neural network-based rainfall retrieval, which is re-
gionally trained using rain gauge data to provide spatially
explicit estimates of rainfall areas and rainfall quantities for
southern Africa. The suitability of the model is assessed by
validation with independent weather station data and com-
parison to the Integrated Multi-satellitE Retrievals for GPM
(IMERG) product.

2 Methods

The methodology is divided into preprocessing satellite and
rain gauge data and model tuning and training, including
its validation, model estimation and comparison to GPM
IMERG (Fig. 1).

2.1 Study area
The area of investigation comprises South Africa, Lesotho

and Swaziland, Namibia, Botswana and Zimbabwe, as well
as parts of Mozambique (Fig. 2). Average annual rainfall in
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Figure 1. Flow chart of the methodology applied in this study.

southern Africa roughly follows an aridity gradient from the
dry west to the more humid east. With the exceptions of some
coastal regions in South Africa, most rain falls during the
summer months. In the coastal areas of South Africa, frontal
systems cause light rain that may last over several days. The
majority of interior areas are dominated by local and short-
term convective heavy showers mostly with thunder in the
afternoon or evening hours. Rain from synoptic systems last-
ing up to several days also occurs. Snow and hail only con-
tribute a negligible amount to the overall precipitation totals.
The interannual variability of rainfall is high for the arid ar-
eas. For a detailed description of southern African rainfall
characteristics see Kruger (2007) and Kaptué et al. (2015).

2.2 Data and preprocessing
2.2.1 Station data

Rainfall data for 2010 to 2014 were obtained from the South
African Weather Service (SAWS). The data were recorded
at 229 automatic rainfall stations and 91 automatic weather
stations (Fig. 2). They were complemented by 22 stations
from SASSCAL WeatherNet (www.sasscalweathernet.org/)
located in southern Namibia and Botswana. For 2014, data
from an additional 15 stations in South Africa operated by the
IDESSA project (An Integrative Decision Support System
for Sustainable Rangeland Management in southern African
Savannas, www.idessa.org/) were available. The data passed
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Figure 2. Map of the average annual precipitation sums in the
study area as estimated by WordClim (Hijmans et al., 2005). Points
show the locations of the weather stations that were used as ground
truth data in this study. Automatic rainfall stations (ARS) and au-
tomatic weather stations (AWS) are operated by the South African
Weather Service (SAWS). Further stations are operated by SASS-
CAL WeatherNet as well as by the IDESSA project.

general provider-dependent quality checks before they were
used in this study. This includes filtering data beyond com-
mon data ranges or carrying out situational checks for consis-
tency with related parameters (e.g. air humidity) from SASS-
CAL. SAWS payed attention to rainfall values > 10 mm
within Smin and deleted those values if they were unreli-
able. Data from all providers were then included in an on-
demand processing database system (Wdllauer et al., 2015)
where they were automatically cross-checked for reliability
by filtering values <0 and > 500 mm of rainfall per hour.
All station data that provided subhourly information were ag-
gregated to a temporal resolution of 1h within the database.
Though the station data are not randomly distributed in the
model domain, they cover the entire aridity gradient, from
sites with very low (< 200 mm) precipitation to sites in areas
with highest (~ 1500 mm) yearly precipitation sums.

2.2.2 Satellite data

MSG SEVIRI (Aminou et al., 1997) scans the full disk ev-
ery 15 min with a spatial resolution of 3 x 3 km at subsatellite
point (3.5 x 3.5km in southern Africa). Reflected and emit-
ted radiances are measured by 12 channels, three channels at
visible (VIS) and very near-infrared wavelengths (NIR, be-
tween 0.6 and 1.6 um), eight channels ranging from near-
infrared to thermal infrared wavelengths (IR, between 3.9
and 14 pm) and one high-resolution VIS channel with a spa-
tial resolution of 1 x 1km, which was not considered in this
study.

