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Abstract. Using the National Oceanic and Atmospheric Ad-
ministration’s Gridpoint Statistical Interpolation data assim-
ilation system and the National Center for Atmospheric Re-
search’s Advanced Research Weather Research and Forecast-
ing (WRF-ARW) regional model, the impact of assimilat-
ing Advanced Technology Microwave Sounder (ATMS) and
Cross-track Infrared Sounder (CrIS) satellite data on precip-
itation prediction over the Tibetan Plateau in July 2015 was
evaluated. Four experiments were designed: a control exper-
iment and three data assimilation experiments with differ-
ent data sets injected: conventional data only, a combination
of conventional and ATMS satellite data, and a combination
of conventional and CrIS satellite data. The results showed
that the monthly mean of precipitation is shifted northward
in the simulations and showed an orographic bias described
as an overestimation upwind of the mountains and an un-
derestimation in the south of the rain belt. The rain shadow
mainly influenced prediction of the quantity of precipitation,
although the main rainfall pattern was well simulated. For
the first 24 h and last 24 h of accumulated daily precipitation,
the model generally overestimated the amount of precipita-
tion, but it was underestimated in the heavy-rainfall periods
of 3–5, 13–16, and 22–25 July. The observed water vapor
conveyance from the southeastern Tibetan Plateau was larger
than in the model simulations, which induced inaccuracies in
the forecast of heavy rain on 3–5 July. The data assimilation

experiments, particularly the ATMS assimilation, were closer
to the observations for the heavy-rainfall process than the
control. Overall, based on the experiments in July 2015, the
satellite data assimilation improved to some extent the pre-
diction of the precipitation pattern over the Tibetan Plateau,
although the simulation of the rain belt without data assimi-
lation shows the regional shifting.

1 Introduction

The Tibetan Plateau (TP) is the highest and largest plateau
in the world. It is located on the central Eurasian continent,
stands in the middle troposphere, and covers an area of ap-
proximately 2.5 millionkm2. The TP has a variety of topo-
graphical features of a large terrain gradient, and its steep
mountains are aligned with an east-to-west arrangement. The
dramatic modification caused by the rugged terrain influ-
ences the local atmospheric circulation and causes strong lo-
cal convection to arise, easily inducing severe weather such
as heavy rainfall, windstorms, and hailstorms (Massacand et
al., 1998; Gao et al., 2015). Precipitation is one of the key
variables for understanding the hydrological cycle on the TP
and has profound effects on the regional and global circula-
tion that affect millions of people in the adjacent areas (Ye
and Gao, 1979; Chen et al., 1985; Chambon et al., 2014).
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Therefore, making accurate and long-lead weather forecasts
at high temporal and spatial resolution for the TP not only
has scientific significance but also addresses the urgent need
for disaster prevention. However, due to the variable weather
conditions and complex terrain orography, the TP remains
a sparsely populated region with few conventional observa-
tion data sources, and the limited amount of available me-
teorological data leads to great uncertainties in the regional
weather forecasts. The continuous development of numerical
weather prediction (NWP) models, such as the National Cen-
ter for Atmospheric Research (NCAR)’s Advanced Research
Weather and Research Forecasting (WRF-ARW) model, of-
fers opportunities to improve regional weather forecasts in
data-sparse regions. NWP models can be initialized with
and laterally assimilate observation data, which is beneficial
for better describing atmospheric conditions, thus keeping
model results close to observations (Maussion et al., 2011).

Satellite radiance data are one of the most important ob-
servation data sources and can be directly assimilated into
data assimilation (DA) models. Compared with conventional
observation data, geostationary satellite data have continu-
ous spatial and temporal coverage, and polar-orbiting satel-
lites circle the Earth twice a day to provide global observa-
tions of multiple meteorological variables, such as temper-
ature, pressure, and moisture. Moreover, many studies have
suggested that the assimilation of satellite radiance data can
substantially improve weather forecasts (Eyre, 1992; Derber
and Wu, 1998; Xu et al., 2009). For longer-range prediction,
satellite data are even more crucial than conventional obser-
vations (Zapotocny et al., 2008). Past studies have also indi-
cated that the effect of assimilation of both observations and
satellite products is better than only satellite data assimila-
tion (Liu et al., 2013). However, the performance of satellite
radiance assimilation in limited-area modeling systems using
variational DA method is still controversial (Zou et al., 2013;
Newman et al., 2015). Schwartz et al. (2012) were the first
to assimilate microwave radiances in a region lacking ob-
servation stations using the ensemble Kalman filter (EnKF),
and the results showed that assimilating microwave radi-
ances overall produced better forecasts of Typhoon Morakot
(2009). The negative influence has also appeared, and it is
mainly contributed to various of factors such as the influ-
ence of lateral boundary conditions within the regional do-
main (Warner et al., 1997) and non-uniform satellite cover-
age (Kazumori et al., 2014).

