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Abstract. Monitoring PM2.5 (particulate matter with aero-
dynamic diameter d ≤ 2.5 µm) mass concentration has be-
come of more importance recently because of the nega-
tive impacts of fine particles on human health. However,
monitoring PM2.5 during cloudy and nighttime periods is
difficult since nearly all the passive instruments used for
aerosol remote sensing are not able to measure aerosol opti-
cal depth (AOD) under either cloudy or nighttime conditions.
In this study, an empirical model based on the regression be-
tween PM2.5 and the near-surface backscatter measured by
ceilometers was developed and tested using 6 years of data
(2006 to 2011) from the Howard University Beltsville Cam-
pus (HUBC) site. The empirical model can explain ∼ 56,
∼ 34 and ∼ 42 % of the variability in the hourly average
PM2.5 during daytime clear, daytime cloudy and nighttime
periods, respectively. Meteorological conditions and seasons
were found to influence the relationship between PM2.5
mass concentration and the surface backscatter. Overall the
model can explain ∼ 48 % of the variability in the hourly av-
erage PM2.5 at the HUBC site when considering the sea-
sonal variation. The model also was tested using 4 years of
data (2012 to 2015) from the Atmospheric Radiation Mea-
surement (ARM) Southern Great Plains (SGP) site, which
was geographically and climatologically different from the
HUBC site. The results show that the empirical model can
explain ∼ 66 and ∼ 82 % of the variability in the daily av-
erage PM2.5 at the ARM SGP site and HUBC site, respec-
tively. The findings of this study illustrate the strong need
for ceilometer data in air quality monitoring under cloudy
and nighttime conditions. Since ceilometers are used broadly
over the world, they may provide an important supplemental

source of information of aerosols to determine surface PM2.5
concentrations.

1 Introduction

The adverse impacts of high PM2.5 (particulate matter with
aerodynamic diameter d ≤ 2.5 µm) mass concentration on
human health have been found from epidemiological stud-
ies around the world (Samet et al., 2000; Pope et al., 2009;
Krewski et al., 2009). PM2.5 concentration has been found
to be associated with cardiopulmonary disease, lung cancer,
and an increased morbidity and mortality (Schwartz et al.,
1996; Gent et al., 2003, 2009; Dominici et al., 2006; Bell et
al., 2007; Franklin et al., 2007; Slama et al., 2007; Pope et
al., 2002; Miller et al., 2007; Lepeule et al., 2012). As an of-
ficial norm to stand for fine-particle abundance, PM2.5 mass
concentrations are monitored widely by the US Environmen-
tal Protection Agency (EPA) through in situ instruments at
surface monitoring sites. However, the number of EPA mon-
itoring sites is limited. Therefore, remote sensing of PM2.5
from ground stations and satellites is desirable, allowing for
fuller coverage of PM2.5 concentration between the EPA sur-
face sites.

Aerosol optical depth (AOD) plays an important role in
the remote sensing of PM2.5 since it has a good relationship
with PM2.5 concentration. However, most measurements of
AOD which are derived from passive remote-sensing tech-
niques are only available under daytime and clear-sky con-
ditions. Remote sensing of PM2.5 during either cloudy or
nighttime periods is very rare. Different from passive in-
struments which measure column-integrated AOD, active
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instruments like advanced lidars have the capacity to pro-
vide the vertical distribution of aerosol backscatter coeffi-
cient even under cloudy conditions or at nighttime. How-
ever advanced lidar networks are rare due to the complexity
and cost. Instead, ceilometers which are simple, automati-
cally operating single-wavelength lidars are used broadly all
over the world. Ceilometers were originally developed for
cloud-based height retrieval. With the improvement of ac-
curacy and power, the potential capabilities of ceilometers to
detect mixing layer height and aerosol optical properties have
been explored recently (Münkel et al., 2007; Markowicz et
al., 2008; Heese et al., 2010; Tsaknakis et al., 2011; Wieg-
ner and Geiß, 2012). Another distinct advantage of ceilome-
ters is their small overlap distance, which makes them suit-
able to detect aerosol information near the surface. PM2.5
concentration is an index of fine-particle mass concentration
near the surface, while AOD is the integration of aerosol ex-
tinction in the total atmospheric column. So using aerosol
backscatter near the surface has an inherent advantage in the
remote sensing of PM2.5 concentration.