The rainfall retrieval technique presented here works un-
der the assumption that VIS, NIR and IR channels of MSG
SEVIRI provide proxies for microphysical cloud properties,
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which are, in turn, related to rainfall. VIS and NIR chan-
nels have been shown to be related to cloud optical depth
(Roebeling et al., 2006; Benas et al., 2017) and cloud water
path (Kiihnlein et al., 2014b) where the NIR channel is fur-
ther related to cloud particle size (Roebeling et al., 2006).
The IR channels have been shown to provide information
about the cloud top temperature which was used as a proxy
for cloud height (Hamann et al., 2014). The cloud droplet
effective radius as well as liquid water path at night was ap-
proximated using IR differences (Merk et al., 2011; Kiihnlein
et al., 2014b).

MSG SEVIRI Level 1.5 data (EUMETSAT, 2010) were
preprocessed to radiance values according to EUMETSAT
(2012b) and brightness temperatures according to EUMET-
SAT (2012a) using a processing scheme based on a custom
raster processing extension of the eXtensible and fleXible
Java library (see https://github.com/umr-dbs/xxl) which en-
ables parallel raster processing on CPUs and GPUs using
OpenCL.

2.2.3 Cloud mask

A cloud mask was used to exclude all pixels that were not
cloudy in the respective SEVIRI scenes. For 2010 to 2012,
the CM SAF CMa Cloudmask product (Kniftka et al., 2014)
was applied. Due to the availability of the CM SAF CMa
cloud mask data set, which was currently limited to the
years 2004 to 2012, we used the cloud mask information
of the CLAAS-2 data record (Finkensieper et al., 2016) for
the years 2013 and 2014, which is the second edition of
the SEVIRI-based cloud property data record provided by
the EUMETSAT Satellite Application Facility on Climate
Monitoring (CM SAF; see also Stengel et al., 2014 for fur-
ther information on CLAAS). All pixels that were classi-
fied as cloud contaminated or cloud filled were interpreted
as cloudy. Pixels that were classified as cloud-free were ex-
cluded from further analysis.

2.3 Model strategies for rainfall estimation
2.3.1 General model framework

The modelling methodology follows the study of Kiihnlein
et al. (2014a, b) who used the spectral channels of MSG SE-
VIRI to train a random forest model that is able to spatially
estimate rainfall areas and rainfall rates over Germany. Based
on this study, Meyer et al. (2016) have shown that neural net-
works outperform the initially used random forest algorithm.
In these previous studies on the rainfall retrieval, the radar-
based RADOLAN product (Bartels et al., 2004) was used as
ground truths to train the model. The high data quality and
spatially explicit information allowed the model to be opti-
mised without too much confusion caused by uncertainties
in the training data. However, the goal of the retrieval was
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that it can be applied to areas where spatially explicit data for
rainfall are not available, as it is the case in southern Africa.

2.3.2 Training and test data sets

Cloud masked MSG data from 2010 to 2014 were extracted
at the locations of the weather stations. To match the tempo-
ral resolution of all available rain gauge data, the extracted
data were aggregated to hourly values. This was done by
taking the median value of the four scenes available every
hour. However, only if all four scenes were masked as cloudy,
the corresponding hourly values for a respective station were
used for further analysis. The extracted and aggregated MSG
data were then matched with the corresponding rain gauge
information under consideration of the time shift between
MSG data (UTC) and rain gauge data (UTC+2).

The spectral channels as well as the channel differ-
ences AT6.2-10.8, AT7.3-12.1, AT8.7-10.8, AT10.8—
12.1, AT3.9-7.3, AT3.9-10.8 and the sun zenith were used
as predictor variables during the daytime, in accordance to
(Kiihnlein et al., 2014b) and previous studies on MSG-based
delineation of cloud properties (see Sect. 2.2.2). Thus, the
predictor variables contain the SEVIRI channels as well as
channel combinations. Although this partially duplicates in-
formation, the channel combinations allow for highlighting
patterns that might not be apparent in the individual chan-
nels. As additional potential predictors, Meyer et al. (2017)
tested different cloud texture parameters and have shown that
the chosen spectral channels and differences are sufficient as
predictors.