The Advanced Technology Microwave Sounder (ATMS)
and Cross-track Infrared Sounder (CrIS) are two instru-
ments with high resolution on board the Suomi National
Polar-orbiting Partnership spacecraft, a polar-orbiting satel-
lite launched in 2011 with the aim to provide real-time sen-
sor data for critical weather and climate measurements. The
ATMS, a cross-track microwave scanner with 22 channels,
combines most of the channels of the preceding Advanced
Microwave Sounding Unit (AMSU-A) and Microwave Hu-
midity Sounder (MHS) to provide sounding profiles of at-

mospheric moisture and temperature. The CrIS is a Fourier
transform spectrometer with 1305 spectral channels inher-
ited from the High-Resolution Infrared Radiation Sounder
(HIRS) to produce temperature, pressure, and moisture pro-
files. A previous study assimilated ATMS data in the Euro-
pean Centre for Medium-Range Weather Forecasts system,
and the results showed that the instrument had better per-
formance than AMSU-A and MHS in the longer range over
the Northern Hemisphere (Bormann et al., 2013). Neverthe-
less, satellite data assimilation into NWP models over the TP
presents special challenges, because the limited model ca-
pability for assimilating radiance data over complex terrain
with heterogeneous characteristics is still not clearly recog-
nized. Furthermore, whether the new generation of satellite
observations, such as ATMS and CrIS, can compensate for
the shortage of data over the TP and effectively enhance the
accuracy of forecasts remains unknown.

In this paper, we make an assessment of the impact of as-
similating ATMS and CrIS radiance data for East Asia on
precipitation prediction over the TP and compare the effects
of different satellite data sets injected.

2 Data and models

2.1 Data

2.1.1 Data used for the assimilation

The conventional data, which are from the Global
Data Assimilation System (GDAS)-prepared BUFR files
(gdas1.tCCz.prepbufr.nr), are composed of a global set of
surface and upper-air reports operationally collected by the
National Centers for Environmental Prediction (NCEP). It
includes radiosondes, surface ship and buoy observations,
surface observations over land, pilot balloon (pibal) winds
and aircraft reports from the Global Telecommunications
System (GTS), profiler and US radar-derived winds, Spe-
cial Sensor Microwave Imager (SSM/I) oceanic winds and
atmospheric total column water (TCW) retrievals, and satel-
lite wind data from the National Environmental Satellite
Data and Information Service (NESDIS). The reports can in-
clude pressure, geopotential height, temperature, dew point
temperature, and wind direction and speed (National Cen-
ters for Environmental Prediction/National Weather Ser-
vice/NOAA/US Department of Commerce, 2008).

2.1.2 Data used for the evaluation/verification

Observational precipitation data from the National Meteo-
rological Information Center (NMIC) of the China Meteo-
rological Administration (CMA) was used as the truth data
for comparison with the model results. The 0.1◦×0.1◦ high-
resolution gridded hourly China Merged Precipitation Anal-
ysis (CMPA) data gauge, which combines the CMA’s rain
gauge hourly data provided by more than 30 000 automatic
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weather stations with the National Oceanic and Atmospheric
Administration (NOAA) Climate Prediction Center’s Mor-
phing (CMORPH) precipitation product (Xie and Xiong,
2011; Pan et al., 2012; Shen et al., 2014), was used for veri-
fication to evaluate the model simulation results. Consider-
ing the topographically complex terrain characterizing the
TP, satellite precipitation data with very high spatial reso-
lution are especially needed. The CMORPH product makes
use of the precipitation estimate techniques that have been
derived from low-orbit satellite microwave observations and
geostationary satellite infrared (IR) data with spatial prop-
agation features. Several studies (Gao and Liu, 2013; Guo
et al., 2014; Tong et al., 2014; Zhang et al., 2015) have com-
pared the CMORPH data with satellite precipitation data sets
in the TP area with the conclusion that CMORPH is one
of the most suitable products to use in studying precipita-
tion over the TP. During the period from May to October
2004–2009, Tropical Rainfall Measuring Mission (TRMM)
Multisatellite Precipitation Analysis real-time research 3B42
version 6 (TMPA) and CMORPH show better performance
with higher correlation and lower root mean square error
(RMSE) than the Precipitation Estimation from Remotely
Sensed Information using Artificial Neural Network (PER-
SIANN) and TMPA’s real time version (TMPART) over the
TP (Gao and Liu, 2013). Of the several merged satellite pre-
cipitation products (i.e., TMPA; PERSIANN; and the Global
Satellite Mapping of Precipitation, GSMaP), the CMORPH
product with the highest resolution (8 km) can capture the
afternoon-to-evening precipitation pattern (Guo et al., 2014).
Tong et al. (2014) has also compared the performance of
four widely used high-resolution satellite precipitation esti-
mates against gauge observations (the CMA data) over the
TP during January 2006–December 2012. It is worth notic-
ing that TMPA and CMORPH data had better performance in
depicting precipitation timing and amount than the TMPART
and PERSIANN at both the plateau and basin scale. Zhang
et al. (2015) has also come to the conclusion that the high-
resolution CMORPH data can depict finer regional details,
such as a less coherent phase pattern over the TP, and better
capture the features of the diurnal cycle of summer precipi-
tation than TRMM 3B42.

NCEP Final Analysis (FNL) data were used through dy-
namic downscaling as observed moisture to illustrate the
transportation of water vapor in East Asia.

2.1.3 Radiance data quality control

As the quality of the observational data is easily affected by
the observation instruments, station positions, or human fac-
tors, carrying out quality control (QC) before data applica-
tion is necessary (Hubbard and You, 2005). Before data as-
similation, a multiple-step QC procedure was applied to the
satellite radiance data in the Gridpoint Statistical Interpo-
lation (GSI) system and preprocessed by NOAA’s National
Environmental Satellite Data and Information Service (NES-

Table 1. The channels for ATMS and CrIS data that have been se-
lected for the data assimilation procedure.

