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Abstract. Estimates of snowfall rate as derived from radar
reflectivities alone are non-unique. Different combinations of
snowflake microphysical properties and particle fall speeds
can conspire to produce nearly identical snowfall rates for
given radar reflectivity signatures. Such ambiguities can re-
sult in retrieval uncertainties on the order of 100–200 % for
individual events. Here, we use observations of particle size
distribution (PSD), fall speed, and snowflake habit from the
Multi-Angle Snowflake Camera (MASC) to constrain esti-
mates of snowfall derived from Ka-band ARM zenith radar
(KAZR) measurements at the Atmospheric Radiation Mea-
surement (ARM) North Slope Alaska (NSA) Climate Re-
search Facility site at Barrow. MASC measurements of mi-
crophysical properties with uncertainties are introduced into
a modified form of the optimal-estimation CloudSat snow-
fall algorithm (2C-SNOW-PROFILE) via the a priori guess
and variance terms. Use of the MASC fall speed, MASC
PSD, and CloudSat snow particle model as base assumptions
resulted in retrieved total accumulations with a −18 % dif-
ference relative to nearby National Weather Service (NWS)
observations over five snow events. The average error was
36 % for the individual events. Use of different but reason-
able combinations of retrieval assumptions resulted in esti-
mated snowfall accumulations with differences ranging from
−64 to +122 % for the same storm events. Retrieved snow-
fall rates were particularly sensitive to assumed fall speed
and habit, suggesting that in situ measurements can help to
constrain key snowfall retrieval uncertainties. More accurate
knowledge of these properties dependent upon location and
meteorological conditions should help refine and improve
ground- and space-based radar estimates of snowfall.

1 Introduction

The high-latitude regions play a critical role in shaping cli-
mate response to anthropogenic forcing. Model predictions
suggest that it is these areas that are most susceptible to
change and will experience the most dramatic temperature
increase in response to the release of greenhouse gases into
the atmosphere (Manabe and Stouffer, 1980; Holland and
Bitz, 2003; Serreze and Francis, 2006). Observed changes in
the Arctic over the late 20th century and early 21st century
have been dramatic and have included increased surface tem-
perature and decreased sea ice, permafrost, glacial ice sheet,
and spring Arctic snow cover extents (Serreze et al., 2000;
Frauenfeld et al., 2004; Dyurgerov and Meier, 2005; Stroeve
et al., 2008, 2014; Brown et al., 2010; Perlwitz et al., 2015,
among numerous others).

Snowfall can dramatically change surface conditions at
high-latitude regions, acting to increase shortwave surface
albedo while impacting sensible and latent heat fluxes and
longwave emission (Cohen and Rind, 1991). Changes in
snow cover can feed back on snow cover, sea ice, and
permafrost distributions (Brown, 2000; Ramonovsky et al.,
2002; Holland et al., 2006; Vavrus, 2007), where the effects
on permafrost in turn may affect high-latitude carbon storage.
Snowfall changes at higher north latitudes may also impact
freshening of the North Atlantic Ocean and the strength of
the Atlantic Meridional Overturning Circulation. Peterson et
al. (2006) attributed more than half of the cumulative fresh-
water input anomaly in the Arctic and high-latitude North
Atlantic oceans over the previous 50 years to increases in net
precipitation over land and oceans, exceeding the estimated
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contributions from glacial melt and sea ice reduction. Snow-
fall is also important as it provides mass influx for vast glacial
ice sheets such as those found in Antarctica and Greenland
(Lenaerts et al., 2013; Palerme et al., 2014). The distribu-
tion of snowfall helps define ice sheet dynamics, and the rel-
ative difference between snowfall and melt will impact the
long-term survival of these glaciers (Van Tricht et al., 2016).
Significant loss of ice sheets may have deleterious effects on
human society through a corresponding rise of global ocean
levels (Gardner et al., 2013; Jacob et al., 2012).

The quantitative estimation of snowfall at the global scale
from spaceborne measurements has occurred only recently.
Initial retrieval approaches were based on passive microwave
measurements (Skofronick-Jackson et al., 2004; Noh et al.,
2006) with a shift in emphasis to radar observations with
the launch of the CloudSat Cloud Profiling Radar (CPR) in
2006. Matrosov et al. (2007) and Liu (2008a) demonstrated
the first-order capability of the CloudSat CPR to retrieve ver-
tical profiles of dry snowfall. Kulie and Bennartz (2009), in
turn, used CloudSat CPR reflectivities to estimate global dry
snowfall rate for a year of CloudSat data. They found that
snowfall estimates depended critically upon assumed rela-
tionships between radar reflectivity and snowfall particle size
distributions (PSDs) and shapes.