Since neural networks require that the predictor variables
are standardised, all predictors were centred and scaled by di-
viding the values of the mean-centred variables by their stan-
dard deviations. Since the VIS and NIR channels of MSG
are not available at night-time, the data set was split into a
daytime data set (data points with a solar zenith angle < 70°)
and a night-time data set (data points with a solar zenith an-
gle > 70°) and were considered in separate models. Though
two different models might lead to rough transitions between
daytime and night-time estimates, accurate estimates were in
the foreground of this study, leading to the decision of sepa-
rate models according to data availability. The response vari-
ables (rainfall yes/no and rainfall quantities) were taken from
the rain gauge measurements.

The years 2010 to 2012 were used for model training. The
year 2013 was used for validation. The retrieval process was
in two steps and consisted of (i) the identification of precip-
itating cloud areas and (ii) the assignment of rainfall quan-
tities. All 2010 to 2012 data from the rain gauges that are
masked as cloudy by the cloud mask products were used for
training the rainfall area model. All recorded rainfall events
were used for training the rainfall quantities model. The re-
sulting training data set comprised 917774 (daytime) and
1409 072 (night-time) samples for the rainfall area training
and 69703 (daytime) and 129 325 (night-time) samples for
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training of rainfall quantities from 26243 individual MSG
scenes.

2.3.3 Tuning and model training

A single-hidden-layer feed-forward neural network was ap-
plied as a machine learning algorithm. The spectral chan-
nels of MSG SEVIRI as well as the channel differences
served as input nodes (predictor variables). The neural net-
work was then applied to learn the relations between these
spectral information and rainfall areas or rainfall quantities,
respectively. In this context, a sophisticated preselection of
input variables is not required, as the network is able to
deal with correlated and even uninformative predictors un-
less their number is very high (Meyer et al., 2017), which
was not the case in this study. For the technical realisation,
all steps of the model training were performed using the R
environment for statistical computing (R Core Team, 2016).
The neural network implementation from the “nnet” package
(Venables and Ripley, 2002; Ripley and Venables, 2016) in
R was used in conjunction with the “caret” package (Kuhn,
2016), which provides enhanced functionalities for model
training, estimation and validation.

Neural networks require two hyperparameters to be tuned
to avoid under- or overfitting of the data: the number of neu-
rons in the hidden layer, as well as the weight decay. The
neurons in the hidden layer represent non-linear combina-
tions of the input data and their number influences the per-
formance of the model (Panchal et al., 2011). Weight decay
penalises large weights and controls the generalisation of the
outcome (Krogh and Hertz, 1992). The number of neurons
as well as the weight decay were tuned using a stratified 10-
fold cross-validation. Thus, the training samples were ran-
domly partitioned into 10 equally sized folds with respect to
the distribution of the response variable (i.e. raining cloud
pixels, rainfall rate). Thus, every fold is a subset (1/10) of
the training samples and has the same distribution of the re-
sponse variable as the total set of training samples. Models
were then fitted by repeatedly leaving out one of the folds.
The performance of a model was then determined by making
predictions on the held back fold. The performance metrics
from the held back iterations were averaged to the overall
model performance for the respective set of tuning values.
For the rainfall areas classification models, the distance to
a “perfect” model, based on receiver operating characteris-
tics (ROC) analysis (see Meyer et al., 2016 for its applica-
tion in rainfall retrievals) was used as decisive performance
metric. For the rainfall quantity regression models, the root
mean square error (RMSE) was used. The number of hidden
units were tuned for each value between two and the num-
ber of predictor variables. Weight decay was tuned between
0 and 0.1 with increments of 0.02 (Kuhn and Johnson, 2013).
To train rainfall areas, the threshold that separates rainy from
non-rainy clouds according to the estimated probabilities was
used as an additional tuning parameter. The optimal thresh-
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Table 1. Optimal hyperparameters for the individual models re-
vealed during the tuning study and applied in the final model fitting.