Sensor Channels

ATMS 1–14, 16–22
CrIS 37, 49, 51, 53, 59, 61, 63, 65, 67, 69, 71, 73, 75,

77, 79, 80, 81, 83, 85, 87, 89, 93, 95, 96, 99, 101,
102, 104, 106, 107, 116, 120, 123, 124, 125,
126, 130, 132, 133, 136, 137, 138, 142, 143,
144, 145, 147, 148, 150, 151, 153, 154, 155,
157–168, 170, 171, 173, 175, 198, 211, 224,
279, 342, 392, 404, 427, 464, 482, 501, 529

DIS). Besides data thinning, it can be summarized in sev-
eral QC categories in GSI to either discard the questionable
observations or inflate the low-confidence observations. The
detailed quality control can be found in section 8.3 (“Ra-
diance observation quality control”) in the GSI Advanced
User’s Guide version 3.5 by Developmental Testbed Cen-
ter (DTC) (2016). The observational number of ATMS data
ranging from 53 042 to 68 618 in contrast to the number of
CrIS data ranging from 2 694 048 to 3 454 542 was read in the
DA system. After the data had passed rigorous quality assess-
ment and quality control processes, the results showed that
about 23.2–26.4, 1.3, and 1.6 % of “good” observations re-
lated to ATMS- and CrIS-read data were separately retained
after quality control (Fig. 2). This difference can be explained
as follows: CrIS has 1305 channels of satellite radiance data,
but the number of assimilated channels is significantly re-
duced (Table 1), the selection of redundant channel leads to
some part of observation radiance data coming from a simi-
lar altitude, and it contains large amount of repeated informa-
tion. Therefore, a larger percentage of CrIS satellite radiance
data than ATMS is discarded through QC steps. Figure 1b
shows the distribution of the conventional data at 06:00 UTC
on 1 July 2015, where observational data are rare in the TP.
Figure 1c and d display the distribution of satellite data after
quality control, where there is almost complete spatial cov-
erage in East Asia, including the TP.
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Figure 1. (a) Simulation domains and topography. Resolutions are at 12 and 4 km for the outer (coarse grid, D01) and inner (nested grid,
D02) boxes, respectively. The shading indicates the terrain elevation (unit: m). (b–d) Distribution of (b) conventional data observations,
(c) scan coverage of ATMS data after data assimilation, and (d) scan coverage of CrIS data after data assimilation at 06:00 UTC on 1 July
2015.

Figure 2. Blue bars indicate the total amount of radiance read in
the DA system. Red bars present the number of kept radiance after
first step of quality control. The percentage used after final quality
control is shown as black curves. The right y axis indicates the ratio
of used amount to read amount, and the ratio is expressed as percent.
(a) is for ATMS, and (b) is for CrIS data .

2.2 Models

2.2.1 WRF-ARW regional model

NCAR’s WRF-ARW regional model associated with the GSI
data assimilation system was used in this study. WRF-ARW
is a fully compressible nonhydrostatic, primitive-equation,

mesoscale meteorological model. As shown in Fig. 1a, the
model domains are two-way nested with 12 km (580× 422)
and 4 km (817× 574) horizontal spacing. There are 51 ver-
tical levels with a model top of 10 hPa. Figure 1 shows that
D01 is set to cover most of East Asia, and the subdomain
(D02) inside corresponds to the Tibetan Plateau, which has a
mountain–valley structure.

The physical parameterizations chosen for the forecast
model in this study followed previous studies of the area (He
et al., 2012; Jianyu Xu et al., 2012; Zhu et al., 2014). These
included the WRF-ARW Single-Moment 6-class (WSM-6)
microphysics scheme, the Kain–Fritsh (KF) cumulus param-
eterization, the Rapid Radiative Transfer Model (RRTMG)
longwave and shortwave radiation, the Yonsei University
scheme (YSU), and the Noah Land Surface Model for the
planetary boundary layer scheme.

The NCEP Global Forecast System (GFS) forecast data,
which has a horizontal resolution of 0.5◦× 0.5◦ with a 6 h
interval, were used as the boundary and initial conditions for
the control (CTRL) experiment, while the background fields
of DA experiments take advantage of the forecast product at
06:00 UTC made by CTRL. The GFS data are publicly avail-
able at https://www.ncdc.noaa.gov/data-access/model-data/
model-datasets/global-forcast-system-gfs.

2.2.2 The GSI 3D-Var system and Community
Radiative Transfer Model

In this study, we chose to use the GSI 3D-Var system, which
is a data assimilation system that was initially developed as
the next-generation analysis system based on the operational
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Spectral Statistical Interpolation (SSI) at NCEP (Derber and
Wu, 1998).

Instead of the spectral definition of background errors in
the SSI, GSI is constructed in physical space, where the back-
ground errors can be represented by a non-homogeneous and
anisotropic grid point and used for both global and regional
forecasts. GSI utilizes recursive filters and is designed to be a
flexible system that is efficient on available parallel comput-
ing platforms (Wu et al., 2002; Purser et al., 2003a, b). The
GSI 3D-Var system provides an optimal analysis through two
steps of outer iterative minimization of a prescribed function
as follows:

J =
1
2
(xa− xb)

TB−1 (xa− xb)

+
1
2
(H (x)−Oo)

TO−1 (H (x)−Oo) , (1)

where xa is the analysis state and can be calculated by mini-
mizing the penalty function J ; xb is the first guess that comes
from the GFS product in this article representing background
model state; Oo are the observations including conventional
observation, satellite radiance data, radar data, etc.; andH(x)
is the transformation operator from the analysis variable to
the form of the Oo error. By means of the two sources of
a priori data – the first guess xb and the observationsOo – the
solution for the penalty function which indicates the a pos-
teriori maximum-likelihood estimate of the true atmospheric
state can be found. B andO are the error estimates of xb (co-
variance matrix of the background error) andOo (covariance
matrix of the observation error), respectively, which are used
to weight the analysis fit to individual observations (Wu et
al., 2002).