There are extensive studies investigating the PM2.5–AOD
relationship by the use of either an empirical statistical
method (Engel-Cox et al., 2004; Liu et al., 2005, 2009; Gupta
et al., 2006; Koelemeijer et al., 2006; Gupta and Christopher,
2008; Paciorek et al., 2008; Di Nicolantonio et al., 2009;
Schaap et al., 2009; Lee et al., 2012; Sorek-Hamer et al.,
2013; Strawa et al., 2013; Chudnovsky et al., 2014; Hu et
al., 2013, 2014; Ma et al., 2014) or a chemical transportation
model (Liu et al., 2004; Van Donkelaar et al., 2006, 2010;
Kessner et al., 2013; Xu et al., 2015). In these studies, aerosol
vertical distributions are estimated based on model simula-
tion or under an assumption that aerosols are well mixed
within the boundary layer and then decrease exponentially
with height. Recently Li et al. (2016) developed an algo-
rithm combining the backscatter measured from ceilometers
with AOD for the PM2.5 retrieval. That work showed the ca-
pability of the ceilometer to improve PM2.5 estimation by
introducing measurements of aerosol optical properties near
the surface. Although there are a plenty of studies on PM2.5
estimation, studies on the remote sensing of PM2.5 during ei-
ther cloudy or nighttime periods are rare due to the limitation
of measurements of AOD.

In this study, to estimate PM2.5 under cloudy or during
night periods, we developed a regression model based on
the relationship between PM2.5 and the ceilometer backscat-
ter under different meteorological conditions. The model
is tested and validated against the 6 years (2006–2011) of
ground-based observations of ceilometer backscatter, PM2.5,
AOD and meteorological conditions at the Howard Univer-
sity Beltsville Campus (HUBC) site and the 4 years (2012–
2015) of data from the Atmospheric Radiation Measure-
ment (ARM) Southern Great Plains (SGP) site. The data and
model are described in Sect. 2. The results of the testing and
evaluation of the model are illustrated in Sect. 3. The discus-
sion is given in the last section.

2 Data and model

2.1 Data

In this study, the data were obtained from the HUBC site in
Beltsville, MD, which is situated in a rural–suburban tran-
sition region between Washington, DC and Baltimore, MD
urban centers. The site has a wide range of collocated in-
struments to observe atmospheric radiation, aerosol, cloud
properties, meteorological conditions and air quality (Li et
al., 2016), which makes the HUBC site suitable for PM2.5
investigations.

The backscatter data were provided by a Vaisala CT25k
ceilometer, which is a single-lens lidar system equipped with
a pulsed near-infrared diode laser (905 nm). As a commer-
cial ceilometer, the CT25k provides a range-corrected atten-
uated backscatter coefficient, but the raw data are not avail-
able to the customer, which limits the access of the correc-
tion process. However, it has been shown that the signal re-
duction due to the near-field problem can be compensated
for well with the manufacturer’s correction (Markowicz et
al., 2008). The unique single-lens design gives full overlap
of the transmitter and receiver field of view at an altitude
of 0 m (Münkel et al., 2007), which allows CT25k ceilome-
ters to obtain high signal-to-noise ratio for lidar return sig-
nals at a low altitude. The working wavelength of CT25k
ceilometers is∼ 905 nm where water vapor absorption exists
(Wiegner et al., 2014; Wiegner and Gasteiger, 2015). How-
ever, water vapor impacts on backscatter retrieval are smaller
than ∼ 2 % for 905 nm ceilometers under midlatitude clima-
tology (Wiegner and Gasteiger, 2015) within a short distance
from the surface to the height of 150 m. Given the small at-
tenuation within a short distance, the attenuated backscatter
coefficient below 150 m can be reasonably taken as a mea-
sure of backscatter coefficient when there is no rain or fog.
The vertical resolution of the CT25k is 30 m. Since we are
interested in the PM2.5 concentration near the surface, we
only use the first five layer backscatter measurements from
the CT25k ceilometer to estimate PM2.5 concentrations. The
choosing of 150 m is arbitrary, but the sensitivity test showed
that the retrieval results are quite similar for the different
heights from 90 to 300 m (Li et al., 2016). It worth noting
that the CT25k is an uncalibrated instrument of which the re-
sponse may change in time. That change may induce differ-
ences in retrieving attenuated backscatter at different times,
especially in retrieving backscatter at high altitude where
the signal-to-noise ratio is small (Kotthaus et al., 2016).
To estimate the impacts of ceilometer response changing
on backscatter measurements, we compared 3 years (2007,
2008, 2009) of yearly average ceilometer backscatter pro-
files under nighttime clear conditions (PM2.5 < 15 µm, rel-
ative humidity < 40 %). The method is similar to the method
used in Kotthaus et al. (2016) to illustrate impacts of back-
ground signal and cosmetic shift on ceilometer-reported sig-
nals. The largest difference of the yearly average backscatter
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below 150 m among the 3 years is found within 10 % for the
CT25k ceilometer.