Number of  Weight decay = Threshold
neurons decay

Rainfall areas at daytime 5 0.05 0.07

Rainfall areas at night-time 5 0.07 0.01
Rainfall quantities at daytime 5 0.05
Rainfall quantities at night-time 5 0.05

old was expected to be considerably smaller than 0.5 since
the number of non-rainy samples was higher than the num-
ber of rainy samples. Therefore, the range of tested thresh-
olds was 0 to 0.1 with increments of 0.01, and 0.4 to 1 with
increments of 0.1. See Meyer et al. (2016) for further details
of the threshold tuning methodology.

The optimal values for the hyperparameters that were re-
vealed in the tuning study (Table 1) were adopted for the final
model fitting. In this step, the model is fit to all training data
using the optimal hyperparameters.

2.3.4 Spatial estimations of rainfall

Final models were applied to all hourly MSG SEVIRI scenes
from 2010-2014 for the southern African extent to obtain
spatio-temporal estimates of rainfall. Therefore, the clouded
areas of a scene were first classified into rainy or non-rainy
using the respective model. The rainfall quantities were then
estimated for the estimated rainfall areas. To ensure consis-
tency within one scene, the choice of the model being applied
(either the daytime or night-time model) was made accord-
ing to the mean solar zenith angle of the respective scene.
If the mean solar zenith angle was < 70°, rainfall for the en-
tire scene was estimated using the daytime model. For scenes
with a mean solar zenith angle > 70°, the night-time model
was applied.

2.4 Validation

Model estimates and weather station records from the entire
year 2013 were used as independent data for model valida-
tion. For the validation of estimated rainfall areas, all pix-
els at the location of the weather stations that were clas-
sified as cloudy by the cloud mask product were consid-
ered. Therefore the information from the weather stations on
whether it was raining or not was compared to the model es-
timate for the respective MSG pixel. The validation data con-
tained 403 211 samples during the daytime and 565415 sam-
ples at night-time. Average hourly probability of detection
(POD), probability of false detection (POFD), false alarm
ratio (FAR) and Heidke skill score (HSS) were calculated
as validation metrics. The POD gives the percentage of rain
pixels that the model correctly identified as rain (Tables 2, 3).
POFD gives the proportion of non-rain pixels that the model
incorrectly classified as rain. The FAR gives the proportion
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Table 2. Confusion matrix as a baseline for the calculation of the
verification scores used for the validation of the rainfall area esti-
mates.

Observation

Rainfall No rainfall

Estimation Rainfall
stmatio No rainfall

True positives (TP)
False negatives (FN)

False positives (FP)
True negatives (TN)

of estimated rain where no rain is observed. The HSS also
accounts for chance agreement and gives the proportion of
correct classifications (both rain pixels and non-rain pixels)
after eliminating expected chance agreement.

To evaluate the ability of the model to estimate rain-
fall quantities, the correlation between the measured and
the estimated hourly rainfall was calculated using Spear-
man’s product moment correlation (rho) to account for a
non-normal distribution of the data. RMSE was also cal-
culated. All cloudy data points (including non-rainy data
points) were used for the validation of rainfall quantities. The
rainfall quantities were further aggregated to daily, weekly
and monthly rainfall sums to assess the performance of the
model on different temporal scales.

2.5 Comparison to GPM

The results of the presented rainfall retrieval were compared
to the rainfall estimates of the GPM mission. GPM, as a suc-
cessor of the TRMM, consists of an international network of
satellites designed for worldwide high-resolution precipita-
tion estimates (Hou et al., 2014; Skofronick-Jackson et al.,
2017). GPM provides data from March 2014 onwards. The
GPM IMERG product estimates rainfall by combining all
available passive-microwave estimates as well as microwave-
calibrated infrared satellite estimates and data from rainfall
gauges. GPM IMERG is available in 6 h, 18 h and 4-month
latency.