The development of fast radiative transfer models has al-
lowed for the direct assimilation of satellite infrared and mi-
crowave radiances in NWP systems (Saunders et al., 1999;
Gauthier et al., 2007; Zou et al., 2011). The Community
Radiative Transfer Model (CRTM) developed by the United
States Joint Center for Satellite Data Assimilation (JCSDA)
has been incorporated into the NCEP GSI system to rapidly
calculate satellite radiances (Han et al., 2006; Weng, 2009).
After ATMS and CrIS data are read into the GSI, simu-
lated brightness temperature is calculated via CRTM 2.1.3
in this study. It is worth noticing that the CrIS scans a
2200 km swath width (±50◦), with 30 Earth-scene views.
Each field consists of nine fields of view, arrayed as a 3×3 ar-
ray of 14 km diameter spots (nadir spatial resolution) (https:
//jointmission.gsfc.nasa.gov/cris.html). The ATMS scans a
2300 km swath width with 96 Earth-scene views. Channels
1–2 of the spatial resolution of ATMS at nadir are 75 km,
channels 3–6 are 32 km, and channels 17–22 are 16 km
(Dong et al., 2014).

Table 2. Rain contingency table used in the verification studies. As
a threshold, 6 mmday−1 is chosen to separate rain from no-rain
events.

Forecast Observed

Yes No

Yes Hits False alarms
No Misses Correct rejections

3 Method and experimental design

3.1 Method

A basic two-by-two contingency table (Table 2) was gener-
ated to calculate the bias score (BIAS), fraction skill score
(FSS), equitable threat score (ETS), probability of false de-
tection (POFD), probability of detection (POD), and false
alarm ratio (FAR).

The BIAS (range: 0–∞; perfect score: 1), which measures
the ratio of the frequency of forecast events to the frequency
of observed events, is defined as

BIAS=
hits+ false alarms

hits+misses
. (2)

The FSS (range: 0–1; perfect score: 1), introduced by Roberts
and Lean (2008), is a neighborhood verification method. The
FSS is defined as

FSS= 1−
FBS

FBSref
. (3)

Fractions Brier score (FBS) is presented as

FBS=
1
N

∑N

i=1
[Fo−Ff]2, (4)

where N is the number of all grid points in the domain.
Fo and Ff are the observation and forecast fractions of the
sliding window at each grid point. The sliding window in
this study is 100 km (25 grid points). The reference fractions
Brier score (FBSref) represent the largest possible FBS and is
given as

FBSref =
1
N

[∑N

i=1
F 2

o +
∑N

i=1
F 2

f

]
. (5)

The ETS (range: −1/3 to 1; perfect score: 1) computes the
fraction of observed events that were correctly predicted:

ETS=
hits−R

hits+ false alarms+misses−R
, (6)

where R is the random forecast coefficient, given by

R =
(hits+ false alarms)(hits+misses)

(hits+ false alarms+misses+ correct rejections)
. (7)
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The POFD (range: 0–1; perfect score: 0) measures discrimi-
nation:

POFD=
false alarms

false alarms+ correct rejections
. (8)

Similar to the POFD, the POD (range: 0–1; perfect score: 1)
shows the hits out of total observed events:

POD=
hits

hits+misses
. (9)

The FAR (range: 0–1; perfect score: 0) indicates the fraction
of the predicted events that did not occur:

FAR=
false alarms

hits+ false alarms
. (10)

To compare the model simulation data with the observation
data, the 4 km model grid was interpolated to observation
data with a 0.1◦× 0.1◦ grid based on the linear interpolation
method.

3.2 Experimental design

Four 1-month-long experiments were conducted (Fig. 3). The
CTRL experiment was carried out first with an initial time
of 00:00 UTC and made 54 h forecasts. The data assimila-
tion was applied on the D01 region of the output from CTRL
at 06:00 UTC. The DA experiments made use of the assimi-
lated D01 and the D02 from the CTRL at 06:00 UTC as the
initial condition and made a 48 h forecast for each day. Three
DA experiments were performed with a time window of 3 h:
(1) a conventional run (CONV) assimilating the conventional
observation data only; (2) an ATMS radiance run (ATMS)
adding the ATMS satellite radiance data to the CONV; and
(3) a CrIS radiance run (CRIS) adding the CrIS satellite ra-
diance data to the CONV.

The accumulated precipitation integrated from 6 to 30 h
and 30 to 54 h is defined as the first 24 h accumulated (F24H)
precipitation and last 24 h accumulated (L24H) precipitation,
respectively.