The near-surface meteorological conditions – including
temperature (T ), relative humidity (RH), pressure, wind
speed (W ) and wind direction – are provided by a nearby
31 m micrometeorological tower, and the AOD observations
and cloud optical depth (COD) are retrieved from a Multifil-
ter Rotating Shadowband Radiometer (MFRSR). The details
of the MFRSR and the corresponding retrieval algorithms are
introduced in Harrison et al. (1994), Harrison and Michal-
sky (1994) and Min and Harrison (1996). The hourly aver-
age PM2.5 are measured by a Met One BAM 1020 (beta ray
attenuation monitor) from the collocated Maryland Depart-
ment of the Environment (MDE) monitor station (Li et al.,
2016).

In this study, hourly average data were used for all
the data sets. Precipitation and fog cases were screened
out by using cloud effective radius larger than 15 µm,
microwave-radiometer-measured liquid water path larger
than 200 g m−2, ceilometer-derived cloud layer lower than
200 m and relative humidity larger than 95 %.

2.2 Model

For a ceilometer, the energy observed is a function of
backscattering coefficient

P (x)=
P0AηO (x)C1t

2x2 β (x)T 2 (x) , (1)

where P (x) and P0 are the received and emitted powers from
a ceilometer; A and η are the area of the receiver and its effi-
ciency, respectively; and x is the range from receiver to scat-
tering volume.O (x) is overlap function, C is light speed,1t
is the laser pulse duration and T (x) is the transmittance of the
atmosphere between receiver and scattering volume. β (x) is
the backscattering coefficient, which can be separated into
two components:

β (x)= βm (x)+βa (x) . (2)

where βm (x) and βa (x) denote the backscattering by
molecules and aerosols, respectively. The aerosol backscat-
tering can be derived from the total backscattering coeffi-
cient as the molecule scattering is well modeled by Rayleigh
scattering. For the backscattering at the near-infrared wave-
length, the contribution from molecules can be disregarded
due to the rapidly decreased Rayleigh scattering with wave-
length, so β (x) is taken as ∼βa (x) in this study.

With the assumption that aerosol size distribution is bi-
modal lognormal and aerosol particles are spherical, Li et
al. (2016) illustrated that both the extinction and PM2.5 can
be expressed in terms of particle volume concentration (cvi)

Figure 1. Comparison of R2 out of the 100 independent cross-
validations for the model without meteorological variables (Eq. 11)
and the model with meteorological variables (Eq. 12) based on all
the available daytime clear-sky cases at the HUBC site.

Table 1. Parameters based on the best fitting of 100 independent
tests for Eq. (9).

Best-fitting parameters a0 a1 b1

Daytime clear −97.61 66.95 0.14
Daytime cloudy −100.00 94.02 0.05
Nighttime −100.00 85.70 0.08

for each mode as

ext(λ)=
2∑
i=1

cvih(Riσimλ), (3)

PM2.5=
2∑
i=1

cvig(Riσiρ), (4)

where h(Riσimλ) and g(Riσiρ) are the integral functions of
volume-concentration-normalized aerosol size distribution;
c is the total particle volume concentration; vi is the frac-
tion of volume concentration for each mode i; Ri and σi
are the geometric mean radius and the standard deviation of
aerosol size distribution, respectively; λ is the wavelength;
m is the refractive index; and ρ is the particle mass density.
The relationship between the aerosol backscattering coeffi-
cient βa (λ) and the extinction coefficient ext(λ) at the wave-
length λ is usually expressed by a lidar ratio (K):

K =
ext(λ)
βa (λ)

. (5)

From Eqs. (3), (4) and (5) the relationship between βa (λ)

and PM2.5 can be expressed by

PM2.5= Fβa (λ) . (6)
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Table 2. Parameters based on the best fitting of 100 independent
tests for Eq. (10).