In this study the 4-month latency (final product)
with 30min temporal and 0.1° spatial resolution
(~10km x 10km) was used (Huffman et al., 2014).
Due to different data availabilities of GPM IMERG, MSG as
well as weather station data, the comparison was conducted
for the overlapping time period from late March 2014 to
August 2014. GPM was aggregated from 30 min to 1h to
match the temporal resolution of the MSG-based estimates.
Both products were validated using the weather station data
as a reference. The performance metrics were compared
between the MSG product and the GPM product on an
hourly basis.
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Table 3. Categorical metrics for validation of rainfall area estimates.
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Metric Formula Range  Optimal value
Probability of detection POD = % 0-1 1
Probability of false detection ~POFD = % 0-1 0
False alarm ratio FAR = TPFi-EFP 0-1 0
) . _ TPxTN—FPxFN
Heidke skill score HSS = [(TPFN) X (FN-TN)+ (TP+FP) X (FP+TN)]/2 —oo-1 1
S 2 POD I FAR RMSE

7 1
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1
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Figure 3. Validation of estimated rainfall areas for 2013 on an
hourly basis. Each of the data points is the average performance
of 1 h. The data are visualised as “vioplot” which entails that a box
plot is complemented by the kernel density of the data shown as
grey areas at the sides of the box plot.

3 Results
3.1 Model performance

On average, 60 % of the rainfall observations were correctly
identified as rainy by the model, with a high number of
scenes having much higher PODs (Fig. 3). The POFD was
low (18 % in average) but the estimates featured a high FAR
of 0.80. The average HSS per scene was 0.18. The POD was
highest for high measured rainfall quantities and decreased
for lower rainfall quantities (Fig. 4). FAR was highest for low
predicted rainfall quantities and decreased for higher pre-
dicted quantities.

The average hourly RMSE was 0.72mmh~! (Fig. 5). In
particular, data points with low or medium measured rainfall
could be estimated with low RMSE (Fig. 4). The RMSE was
higher for high measured rainfall. The correlation indicated
by Spearman’s rho had an hourly average of 0.33. The per-
formance of modelled rainfall quantities increased with the
aggregation level (Fig. 6). The average correlation increased
from p = 0.33 (hourly) to 0.52 on a daily, 0.67 on a weekly
and 0.71 on a monthly basis. An overestimation of rainfall is
observed, especially when aggregated to monthly totals. An
example of temporally aggregated rainfall estimates for 2013
are shown in Fig. 7.
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Figure 4. Comparison of POD for different hourly measured rain-
fall quantities as well as FAR for different predicted rainfall quanti-
ties. RMSE was compared for different measured rainfall quantities.
All data points from 2013 were used for the calculation of the statis-
tics. Thresholds for the three rainfall classes were set according to
the first and third quartiles of the measured hourly rainfall quanti-
ties.
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T T
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Figure 5. Validation of estimated rainfall quantities for 2013 on an
hourly basis. Each of the data points is the average performance of
1 h. See Fig. 3 for further information on the figure style.

3.2 Comparison to GPM

Compared to GPM IMERG, the MSG-based rainfall retrieval
for the period March—August 2014 showed a higher POD
(0.57) than GPM IMERG (0.28) which considerably under-
estimated rainfall events (Fig. 8). In contrast, GPM IMERG
had a lower FAR (0.70) than the MSG-based model (0.81).
However, the FAR was high for both retrievals. The aver-
age HSS was the same for both retrievals (0.17), but the me-
dian HSS for GPM IMERG was 0 which was considerably
lower than when using the MSG-based retrieval (0.10). Con-
cerning the rainfall quantities, neither the correlation to mea-
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Figure 6. Validation of estimated rainfall quantities for 2013 at (a) hourly resolution and on the different aggregation levels: (b) daily,
(c) weekly, (d) monthly. Each of the data points represents a station at the respective level of temporal aggregation. Rho represents the
average correlation for each time step of the respective aggregation level. For an easy visual interpretation, the data are presented via hexagon
binning in which the number of data points falling in each hexagon are depicted by colour.

sured rainfall nor the RMSE showed significant differences
between the retrievals (Fig. 9). The average rho was 0.36 for
the MSG-based retrieval and 0.34 for GPM IMERG. The av-
erage RMSE was 0.88 for the MSG-based retrieval and 0.85
for MSG IMERG.