These studies suggest that estimates of snowfall as derived
from radar reflectivities alone are non-unique. Numerous dif-
ferent combinations of snowflake microphysical properties
and snow particle fall speeds may yield nearly identical sur-
face snowfall rates for a given reflectivity profile. As such,
use of traditional Ze–S relationships to quantify snowfall
cannot be expected to produce accurate results for all snow-
fall events.

From an operational retrieval perspective, clever selection
of representative snowflake microphysical properties may
produce estimates of snowfall amounts that agree well with
reported values for climate or regional applications. For ex-
ample, Wood et al. (2015; but see also Wood, 2011) devel-
oped snowflake models for the CloudSat snowfall retrieval
algorithm based upon field campaigns focused on cold-
season clouds and precipitation, principally the Canadian
CloudSat–CALIPSO Validation Project (C3VP, Hudak et al.,
2006). They used this a priori knowledge of snowfall micro-
physics to refine expected snowfall–radar reflectivity rela-
tionships for the optimal-estimation-based (Rodgers, 2000)
CloudSat snowfall retrieval scheme used for the CloudSat
2C-SNOW-PROFILE (Wood et al., 2013) product. The prod-
uct provides estimates of snow size distribution and bulk
properties (water content and snowfall rate) at the surface
and aloft over land, ice, and ocean surfaces. These estimates
have proven valuable for assessing snowfall budgets in re-
mote regions (Palerme et al., 2014; Kulie et al., 2016), pro-
viding data for testing global climate models (Palerme et
al., 2016; Christensen et al., 2016), and evaluating the per-
formance of ground-based radar measurements of snowfall
(Norin et al., 2015). The Global Precipitation Mission con-

tinues the global monitoring of snowfall with dual-frequency
Ka-band and Ku-band radar and extensive ground measure-
ment activities (Skofronick-Jackson et al., 2015).

Despite such efforts, validation activities suggest that un-
certainties in retrieved snowfall rates can still be on the
order of 200 % for individual snow events (Wood, 2011).
In our retrieval scheme, instead of using a priori guesses
of snowflake microphysical properties from field campaigns
such as C3VP, we used coincident observations of snowflake
microphysical properties from the Multi-Angle Snowflake
Camera (MASC; Garrett et al., 2012) to constrain the radar-
based retrieval approach. The MASC takes multiple images
of snowflakes in free fall while simultaneously measuring fall
speed. From these pictures, estimates of snowflake maximum
particle dimension, habit, and other properties that could be
used to refine a radar retrieval scheme are estimated. It should
be noted, however, that any instrument that measures snow
particle properties or fall speed, e.g., the Precipitation Imag-
ing Package (Newman et al., 2009), could replace the role of
the MASC in the variational approach presented in this work.

We describe here a retrieval technique for snowfall rate
and its application to five snow events as observed at the
Atmospheric Radiation Measurement (ARM) North Slope
Alaska (NSA) Climate Research Facility site at Barrow.
Our scheme uses ground-based Ka-band ARM zenith radar
(KAZR) measurements for reflectivity profiles and was di-
rectly modified from the W-band CloudSat 2C-SNOW-
PROFILE algorithm. The flexible optimal-estimation frame-
work was used to incorporate coincident MASC observations
into the radar-based scheme through the retrieval a priori
terms. A primary objective was to identify those combina-
tions of retrieval assumptions that allowed the best match
with snowfall observations at the Barrow site for five snow
events during April and May 2014. Another objective was
to quantify the sensitivity of snowfall rate retrieval results
to the key microphysical assumptions of particle size distri-
bution, habit, and fall speed from the MASC. These results
were contrasted with snowfall rates found using alternate as-
sumptions such as the Locatelli and Hobbs (1974, hereafter
LH74) particle dimension–fall speed parameterizations, ob-
served KAZR Doppler velocities, and previous field cam-
paign estimates of snow particle size distributions. In Sect. 2,
we discuss the methodology including the CloudSat snowfall
retrieval scheme, the MASC observations, and the combined
radar–MASC retrieval approach. In Sect. 3, we explore the
application of the combined scheme to five snowfall events
observed at the Barrow site. In Sect. 4, we discuss the im-
plications of our results for the utility of ground-based in situ
measurements to refine and improve radar retrievals of snow-
fall.
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Figure 1. Discrete dipole models, clockwise from upper left: sector
plate, SPp; six-branched planar rosette, B6pf; ellipsoid, Ep; eight-
branched rosette with 0.5 aspect ratio, B8pr-30; eight-branched
rosette with 0.7 aspect ratio, B8pr-45, as taken from Wood et
al. (2015).