Best fitting c0 c1 c2 c3 c4 d1 d2
parameters

Daytime clear −10.50 3.49 −2.92 0.06 −0.11 0.07 0.55
Daytime cloudy −14.49 12.86 −7.20 0.10 −0.49 0.12 0.32
Nighttime −1.38 0.74 −0.13 0.029 −0.20 0.68 0.64

Figure 2. Same as Fig. 1 but just for cases under daytime cloudy
conditions.

where

F =K

2∑
i=1
vif (Ri,σi,m,λ)

2∑
i=1
vig(Ri,σi,ρ)

, (7)

The PM2.5 / backscatter ratio F only depends on aerosol size
and composition. Given that the variation of aerosol size
and composition could be associated with the meteorologi-
cal conditions and the assumption that aerosols mixed well
near the surface, an empirical model based on the relation-
ship between PM2.5 and the backscatter near the surface is
proposed as

PM2.5 = a0+

(
a1+ a2f (RH)+

n∑
i=1

a2+iMi

)
 z∫

0

β (x,λ)dx

b2

+ ε, (8)

where the hygroscopic grow factor is expressed as

f (RH)=
1

(1−RH)b1
.

RH is relative humidity;M1 throughMn are the meteorolog-
ical factors including surface temperature, wind speed, wind
direction and surface pressure; z is height; a0 through a2+n,

Figure 3. Same as Fig. 1 but just for cases during nighttime periods.

b1 and b2 are the regression coefficients; and ε is the error
term. In the following part, we will test the model perfor-
mance without considering the meteorological variables. In
that case, Eq. (8) can be expressed as

PM2.5 = a0+ a1

 z∫
0

β (x,λ)dx

b1

+ ε. (9)

When we test the model including the impacts from obser-
vations of surface T , RH and W , Eq. (8) can be expressed
as

PM2.5 = c0+

(
c1+ c2×

1

(1−RH)d1
+ c3T + c4×W

)
 z∫

0

β (x,λ)dx

d2

+ ε. (10)

3 Results

Overfitting can occur when a regression model is too com-
plex. The overfitted model describes random error or noise
instead of the underlying relationship. To test and evaluate
the model, cross-validations (CVs) are implemented on the
6 years of hourly average measurements at the HUBC site
under the different conditions including daytime clear, day-
time cloudy and nighttime periods. For the cross-validation,
we randomly select 90 % of the data as a training data set,
use the remaining 10 % to test the models and repeat the pro-
cedure 100 times to avoid random bias and misleading R2

induced by overfitting. Cross-validations are conducted for
each model under each condition.

3.1 Simulation results under different sky conditions

Under daytime clear-sky conditions when AOD measure-
ments from the MFRSR are available (no cloud, daytime),
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Figure 4. The relationship between surface temperature and PM2.5 / backscatter ratio for (a) daytime clear-sky cases, (b) daytime cloudy
cases and (c) nighttime cases.

Figure 5. The relationship between surface relative humidity and PM2.5 / backscatter ratio for (a) daytime clear-sky cases, (b) daytime
cloudy cases and (c) nighttime cases.

the average CV R2 out of the 100 times random cross-
validations for the model (Eq. 10) is 0.56 (Fig. 1) with a
root mean square error (RMSE) of 6.12 µg m−3. This re-
sult is close to that of the nonlinear model which combines
both AOD and the ceilometer backscattering (CVR2

= 0.60,
RMSE= 5.83 µg m−3) developed by Li et al. (2016) and per-
formed much better than that of the model using AOD only
(CVR2

= 0.40, RMSE= 7.14 µg m−3; Li et al., 2016). With-
out considering the meteorological conditions (Eq. 9), the av-
erage CVR2 of the model is 0.45 (Fig. 2), which is better
than that of the model using AOD only (Li et al., 2016) but
not as good as the model including meteorological variables.
Based on the fitted parameters (the parameters of the best
fitting are shown in Tables 1, 2) from the 100 independent
cross-validations (10 % of the total data), the average correla-
tion coefficient between all the in situ measured PM2.5 under
daytime clear-sky conditions and the simulated PM2.5 from
the model without meteorological variables is 0.68 and in-
creased to 0.76 when meteorological variables were included
(Eq. 10).

Remote sensing of AOD is commonly based on the mea-
surements of spectral extinction of solar radiation due to
aerosol scattering and absorption in the atmospheric column
from passive instruments. However most passive instruments

cannot readily discern AOD from COD under cloudy con-
ditions. So any PM2.5 remote-sensing method relying on
passive AOD measurements cannot retrieve PM2.5 under
cloudy conditions. However, measurements of backscatter
under cloudy conditions are still available for ceilometers,
which can help to determine the near-surface aerosol extinc-
tion when upper-layer clouds exist.