Figure 10 gives an example of the differences between the
MSG-based retrieval and GPM IMERG for 24 April 2014
12:00 UTC when severe floods occurred in the Eastern Cape
province of South Africa. The colour composite of the cor-
responding MSG scene shows that clouds had a high optical
depth in this area. The pattern is reflected in the estimates of
the MSG-based retrieval that estimated rainfall for the areas
with high values of optical depth. This was partly confirmed
by the weather station data. However, rainfall was also es-
timated for areas where weather stations did not record any
rainfall. In contrast, GPM IMERG showed an underestima-
tion of rainfall areas, but still captured the high rainfall quan-
tities that were recorded by the weather stations. The sum-
mary statistics for this hour are a POD of 0.75 for the MSG-
based retrieval and 0.19 for GPM IMERG. FAR was 0.65
and HSS 0.34 for the MSG-based retrieval compared to a
FAR of 0.89 and a HSS of 0.08 for GPM IMERG. The corre-
lation between estimated and observed rainfall was 0.39 for
the MSG-based retrieval and —0.06 for GPM IMERG.
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4 Discussion

The presented monthly maps reflect the general spatial and
temporal rainfall patterns of southern Africa as shown in
Kruger (2007). They also reflect the annual characteristics
of the year 2013. For example, the heavy rainfall events over
southern Mozambique and the Limpopo River basin during
mid-January (Manhique et al., 2015).

The validation of the rainfall retrievals showed promising
results but also highlights the difficulties of optical satellite-
based rainfall estimates. The strength of the retrieval in terms
of rainfall areas classification was a high POD for heavy
rainfall events. The rainfall quantities for the heavy rainfall
events were, however, underestimated in most cases. The ma-
jor problem of the model was the overestimation of rain-
fall events leading to an overestimation of rainfall quanti-
ties. However, false alarms in the retrieval were generally
predicted with low rainfall quantities. In this context, it is
of note that in view of the scene-based validation strategy,
FAR can easily increase in dry conditions when there are
just a few false alarms in the estimates and no rainfall was
observed by any station. However, the FAR was still high
for hours with a considerable number of rainfall events. This
might be partly explainable by spatial displacement due to

Atmos. Meas. Tech., 10, 2009-2019, 2017



2016

600

500

400

- 100

Lo

Figure 7. Monthly precipitation sums in millimetres from the year
2013 as estimated by this study.

parallax shifts. Though the shift is generally below 1 pixel
in this region, even minor shifts can affect model training as
well as the estimates. For future enhancement of the rain-
fall retrieval, a correction of the parallax shift (Vicente et al.,
2002) would be appropriate. Differences in spatial and tem-
poral scale are also an important issue, especially since a ma-
jority of rainfall events in southern Africa are of small spatial
and temporal extent. The aggregation to an hour, as well as
the assumption that the weather station observation is repre-
sentative for the entire pixel, is also problematic, though es-
sential. The issue of scale especially affects the broader res-
olution GPM IMERG data where a several-kilometre-sized
pixel is validated by a single point measurement. Besides
the issue of scale and spatial displacement, the retrieval tech-
nique depends on the quality of the rain gauge observations.
Although the data were quality checked, common problems
associated with rain gauge measurements, e.g. wind drift or
evaporation leading to errors in the ground truth data and af-
fect model training and validation remain (Kidd and Huff-
man, 2011). Also, due to different installation dates of the
individual weather stations as well as the natural challenge
of maintaining weather stations in remote areas, no gapless
data set could be compiled. Therefore, different sensor and
data-provider-dependent calibration techniques and gaps in
the time series of the data, as well as the general problems
associated with rain gauge measurements, might lead to in-
consistencies and uncertainties. However, no reliable alter-
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Figure 8. Comparison of the performance of the MSG-based re-
trieval and GPM IMERG for rainfall area delineation between
March and August 2014. Each of the data points is the average per-
formance of 1h. See Fig. 3 for further information on the figure
style.
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Figure 9. Comparison of the performance of the MSG-based re-
trieval and GPM IMERG for hourly rainfall quantities between
March and August 2014. Each of the data points is the average per-
formance of 1h. See Fig. 3 for further information on the figure
style.

natives are available and rain gauge measurements are still
considered the most reliable source of rainfall data.