2 Methodology

2.1 CloudSat snowfall retrieval scheme

The CloudSat snowfall retrieval algorithm uses profiles of W-
band 94 GHz radar reflectivity to estimate vertical profiles of
snow properties. The flexible optimal-estimation approach is
used to combine measurements and a priori microphysical in-
formation into a common retrieval cost function. Specifically,
the scheme assumes an exponential form for snow particle
size distributions for each radar reflectivity bin as in Eq. (1),

N(D)=N0 exp(−λD), (1)

where λ is PSD slope, N0 is its intercept, and D is parti-
cle maximum dimension (Heymsfield et al., 2008). For our
implementation, the PSD slope parameter is allowed to vary
with height but the number density is held constant given the
limited number of independent observations from the radar.
(Note that the uniform N0 used in this work represents a di-
vergence from the current CloudSat algorithm in which num-
ber density is allowed to vary with height.) A priori assump-
tions of particle mass-diameter and diameter-fall speed rela-
tionships for D in Eq. (1) allow the determination of snow
water content and snowfall rate for each radar range bin.

For the CloudSat algorithm, the required a priori mi-
crophysical and scattering properties were determined from
analyses of snow observations from field campaigns fo-
cused on cold-season clouds and precipitation, principally
the Canadian CloudSat–CALIPSO Validation Project (Hu-
dak et al., 2006). Snowflake particle models were constructed
based upon observed mass and horizontally projected area
as a function of particle size (Wood et al., 2015). These
efforts were somewhat unique in that they explicitly use
ground-based observations to refine forward-model assump-
tions for the retrieval, an idea we will return to for our
combined radar–MASC scheme as described below. Scatter-
ing properties for the snowflake particle models were devel-
oped through use of the discrete dipole approximation (DDA;
Draine and Flatau, 1994) method. DDA replaces the true par-

Figure 2. Comparisons of observed W-band reflectivities with syn-
thetic reflectivities derived from the DDA scattering properties as
taken from a modified figure from Wood et al. (2015).

ticle shape with an approximate shape constructed as a three-
dimensional array of small, cubic ice dipoles.

Figure 1 shows the particle models developed for the
CloudSat algorithm. These particle models, intended to sim-
ulate the coarse features of snow particles, consist of solid-
ice dipoles intermixed with empty (i.e., air-occupied) dipole
locations to meet observed mass and horizontally projected
area (Ap) constraints. Analyses of disdrometer, X-band
radar, 2-D video disdrometer, and Snowflake Video Imager
observations for four significant C3VP snow events pro-
vided best-estimate mass-dimension and Ap-dimension re-
lationships (Wood et al., 2015). Scattering calculations for
a range of shapes conforming to these constraints suggested
that backscatter cross sections can vary by 2 orders of mag-
nitude between these models for a given particle size typical
of snowfall.

For the C3VP snow events, these particle models were
evaluated by testing against coincident, observed W-band
radar reflectivities (Wood et al., 2015). DDA scattering prop-
erties were used in combination with video disdrometer ob-
servations of snow particle size distributions (the Snowflake
Video Imager, Newman et al., 2009) to calculate synthetic
W-band reflectivities. These synthetic reflectivities were then
plotted versus observed reflectivities as in Fig. 2. Minimiza-
tion of these differences suggested that the B8pr-30 model
best matched observations for the C3VP snow events.

For our study, we will use this B8pr-30 particle model as a
base assumption for our Barrow storm events. Given the non-
uniqueness of the snowfall retrieval problem, however, it is
possible that sources of error other than particle model may
have compensated to allow observed and synthetic reflectiv-
ities to match as in Fig. 2. We will examine the sensitivity of
the retrieved snowfall rate to MASC observations of shape,
particle dimension, and fall speed to better understand this
issue as discussed in Sect. 2.3 below.
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Figure 3. MASC-captured images of snowflakes as observed at the
NSA Barrow Climate Research Facility site.