4 Results

4.1 Impact of DA on the spatial fields of precipitation
forecast

Figure 4 shows the spatial pattern of the monthly mean of
24 h accumulated precipitation in July 2015. Monthly mean
precipitation exhibits a decreasing south-to-north gradient.
The predicted precipitation in the central and northern parts
of the TP, Qaidam Basin (90–99◦ E, 35–39◦ N), Tarim Basin
(75–90◦ E, 37–42◦ N), and Junggar Basin (80–90◦ E, 45–
48◦ N) was too low to be measured (Fig. 4a, c). It was found
that monthly averaged F24H precipitation ranged from 6.0
to 30.4 mmday−1, while the monthly averaged L24H precip-
itation ranged from 6.0 to 29.5 mmday−1. The rain shadow

Figure 3. Top panel shows the schematic of data assimilation con-
figuration with 3D-Var. Bottom panel presents the experiment de-
sign. CTRL: control experiment without data assimilation for which
the initial time is 00:00 UTC from 1 to 31 July; CONV: data assim-
ilation with conventional data only; ATMS: data assimilation with
conventional and ATMS data; CRIS: data assimilation with conven-
tional and CrIS data. CONV, ATMS, and CRIS experiments all start
at 06:00 UTC from 1 to 31 July.

along the Himalayas (73–95◦ E, 27–35◦ N) was found in the
spatial distribution of precipitation. Because Fig. 4a is for
F24H, the first day calculated in Fig. 4a was during the period
of 06:00 UTC on 1 July to 06:00 UTC on 2 July and finally
ended in the period of 06:00 UTC on 29 July to 06:00 UTC
on 30 July. Therefore the different values in Fig. 4a and c
can be explained as follows: Fig. 4c shows the L24H ob-
served monthly mean accumulated precipitation, the com-
puting process of which is different on two days from that
of Fig. 4a. The CTRL (Fig. 4b, d) mostly simulated the
monthly mean rain belt distributed along the southern and
southwestern margin of the plateau, between the Himalayas
in the west and the Hengduan Mountains (95–103◦ E, 24–
32◦ N) in the east. The difference between the model simula-
tions and observations (Fig. 5) indicated that the CTRL sim-
ulation tends to overestimate precipitation, especially in the
southern and southwestern margin along the rain belt where
the altitude changes from 500 to 3000 m. The results sug-
gested that the WRF-ARW model has limitations in simulat-
ing the precipitation in mountainous areas, which is similar
to the conclusion of previous studies (He et al., 2012; Jianyu
Xu et al., 2012). Furthermore, we found that the precipita-
tion is overestimated (colored red) upwind of the mountains
along the southwestern margin. In contrast, the precipitation
is underestimated in the south of the rain belt, leading to a
north–south dipole structure. This pattern results in a north-
ward migration of the rain belt in the simulations. The three
DA experiments indicated that the assimilation of satellite
radiance data cannot calibrate the rain shadow effect, and all
experiments showed consistently gross overestimation pat-
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Figure 4. Daily precipitation averaged (unit: mm) for the month of July 2015. (a, b) are F24H forecast, and (c, d) are L24H forecast. Black
contours are altitude (unit: m).

Figure 5. Difference value distribution of monthly mean precipitation (unit: mm) during July for data assimilation minus observation exper-
iments. (a, e) CTRL minus OBS; (b, f) CONV minus OBS; (c, g) ATMS minus OBS; (d, h) CRIS minus OBS for (a–d) F24Hforecast and
(e–h) L24Hforecast. Black contours are altitude (unit: m).

terns, varying from 8 to 10 mm about the monthly mean daily
precipitation. The overall bias statistic in D02 is 0.97 mm
(0.86 mm), 0.52 mm (0.70 mm), 1.08 mm (0.97 mm), and
0.98 mm (0.76 mm) for CTRL, CONV, ATMS, and CRIS, re-
spectively. The values in brackets refer to L24h. This may be
attributed to the physical package of WRF-ARW having an
inadequate description of snow cover over the plateau sur-
face, making the error of margin more prominent (Marteau
et al., 2015).

Figure 6 shows the spatial patterns according to the contin-
gency table (Table 2) and the scatterplots, in which monthly

mean 24 h rainfall over the 6 mmday−1 threshold is defined
as an “event”. Rainfall events occur over most of the TP area,
including the northern Gangetic Plain (80–90◦ E, 24–28◦ N)
where the elevation is lower than 3000 m, and can be well
predicted with ∼ 8–10 % hits (A) and ∼ 76–79 % correct re-
jections (D) in the majority of the region. The false alarms
(B) were spread mainly in the east of the TP, where the Bayan
Har (95◦ E, 35◦ N) and Hengduan mountains are located, ac-
counting for∼ 7–10 %, while the misses (C) were distributed
in the western plain outside of the TP and accounted for∼ 5–
6 %. A dipole pattern is also evident in the distribution of
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Figure 6. Spatial patterns of (a–d) the contingency table and (e–h) the scatterplots (monthly mean 24 h rainfall over 6 mmday−1 threshold
is defined as an “event”). A, B, C and D indicate the hits, false alarms, misses, and correct rejections in Table 2, respectively. The solid grey
lines indicate the regression line of A. Black contours are altitude (unit: m).

the hits and misses, similar to Fig. 5. Among the four linear
regression lines (bold grey lines), ATMS looks a little bet-
ter than the other three experiments but has more extreme-
precipitation event forecasts than the others, followed by
the CTRL and CRIS, while CONV has the lowest simula-
tion precision. The high percentage (∼ 84–89 %) of hits and
correct-rejection events indicates that rainfall events are well
predicted. Furthermore, as the false alarms were primarily
located in the east of the TP in contrast to the misses in the
west, this special pattern can help improve WRF-ARW fore-
casts in the future, which means that the WRF-ARW model
has promising potential in the TP area.