The retrieval techniques relied on the cloud mask for
an initial selection of relevant data points used for model
training, validation and the final spatio-temporal estimates.
Therefore, it cannot be excluded that some data points were

www.atmos-meas-tech.net/10/2009/2017/
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Figure 10. Sample satellite scene from 24 April 2014 10:00 UTC
represented as a VIS0.8-IR3.9-IR10.8 false-colour composite ac-
cording to (Rosenfeld and Lensky, 1998) in which cloud optical
depth is indicated by red colouration, cloud particle sizes and phases
in green and the brightness temperature modulates in blue. The rain-
fall estimates for this scene (estimated using the daytime model)
are shown as well as the corresponding GPM IMERG product. Ob-
served rainfall is depicted where weather station data were avail-
able. For visualisation purposes, the spatial extent of the stations
was increased. White background in the colour composite as well as
in the MSG-based retrieval and the GPM IMERG product represent
no data due to missing clouds. In addition, the white background in
the representation of the observed rainfall is due to the absence of
weather stations.

falsely excluded from the analysis as they were falsely
masked as being not cloudy but rainfall was measured on
the ground. However, we assume that rainy clouds are easy
to capture by common cloud masking algorithms and that the
resulting bias is therefore comparably small.

Despite the errors and uncertainties associated with the
presented rainfall retrieval, the combination of MSG data and
neural networks are a promising approach. The model pre-
sented in this study outperformed the GPM IMERG product
in terms of rainfall area detection. GPM IMERG consider-
ably underestimated rainfall events. This behaviour is partly
explainable by scale because GPM IMERG has a coarser
resolution of 0.1°. This makes local processes difficult to
capture which is an disadvantage considering that in south-
ern Africa especially small-scale convective showers con-
tribute to rainfall sums (Kruger, 2007). In terms of rainfall
quantities, GPM IMERG and the presented retrieval did not
show significant differences in correlation. The sample spa-
tial comparison has shown that GPM IMERG has more dif-
ferentiated rainfall estimates while the MSG-based retrieval
tends to estimate the mean distribution.

www.atmos-meas-tech.net/10/2009/2017/
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The presented MSG-based retrieval is an easy to use
method and allows for time series at a relatively high spa-
tial resolution. Aside from the promising results, compared
to GPM IMERG, the daily estimates of the MSG-based re-
trieval are at least comparable to other products incorporated
in the IPWG validation study IPWG (2016). A detailed com-
parison could currently not be given since validation data and
strategy were not identical. Incorporation of the presented re-
trieval scheme to the IPWG validation study is intended by
the authors for future assessment.

5 Conclusions

The rainfall retrieval technique developed in this study pro-
vides hourly rainfall estimates at high spatial resolution
based on the spectral properties of MSG SEVIRI data and
neural networks. The retrieval showed promising results in
terms of rainfall area detection and estimation of rainfall
quantities. However, the results also showed that the esti-
mation of rainfall remains challenging. The main weakness
of the presented retrieval was the overestimation of rainfall
occurrence. However, the retrieval could compete with the
GPM IMERG product in terms of rainfall quantity and was
even better for rainfall area detection.

High-resolution spatial data sets of rainfall are requested
by a variety of research disciplines. The developed MSG-
based rainfall retrieval is able to deliver time series from the
launch of MSG SEVIRI onward. An operationalisation for
near real-time rainfall estimates is intended. It can therefore
serve as a valuable data set where high-resolution rainfall
data for southern Africa are needed. As an example, it will
serve as an important parameter within the IDESSA (An In-
tegrative Decision Support System for Sustainable Range-
land Management in Southern African Savannas) project,
which aims to implement an integrative monitoring and de-
cision support system for the sustainable management of
different savanna types. The hourly and aggregated rainfall
quantity estimations are available from the authors on re-
quest.
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