2.2 Multi-Angle Snowflake Camera

The Multi-Angle Snowflake Camera (MASC) takes high-
resolution multi-angle photographs of snowflakes as they set-
tle near the surface. It simultaneously measures snowflake
fall speed. The MASC consists of three cameras each point-
ing at an identical focal point approximately 10 cm away in
a ring opening. This ring houses a system of near-infrared
emitter–detector pairs, arranged in two arrays that are sep-
arated vertically by about 3.2 cm. If a hydrometeor passes
through both upper and lower arrays, the MASC will trigger
each of the three cameras and flash a bank of lights aimed at
the center of the camera depth of field. Fall speed is calcu-
lated from the time it takes to traverse the distance between
the upper and lower triggering array.

Given images from the MASC, it is possible to derive
estimates of properties such as particle shape, aspect ratio,
maximum dimension, complexity, and orientation (Garrett
et al., 2012, 2015; Garrett and Yuter, 2014). Here, specifi-
cally, we use observations of maximum dimension and habit
to constrain uncertainties inherent to radar-based retrievals
of snow rate. For example, Fig. 3 shows typical snowflakes
observed at the NSA Barrow Climate Research Facility site
during the Spring 2014 MASC deployment. Observed habits
include graupels, columns, plates, and aggregate combina-
tions of each. Such observations of shape can be used to se-
lect the most appropriate particle model for a given precipi-
tation scene or to identify those scenes in which none of the
currently available particle models will be expected to pro-
duce a good fit.

Observations of fall speed from the MASC, in turn, can
be used to translate retrieved cloud snow water content to
a snowfall rate. In this work, we contrast retrieved snowfall
rates found using MASC observations, near-surface Doppler
measurements, and LH74 particle dimension–fall speed rela-
tionships.

2.3 Combined radar–MASC retrieval

The MASC deployment to the ARM NSA Barrow Climate
Research Facility site in Spring 2014 provided an ideal
opportunity to employ our combined radar–MASC snow-
fall retrieval scheme. In this section, we present sample
observations from a Barrow snowstorm to illustrate how
we merge MASC information into our radar-based retrieval

Figure 4. The top scene shows KAZR reflectivities (dBZ) for
a 23 April snow event at the NSA Barrow site. MASC images
of snowflakes suggest a graupel-like structure around 04:00 UTC
which transitioned to more pristine structures and aggregates by
13:00 UTC.

scheme. We focus specifically on MASC observations of par-
ticle maximum dimension, particle model, and fall speed.
Given the temporary nature of the deployment at Barrow, the
MASC was left unshielded during the storm events presented
in this work.

Given the lack of W-band radar measurements during this
time period, we use Ka-band ARM zenith radar general mode
observations for this study. The KAZR is a vertically point-
ing radar that measures reflectivity, vertical velocity, and
spectral width at 34.8 GHz with a resolution of 30 m from
near surface up to about 20 km (Bharadway et al., 2013). The
radar had a 2 m antennae with 0.31◦ beam width. KAZR sys-
tems have a minimum detectable signal in general mode near
−20 to −25 dBZ dependent upon target range (Feng et al.,
2014; Chandra et al., 2015). Such performance is sufficient
for these studies given we need reflectivities near −10 dBZ
during the entire day to generate measurable snowfall (0.01
inches) as reported by the National Weather Service (NWS).
Figure 4 shows KAZR reflectivities for an all-day 23 April
snow event at Barrow. The MASC images shown below
the reflectivity plot indicate typical observed snowflakes se-
lected as a function of time. For example, these images sug-
gest rimed graupel-like particles around 04:00 UTC when the
KAZR reflectivities suggest the most cloud vertical develop-
ment. The snowflakes transitioned to sector-plate-type crys-
tals and aggregates as the cloud tops lowered and became
more homogenous.

To understand precisely how we incorporate desired
MASC information into the modified KAZR snowfall
scheme, it is useful to consider the optimal-estimation ap-
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proach used in the CloudSat retrieval scheme. Letting x de-
note the vector of snowfall properties to be retrieved, the
optimal-estimation technique consists of minimizing a com-
bination of the variance between the set of observations, y,
and a corresponding set of simulated measurements, F(x),
and between x and a suitable a priori guess, a. Assuming
Gaussian statistics, this is accomplished by minimizing the
scalar cost function,

8(x,y,a)= (y−F(x))T S−1
y (y−F(x))