Figure 7 shows the monthly and domain average validation
statistics in the TP. The differences between the four exper-
iments for the F24H forecasts are larger than for the L24H
forecasts. The ETS, FSS, and POD values all decline as the
threshold increases; a higher value for these three skill scores
indicates a better performance of the experiments. ATMS
showed the highest FSS (Fig. 7b), ETS (Fig. 7c), and POD
(Fig. 7d). CONV performed similar to the CTRL in ETS
and FSS, and CRIS performed the worst. However, accord-
ing to the BIAS, CONV is mostly approximately 1, which
indicates the best overall relative frequencies compared with
the other experiments. Through the 1–5 mm threshold, CRIS
performs the largest overforecast (BIAS> 1), but it evolves
to have a better performance than ATMS and CTRL through
the 5–10 mm threshold. FAR and POFD results indicate that
CONV performs best (0 is perfect), followed by ATMS and
then CTRL and CRIS. However, POD results show that
ATMS performs best (1 is perfect) and CONV is worst. The
different statistics of forecast verification may depend on the
purpose of the verification, and the results we evaluated by

different methods can help answer the different questions of
interest. Overall, the results reflect that DA has a positive ef-
fect on reproducing the monthly mean daily precipitation in
the TP compared with CTRL to varying degrees.

4.2 Impact of DA on the temporal distribution of
precipitation forecast

Another measure of performance is to examine how the daily
precipitation is temporally distributed (Fig. 8). It can be seen
in the time series of Fig. 8a that there are four observed
heavy-rainfall events (3.0 mmday−1) during the periods of
3–5, 8–10, 13–16, and 22–25 July (Fig. 8a). In general, the
F24H amount of precipitation is overestimated in all three
DA experiments by 20, 40, and 37 % for CONV, ATMS, and
CRIS, respectively. In contrast, of the four heavy-rainfall pe-
riods, three events – including 3–5, 13–16, and 22–25 July
– are underestimated (grey shadings). The L24H forecasts
(Fig. 8b) showed similar behavior, except that there were
much smaller differences among the three DA experiments
than in the F24H forecasts. In the F24H forecasts a 1-day
time lag effect appears as compared with L24H, because
the F24H forecasts calculate the cumulative precipitation of
the first 6–30 h, while the L24H forecasts represent the 30–
54 h cumulative precipitation forecasts. When all the over-
estimation events are considered, the CONV (blue line) ex-
periment captured the accumulated amount of precipitation
much more accurately than the other DA experiments, and
the ATMS (red line) performed the worst. It is usual to define
the daily precipitation amounts 25.0–49.9 mm and >50 mm
as heavy rain and thunderstorm, respectively. However, due
to the historical data sets of the TP indicating that the days of
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Figure 7. Monthly and domain average validation statistics for (a–f) F24H forecast and (g–l) L24H forecast. (a, g) are bias score; (b, h) are
fraction skill score; (c, i) are equitable threat score; (d, j) are probability of detection; (e, k) are probability of false detection; (f, l) are false
alarm ratio.

Figure 8. Time series of daily precipitation distribution for
(a) F24H forecast and (b)L24H forecast. The black, grey, blue, red,
and green lines indicate for observation, CTRL, CONV, ATMS, and
CRIS, respectively. The unit is mm. The grey shadings indicate the
underestimated events.

precipitation exceeding 50 mm are few (only accounting for
0.3 % of rain days) (Wei et al., 2003) and referring to previ-
ous studies (Wang et al., 2011; Zhao et al., 2015), the heavy-
rainfall threshold was defined as above 20 mm for the 24 h
precipitation in this study. As mentioned above, the 24 h pre-
cipitation maxima surpassing 20 mm are spread in the main
precipitation region, showing that the prominent geograph-
ical dependence of rainfall coincides with the threshold of
heavy rainfall defined for TP areas.

Although previous studies and our results show an obvious
trend of overestimating rainfall in the TP, there appears to
be underestimation during heavy-rainfall events (Fig. 8). To
determine the forecast capabilities of the model in the heavy-
rainfall periods, we focused on the heavy-rainfall period of
3–5 July.

Figure 9 shows the rainfall intensities (bars) calculated
for every 3 h amount of precipitation. The cumulative pre-
cipitation (curves) is defined as the precipitation accumu-
lated during each 3 h period starting at 06:00 UTC during
3–6 July. From the perspective of observations, this rain-
fall event can be divided into three periods, of which 3 July
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Figure 9. Rainfall intensities (bars) calculated for the amount of precipitation during each 3 h period. The cumulative precipitation (curves)
is defined as the precipitation accumulated during each 3 h period starting at 06:00 UTC during 3–5 July. The unit is mm.