Under daytime cloudy conditions, the average CVR2 of
the model without meteorological variables is only 0.11
(Fig. 2), which means only around 11 % of the variability
in the hourly PM2.5 can be explained by the model. When
meteorological factors are considered, the model can explain
34 % of the variability. Based on the fitted parameters of
the 100 independent cross-validations, the average correla-
tion coefficient between all the in situ measured PM2.5 un-
der daytime cloudy conditions and the simulated PM2.5 from
the model without meteorological variables is only 0.34, and
it improved to 0.59 when meteorological variables were in-
cluded in the model.

During nighttime periods, passive measurement relying on
solar radiation is not available, but active instruments like
ceilometers are still able to measure regardless of solar radi-
ation and have better signal-to-noise ratio because of the ab-
sence of background sunlight contamination. During night-
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Figure 6. The relationship between surface wind speed and PM2.5 / backscatter ratio for (a) daytime clear-sky cases, (b) daytime cloudy
cases and (c) nighttime cases.

Figure 7. Average PM2.5 / backscatter ratio with standard deviation at four direction ranges – east (315 to 45◦), north (45 to 135◦), west
(135 to 225◦) and south (225 to 315◦) – for (a) daytime clear cases, (b) daytime cloudy cases and (c) nighttime cases.

time periods, the average CVR2 out of the 100 independent
cross-validations for the model without meteorological vari-
ables is 0.21, while the average CVR2 for the model with
meteorological variables is 0.42 (Fig. 3). In this study, mea-
surements under clear sky and cloudy sky were not separated
during nighttime periods. Based on the fitted parameters of
the 100 independent tests, the average correlation coefficient
between all the in situ measured PM2.5 during nighttime and
the simulated PM2.5 from the model without and with mete-
orological variables was 0.47 and 0.65, respectively.

3.2 Impacts from meteorological variables

The previous results showed that without considering me-
teorological factors the model predicting ability largely de-
creased, especially under cloudy and nighttime conditions.
Remote sensing of PM2.5 using backscattering coefficients
is based on the relationship between PM2.5 and aerosol
backscatter which is determined by aerosol physical and
chemical properties. Aerosol physical and chemical charac-
teristics are sensitive and dependent on meteorological con-
ditions that can impact aerosol transportation, hygroscopic
growth and aerosol nucleation/creation. Therefore, meteoro-
logical conditions can be potentially used to estimate aerosol
characteristics when the direct observations are not available.
So taking into account the variations of meteorological con-

ditions may largely improve the model which is based on the
regression between PM2.5 and backscattering coefficients.

To investigate impacts from different meteorological fac-
tors on PM2.5 remote sensing, the relationship between each
meteorological variable and the PM2.5 / backscatter ratio
were analyzed in three data categories: daytime clear (AOD
measurements are available), daytime cloudy and nighttime
(Figs. 4–7). Among the meteorological variables, temper-
ature was found to have the most prominent positive cor-
relation with the PM2.5 / backscatter ratio. The correlation
coefficients are equal to 0.4, 0.46 and 0.29 under daytime
clear, daytime cloudy and nighttime conditions, respectively
(Fig. 4). In the eastern United States, sulfate dominates the
aerosol chemical composition (Hand et al., 2012), and sul-
fate concentrations are expected to increase with increasing
temperature due to faster SO2 oxidation. Fine particles have
smaller backscatter coefficients due to the smaller size in-
dex based on Mie theory (Wiscombe, 1980) than larger par-
ticles with the same PM2.5 mass concentration. So at the
HUBC site, the increase of temperature associated with the
high PM2.5 / backscatter ratio could be due to the increase of
fine particles.

As opposed to the surface temperature, it is shown that
the surface relative humidity had a prominent negative as-
sociation with the PM2.5 / backscatter ratio. The correlation
coefficient is equal to −0.12, −0.42 and −0.28 under the
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Figure 8. The number distribution of PM2.5 / backscatter ratio for (a) daytime clear cases, (b) daytime cloudy cases and (c) nighttime cases.

Table 3. Cross-validation tests of the model with different meteorological variables included.