is ahead of the heavy rainfall with less than 0.45 mm per
3 h, followed by the rainfall around 03:00 UTC on 4 July
to 03:00 UTC on 5 July, with the first peak at 21:00 UTC
on 4 July of more than 0.65 mm per 3 h. The third phase
started at 03:00 UTC on 5 July and ended at 00:00 UTC on
6 July, with a second rainfall pulse around 21:00 UTC on
5 July exceeding 0.60 mm per 3 h and then weakening. It
is evident that this rainfall event had a significant diurnal
harmonic, and the maximum precipitation always occurred
at 18:00–21:00 UTC (00:00–03:00 LST). This diurnal vari-
ation was remarkable, especially when the heavy rainfall
occurred, which was equivalent to evening local solar time
(LST). However, the simulated maximum always occurred
at 06:00–09:00 UTC (12:00–15:00 LST), earlier than the ob-
servations, and can probably be attributed to the limit of com-
plicated topography. In this case, simulated rainfall intensity
was much lower than the observations during 09:00 UTC on
4 July to 00:00 UTC on 5 July and 12:00 UTC on 5 July to
21:00 UTC on 5 July when the rainfall occurred. That is, the
model cannot promptly quantitatively predict the sudden oc-
currence of this event. Moreover, the cumulative curves of
the model show an overestimation on 3 and 5 July compared
with observations; in particular, the cumulative curves of the
CTRL are far away from the measured values due to an inac-
curate initial field. It can be concluded that data from the DA
experiments are closer to the observations during the heavy-
rainfall period than data from the CTRL experiment.

4.3 Impact of DA on circulation and water vapor
supply

According to the abovementioned analysis, it is evident that
DA improves forecasts during the heavy-rainfall period, but
the results are not the same when different data sets are in-
jected. As is well known, adequate water vapor transport is
one of the preconditions for precipitation formation. In this

section, we discuss the water vapor supply in the 3–5 July
case study, with the aim of determining the reason for the dif-
ferent influences exerted by different experimental schemes.
Figure 10 shows the F24H forecasts of precipitation quantity
(shadings) and water vapor flux (vectors) during 3–5 July.
Zonal components of wind velocity (u), meridional compo-
nent of wind velocity (v), specific humidity (q), and covari-
ance, which are needed for flux computations, are provided
at eight standard pressure levels (1000, 925, 850, 700, 600,
500, 400, and 300 hPa). The water vapor flux is integrated
from the surface to the top of atmosphere (unit: kgm−1 s−1)
and averaged in time. The atmospheric water vapor flux can
be written as

Q=Qui+Qvj . (11)

The zonal and meridional component of vapor flux is de-
scribed by

Qu =
1
g

∫ Ps

p

qudp (12)

and

Qv =
1
g

∫ Ps

p

qvdp, (13)

where Ps is the surface level, p is the top of atmosphere
(10 hPa), and g is the gravitational constant (9.8 ms−2).

The water vapor flux divergence (D, unit: kgm−2 s−1) is
given by

D =
∂Qu

a cosϕ∂σ
+
∂Qv

a∂ϕ
, (14)

where a is the radius of the model earth taken as 6371.2 km,
ϕ is latitude in radians, and σ is longitude in radians.
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Figure 10. (a–f) F24H forecasts of precipitation (shadings) and water vapor flux (vectors) during 3–5 July for (a–c) OBS and (d–f) CTRL.
(g–i) Differences in water vapor flux (vectors) and water vapor divergence (shadings) between CTRL and OBS. The unit of precipitation is
mm. The units for water vapor flux and divergence are kg (ms)−1 and kg (m2 s)−1, respectively.

According to observations, warm and humid water va-
por is transferred from the Bay of Bengal eastward by the
southwest monsoon. The TP blocks the westward transport
of humid and warm air, and this rainfall event starts develop-
ing in the southeast of the TP on 3 July; the rain belt runs
southeast to southwest and develops along the Himalayas
on 4–5 July. When the observations (Fig. 10a–c) are com-
pared with model results (Fig. 10d–f), the simulated precip-
itation is considerably larger than the observed precipitation
on 3 July before the heavy rainfall occurs, but as time goes
on this condition reverses. For the difference value distribu-
tion (Fig. 10g–i) of the CTRL minus observations, the main
water vapor flux divergence differences (shadings) are neg-
ative in the rainy region on 3 July, which indicates that the
water vapor convergence is stronger than observed, inducing
the overestimation. However, when the rainfall event occurs
on 4–5 July, this condition is opposite. The water vapor dif-
ferences (vectors) also suggest that the observed water vapor
conveyance from the southeast of the TP is larger than the
model simulation, which induces inaccuracies in the forecast
of the heavy rain. Therefore, analysis of moisture is useful
for improving the heavy-rainfall forecasting skill.

To further discuss the effect of DA on this rainfall event,
the differences between the simulated F24H precipitation
and the observed distribution and the FSS skill scores

(Fig. 11) were considered. From the spatial distribution, all
the experiments (Fig. 11a, d, g, j) overestimated the precipi-
tation quantity, especially the CTRL, before the heavy rain-
fall, and the FSS skill scores all ranged from 0.46 to 0.49
with little differences (bottom left in Fig. 11m). When the
heavy-rainfall event occurred on 4 July, the observed rain
belt moved southwest (Fig. 11b, e, h, k), while the simulated
rain belt was motionless, leading to an underestimation in the
southwest. The FSS scores for ATMS, CONV, and CTRL
ranged from 0.42 to 0.48 (middle in Fig. 11m), but CRIS
only scored 0.36. As the water vapor conveyance directly
contributes to the westward movement of the rain belt and
the intensity of this precipitation event on 5 July, the precipi-
tation experiments all underestimated the amount of precipi-
tation, and CRIS performed particularly badly (Fig. 10c, f, i).
However, ATMS had a substantially high FSS scores (0.47)
(right in Fig. 11m), followed by CRIS (0.45) and CONV
(0.43), while CTRL only scored 0.35. This result indicates
that DA can indeed improve the heavy-rainfall forecast. From
the above analysis of Figs. 9 and 11, it is clear that, before the
heavy rainfall, DA can improve the simulation of precipita-
tion spatially. As time passes and the heavy rainfall develops,
DA, especially the ATMS assimilation, can enhance model
prediction abilities both spatially and temporally in compar-
ison with the CTRL experiment.
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Figure 11. (a–l) are differences between the simulated F24H precipitation and the observed distribution, and (m) is the FSS skill scores with
a 8 mmday−1 threshold during 3–5 July. The unit of differences is mm.

5 Summary and discussion

In this study, we used diagnostic methods to analyze the im-
pact of DA on the monthly precipitation distribution over the
TP and then focused on one heavy-rainfall case study that
occurred from 3 to 5 July 2015. The DA and NWP were
performed for July 2015 to make the weather forecasts. The
spatial distribution of monthly mean precipitation showed an
evident rain shadow effect along the Himalayas and that the
precipitation decreased northward in the TP. However, the
simulated precipitation belt was shifted northward compared

with the observed rain belt and showed an orographic bias
described as an overestimation upwind of the mountains and
an underestimation in the south of the rain belt. Assimilation
of satellite radiance also cannot calibrate the rain shadow ef-
fect, and all experiments showed consistently gross overesti-
mation patterns. Furthermore, it seems that the rain shadow
mainly influences prediction of the quantity of precipitation,
but the main rainfall pattern can be well predicted. The pat-
tern, in which false alarms are primarily predicted in the east
of the TP and the misses in the west, indicates that the WRF-
ARW model has promising potential to improve weather
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forecast ability. The DA validation statistics also suggest that
DA has a positive effect on monthly mean precipitation pre-
diction in the TP compared with the CTRL to varying de-
grees. For the time series of monthly precipitation, F24H and
L24H precipitation chiefly overestimate the amount of pre-
cipitation, which is in agreement with previous studies, but
the amount of 24 h precipitation in the three heavy-rainfall
periods of 3–5, 13–16, and 22–25 July is underestimated.

To further study the underestimations in the heavy-rainfall
events and the performance of the WRF-ARW model and
GSI DA impact, we selected a case study from 3 to 5 July.
It is evident that this rainfall event had a significant diurnal
harmonic, and the maximum precipitation always occurred at
18:00–21:00 UTC (00:00–03:00 LST). This diurnal variation
was remarkable, especially when the heavy rainfall occurred.
Although the model cannot promptly quantitatively predict
the sudden occurrence of this rainfall event, the DA, espe-
cially the ATMS simulation, is closer to the observations for
the heavy-rainfall event than the CTRL experiments. Overall,
before the heavy rainfall, DA improved the precipitation pre-
diction spatially. As time passed and the rain belt moved and
rainfall developed, DA enhanced the model prediction abil-
ities both spatially and temporally. It should be mentioned
that the high altitude and complex topography of the TP and
its blocking effect on moisture transfer coming from Indian
Ocean by the southwest monsoon obviously influence the
rainfall forecast. As precipitation biases indicate some extent
of spatial coherence and temporal recurrence, it is possible to
provide an adapted correction method to enhance the model
precipitation prediction capabilities.

It is conspicuous that the ATMS showed better perfor-
mance than CTRL, CONV, and CRIS in the case study. Past
studies have indicated that the effect of assimilation of both
observations and satellite products is better than assimilation
of satellite data only, which may account for the ATMS per-
forming better than CONV. ATMS also performed better than
CRIS. As clouds are opaque in the infrared wave band of the
spectrum and largely transparent in the microwave band, mi-
crowave instruments are thought to perform better than in-
frared instruments on cloudy and rainy days, which may ex-
plain the better performance of ATMS than CRIS.

In this study, we investigated the monthly precipitation
distribution and a selected heavy-rainfall case in the TP using
the WRF-ARW mesoscale model and the GSI data assimila-
tion system. Moisture and dynamic conditions were analyzed
in the case study; however, thermal conditions are also one
of the direct factors leading to rainfall that need to be inves-
tigated in the future.

Furthermore, although the CrIS assimilated large amounts
of satellite radiance pixels, the general DA effect is relatively
worse than in the other three experiments. CrIS has 1305
spectral channels, some of which are redundant as they in-
clude many satellite radiance observations from similar al-
titudes and contain much repeated information, which may
lead to the poor DA impact. Priority should be given to se-

lecting physical sensitivity and the high-vertical-resolution
channels. Moreover, selecting channels is more difficult be-
cause of the high altitude, complicated dynamics, and ther-
mal conditions. Therefore, only by carrying out further re-
search on bias correction, quality control, and channel selec-
tion can satellite radiance data play an efficient role in TP
weather forecasting.

In addition, model resolution and parameterized scheme
selection are also key factors affecting forecast quality. In
this study, the parameterized schemes we chose have been
applied in previous studies of the TP. It would be worthwhile
to make a comparative analysis of different parameterized
schemes with higher model resolution in the future. Further-
more, it should be noted that, due to the heavy calculation
burden, this study made use of 3D-Var as the assimilation
method. Other advanced assimilation techniques – such as
4D-Var, hybrid, and EnKF – also need to be tested.

Data availability. ATMS and CrIS satellite radiance data are from
the GDAS and in the BUFR format. All of this can be down-
loaded from https://www.ncdc.noaa.gov/data-access/model-data/
model-datasets/global-data-assimilation-system-gdas. NCEP Final
Analysis data can be downloaded from https://rda.ucar.edu/datasets/
ds083.2/.
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