Test R2 95 % confidence intervals
(RMSE) of R2 (of RMSE)

Test1: model including all available meteorological variables 0.43 (6.70) 0.421–0.429 (6.672–6.736)
Test2: model without surface temperature 0.37 (7.01) 0.367–0.375 (6.981–7.044)
Test3: model without relative humidity 0.39 (6.91) 0.385–0.393 (6.880–6.946)
Test4: model without wind speed 0.37 (7.01) 0.368–0.375 (6.978–7.043)
Test5: model without wind direction 0.42 (6.71) 0.420–0.428 (6.683–6.742)
Test6: model without surface pressure 0.42 (6.71) 0.421–0.429 (6.674–6.738)
Test7: model not including any meteorological variable 0.21 (7.88) 0.203–0.209 (7.846–7.914)

daytime clear, daytime cloudy and nighttime conditions, re-
spectively (Fig. 5). Under high-relative-humidity conditions
there can be significant variations in the aerosol optical prop-
erties due to the aerosol hygroscopic growth effect. In the
eastern United States, the dominant aerosols are composed
of ammonium sulfate aerosols for which the ambient size
will increase with the increase of the relative humidity due
to hygroscopic growth. That can result in the decrease of the
PM2.5 / backscatter ratio due to the increase of the aerosol
extinction cross section while the aerosol dry mass is rela-
tively invariant. It should be noted that the correlation coeffi-
cient is −0.12 for the cases under daytime clear conditions,
while it is −0.42 under daytime cloudy conditions. Chu et
al. (2015) showed that the effect of hygroscopic growth on
extinction is more prominent when the relative humidity is
larger. Under nighttime conditions, including both the clear
and cloudy situations, the correlation coefficient is −0.28.

A negative association is also found between the wind
speed and PM2.5 / backscatter ratio under all the three con-
ditions (Fig. 6). That may be explained by the associa-
tion of higher PM2.5 concentrations with more stagnant,
weaker wind conditions (Tai et al., 2010). Based on the aver-
age PM2.5 / backscatter ratio at four wind direction ranges
– east (315 to 45◦), north (45 to 135◦), west (135 to
225◦) and south (225 to 315◦) – the variation of the mean
PM2.5 / backscatter ratio at the four different wind directions
was found to be small (within 10 %) compared to the stan-
dard deviation (∼ 50 % of the mean value) at the HUBC site

(Fig. 7). The association of the surface pressure with the
PM2.5 / backscatter ratio was found to be weak, with the cor-
relation coefficient equal to−0.05 (not shown). The distribu-
tions of PM2.5 / backscatter ratio under the three conditions
are shown in Fig. 8. Statistically, the PM2.5 / backscatter ra-
tio under daytime clear-sky conditions is larger than that un-
der daytime cloudy or nighttime conditions.

Figures 4–7 show the potential impacts of meteorologi-
cal factors on model prediction. However, some information
possibly overlaps among the different meteorological vari-
ables. To investigate the contribution of each meteorological
variable to improving the model predicting power, the model
was tested with different meteorological variable combina-
tions. For each test, the cross-validation was randomly re-
peated 100 times based on all the available cases, including
the daytime clear, daytime cloudy and nighttime periods.

Table 3 demonstrates the average CVR2, RMSE and 95 %
confidence intervals for each test. It is shown that with-
out the information of surface temperature, relative humid-
ity or wind speed the average CVR2 of the model decreases
from 0.43 to 0.37, 0.39 or 0.37, respectively. In other words,
adding the variable of surface temperature, relative humidity
or wind speed into the model can bring in additional infor-
mation which may improve the model prediction capability
regarding PM2.5.
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Figure 9. Comparison of measured PM2.5 and modeled PM2.5 when meteorological variables are not taken into account. (a) The model is
non-seasonally fitted, and (b) the model is seasonally fitted. The colors stand for the number density of the points.

Figure 10. Same as Fig. 9 but with all meteorological variables taken into account.

3.3 Seasonally fitting

Besides meteorological factors, the seasonal variations of
aerosol physical and chemical properties could impact the
PM2.5 / backscatter ratio and then PM2.5 retrievals. To in-
vestigate the impacts of seasonal variations on PM2.5 re-
trievals, we fit the model seasonally and compared that per-
formance with the model fitted on all the data without con-
sidering seasonal variation. Just as in the previous section,
the cross-validations were implemented for each test. The
parameters of the fitting with the median CVR2 out of the
100 independent cross-validations for each fitting method are
used to calculate the correlation between the in situ measure-
ments of PM25 and the simulated PM2.5. When meteoro-
logical variables were not considered, the simulated PM2.5
from the model with the seasonally fitted parameters had a
much stronger association with the in situ measured PM2.5
(R = 0.57) than the model with the non-seasonally fitted pa-
rameters (R = 0.45; Fig. 9). When meteorological variables
were taken into account, the correlation coefficient between

the simulation and the in situ measurements of PM2.5 for the
model with the seasonally fitted parameters and the model
with the non-seasonally fitted parameters was 0.69 and 0.65,
respectively (Fig. 10), and the average CVR2 was 0.48 and
0.43. The meteorological conditions have seasonal variation,
so taking into account meteorological variables in the model
can mitigate downside impacts of ignoring seasonal varia-
tions of aerosol properties on PM2.5 prediction.

3.4 Test in a different region

Given that aerosol types, aerosol compositions and meteoro-
logical conditions could be different in a different region, the
model was tested based on the observations at the ARM SGP
site, which is located in Oklahoma, USA. The site is in a ru-
ral area with fewer anthropogenic aerosols than the HUBC
and the DC area. The ARM SGP site is the largest and most
extensive climate research field site in the world. A newer
version of the Vaisala Ceilometer CL31 has been used in-
stead of the Vaisala CT25K since 2010 at the ARM SGP site.
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Figure 11. Comparison of cross-validationR2 of the model without meteorological variables and model with meteorological variables during
daytime clear, daytime cloudy and nighttime periods with the data from ARM SGP site.

Figure 12. Comparison of daily average PM2.5 between in situ measurements and model simulation at the HUBC site and ARM SGP site.

The Vaisala CL31 has the same laser system, wavelength and
measurement range as CT25k but improved spatial and tem-
poral resolution and algorithms for cloud amount and mixing
layer height detection (Münkel et al., 2007). To estimate the
possible response changing of the CL31 ceilometer in dif-
ferent years, we compared the same 3 years (2012, 2013,
2014) of yearly average ceilometer backscatter profiles un-
der nighttime clear conditions as used for the CT25K. The
largest difference of the yearly average backscatter under
nighttime clear conditions among the 3 years (2012, 2013
and 2014) is found within 3 % for the backscatter below
150 m. The principle of the algorithm (Eqs. 1 to 10) is ap-
plicable to most lidars with small overlap distance. So it is
possible to use the model with the Vaisala CL31. In the test,
we used 4 years (from 2012 to 2015) of measurements of
Vaisala CL31 ceilometer backscatter and the surface meteo-
rological conditions provided by the ARM SGP site and the
FRM/FEM PM2.5 mass concentration from the nearest EPA
site (36.697◦ N and 97.081◦W; Air Quality System Data
Mart, available via http://www.epa.gov/airdata). The same
cross-validation procedure was implemented in the measure-
ments at the ARM SGP site under daytime clear, daytime
cloudy and nighttime periods. For the hourly average PM2.5,

the cross-validation results (Fig. 11) show that the perfor-
mance of the model with meteorological variables (Eq. 10)
at the ARM SGP site was not as good as that of the HUBC
site, but the model without meteorological variables (Eq. 9)
performed better at the ARM SGP site than at the HUBC
site during daytime cloudy and nighttime periods. That could
be due to the different aerosol type and composition which
are associated with the hygroscopic growth of aerosols at the
SGP area and the DC area. When the model (Eq. 12) is ap-
plied on the daily average PM2.5, the average CVR2 out of
the 100 independent cross-validations is 0.82 and 0.66 at the
HUBC site and ARM SGP site, respectively. That means the
model (Eq. 12) can explain ∼ 82 and ∼ 66 % of the variabil-
ity in daily average PM2.5 at the HUBC site and ARM SGP
site, respectively. The correlation coefficient between the in
situ measurements of PM2.5 and the simulation based on the
fitted parameters of the fitting with the median CVR2 out of
the 100 independent cross-validations is 0.91 and 0.82, re-
spectively (Fig. 12).
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4 Discussion

Remote sensing of PM2.5 is generally based on AOD mea-
surements due to its strong relationship with PM2.5. For
nearly all the passive instruments, the measurements of AOD
rely on solar radiation. Ceilometers are compact, low-cost
and unattended operational lidars and have been broadly used
around the world. Although their laser power is relatively
lower, the advantages of the small overlap distance and unat-
tended and continuous operation make ceilometers suitable
for remote sensing of aerosols near the surface. Moreover,
the measurements of ceilometers do not rely on solar radia-
tion, which makes them capable of retrieving aerosols during
cloudy or nighttime periods.

In this study, an empirical model based on the regression
between PM2.5 concentrations and ceilometer backscatter
measurements was developed and tested with 6 years of ob-
servations at the HUBC site. The empirical model can ex-
plain ∼ 56, ∼ 34 and ∼ 42 % of the variability in the hourly
average PM2.5, respectively, during the daytime clear, day-
time cloudy and nighttime periods. During the daytime clear
periods the prediction capability was close to that of the
model combining AOD and backscatter (explain ∼ 60 % of
the variability) developed by Li et al. (2016), while during
the daytime cloudy or nighttime period only the empirical
model, which is independent of AOD, is available for the
PM2.5 retrieval.

The impacts of meteorological conditions on the relation-
ship between the in situ measured PM2.5 and the ceilometer-
measured backscatter were analyzed. The prominent posi-
tive relationship found between the surface temperature and
the PM2.5 / backscatter ratio could be due to the faster SO2
oxidation under higher temperature given that the dominant
aerosol chemical composition is sulfate in the eastern United
States. The measured relative humidity showed a signifi-
cant negative association with the PM2.5 / backscatter ra-
tio, which could be due to hygroscopic growth of aerosols.
The wind speed also showed a negative association with
the PM2.5 / backscatter ratio, but the relationship between
the measured wind direction and PM2.5 / backscatter ratio
was found to not be obvious at the HUBC site. However,
it is noteworthy that wind direction can be related to aerosol
transportation and is usually associated with aerosol concen-
tration and type. Although there was no significant associa-
tion of the wind direction with the PM2.5 / backscatter ratio
at the HUBC site, wind direction impacts could be signifi-
cant at other places where transported aerosols like dust are
found near the surface. Aerosol properties usually vary sea-
sonally due to the seasonally varied meteorological condi-
tions, large-scale transportation and local emission of anthro-
pogenic and natural aerosols. Taking into account the meteo-
rological conditions in the model can to some extent mitigate
the seasonal impacts on the PM2.5 retrieval, and conducting
the seasonal fitting can further improve the model predicting
capability. Overall, the model with the seasonally fitted pa-

rameters can explain ∼ 48 % of the variability in the hourly
PM2.5 including during daytime clear, daytime cloudy and
nighttime periods at the HUBC site. Aerosol physical and
chemical characteristics which are associated with aerosol
dry mass and optical properties could vary at different loca-
tions. So a test was implemented based on the observations
from the ARM SGP site, which is geographically and clima-
tologically different from the HUBC site. The results show
that the impacts of meteorological conditions on the retrieval
of PM2.5 using the ceilometer backscatter at the ARM SGP
site are not as prominent as those at the HUBC site. That
could be due to the different aerosol types in the SGP area
and the DC area. In addition, the model parameters could be
different for different aerosol types or in different climatic
regions. That is because the relationship between PM2.5 and
aerosol backscatter is related to aerosol types and sizes (Li et
al., 2016), and the relationship between meteorological con-
ditions and aerosols (i.e. size, composition) could vary with
variation of aerosol types or climatic regions. Overall, the
regression model using the ceilometer backscatter with me-
teorological variables could explain around 66 and 82 % of
the variability in the daily average PM2.5 at the ARM SGP
site and the HUBC site, respectively. It is worth noting that
both the instrument hardware-related background signals and
software-related artifacts could impact attenuated backscat-
ter profiles observed by ceilometers. Further processing of at-
tenuated backscatter profiles is needed to get accurate atten-
uated backscatter observations from ceilometers especially
under low signal-to-noise ratio situations (Kotthaus et al.,
2016). In this study, we only use the attenuated backscatter at
low altitude, where both the Vaisala CT25k and CL31 have
high signal-to-noise ratio for lidar return signals and hourly
average will also decrease noise. So the potential background
signals and systematic artifacts should have small impacts on
the regression model performance. However, the parameters
of the regression model could be different for different in-
struments.

The most important objectives of this study were to
develop an algorithm for remote sensing PM2.5 during
cloudy and nighttime periods by using ceilometer-measured
backscatter. Retrievals of PM2.5 during cloudy or nighttime
periods are very rare based on current remote-sensing meth-
ods. A large number of ceilometers have been used over the
world, especially in the Europe and United States. The ex-
ploitation of the ceilometer on PM2.5 remote sensing could
provide important information for air quality purpose, espe-
cially in helping to improve PM2.5 forecast over a larger area
and can help fill the gaps among the EPA stations. Moreover
that will largely increase the monitoring of air quality during
cloudy or/and nighttime periods.

Data availability. EPA data: https://aqs.epa.gov/api. ARM SGP
site: http://www.archive.arm.gov/discovery. Contact Siwei Li: si-
wei.li@howard.edu.
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