+ (x− a)T S−1
a (x− a), (2)

with respect to x. F denotes the physical model relating
snowfall parameters to the radar observations and is called
the “forward model”, Sa is the a priori error covariance ma-
trix, and Sy is the measurement error covariance matrix. Sy
represents not only random instrument noise but also the im-
pact of uncertainties in forward-model assumptions on sim-
ulated measurements, F(x). We use an Sy standard devia-
tion value of 2 dBZ for this study for the diagonal matrix el-
ements based upon Hammonds et al. (2014), who quantified
the uncertainty in forward-modeled radar reflectivity due to
assumptions such as mass-dimensional relationships at Ka-
band frequency. The optimal-estimation approach weights
the magnitude of the error covariances to determine the rela-
tive impact of both a priori guesses and observations on the
final retrieval estimates. The observation vector, y, is the ver-
tical profile of KAZR reflectivities where the retrieval vec-
tor, x, would be the vertically varying snowfall particle PSD
slope parameter and vertically uniform number density. The
values of x that minimize Eq. (2) are found through Newto-
nian iteration.

We introduce MASC PSD information into the retrieval
scheme through use of the a priori estimate, a, and a priori
covariance matrix, Sa . For the PSD slope parameter a priori
guess, the MASC images were processed to quantify max-
imum particle dimension for each snowflake according to
the techniques developed in Garrett et al. (2012), Garrett and
Yuter (2014), and Garrett et al. (2015). We then fit a slope pa-
rameter for an assumed exponential particle size distribution
to the tail of the size distribution > 1 mm in size. We derived
estimates of the slope parameter either for the entire storm
event or for subsections of the event based upon differences
in storm morphology. For example, for the 23 April event,
we found separate estimates of the slope parameter corre-
sponding to the vertically developed part of the storm before
08:00 UTC (1.11 mm−1) and for the stratiform part of the
storm after 08:00 UTC (0.74 mm−1). The use of such lengthy
time periods was necessary given the infrequent sampling of
snowflakes by the MASC at the Barrow site, typically from
1 to 10 snowflakes per minute for these events.

Values for uncertainties in the slope parameter as defined
in the a priori error covariance matrix were calculated for the
individual storm subsections. These values depended upon

Table 1. MASC-observed slope parameters for exponential particle
size distributions for the Barrow snow events. The C3VP observa-
tions were derived from field observations with similar snow rates
as the Barrow storms (Wood et al., 2014).

Event PSD slope Uncertainty
parameter, λ in λ

Apr. 23 00:00–08:00 UTC 1.11 ±0.23
Apr. 23 08:00–24:00 UTC 0.74 ±0.15
May 15 04:00–23:00 UTC 1.08 ±0.25
May 17 11:00–18:00 UTC 1.44 ±0.29
May 17 18:00–24:00 UTC 0.74 ±0.51
May 21 20:00–24:00 UTC 3.42 ±0.64
May 26 08:00–17:00 UTC 2.09 ±0.68
C3VP field observations 2.8 ±0.5

both the measure of fit of the exponential slope parameter to
MASC observations and expected uncertainties in MASC-
derived estimates of particle size from snowflake images.
Uncertainties in the slope fit, σFIT, were defined as regres-
sion 95 % confidence values. Uncertainties in MASC esti-
mates of particle size, σSIZE, were assumed to be 15 % of the
median maximum particle dimension based upon the prelim-
inary work of Kleinkort et al. (2016). That study used 3D
printed synthetic snowflakes with known geometry to eval-
uate MASC estimates of particle dimensions using both a
three-camera and five-camera system. For our study, the vari-
ance of the slope parameter guess, σ 2

a , is then defined as

σ 2
a = σ

2
FIT+ σ

2
SIZE. (3)

Table 1 lists estimated slope parameters with uncertainties
for the five storm events presented in Sect. 3. The relatively
small uncertainties in the MASC slope parameter observa-
tions dictate a solution close to the a priori guess. As a con-
sequence, the uncertainty in the number density was then al-
lowed to vary over several orders of magnitude to ensure re-
trieval convergence, i.e., allow the particle number to vary
so that the forward-model-simulated reflectivities can match
observed radar reflectivities regardless of particle size. The
number density term for this scheme is assumed constant
with height. Although this approach may be a problem for
space-based radars that must see through the entire storm to
estimate surface snowfall rate, it is more applicable for use
with the upward-looking KAZR. Retrieved snowfall rates are
based only on the lowest non-noise radar range bins from
160–310 m above the surface.

Given a retrieved slope parameter and number density,
snow water content was estimated for each radar range bin
assuming a knowledge of snow particle mass-dimension re-
lationships. As in Fig. 4, MASC images are used to select the
most appropriate particle model with associated scattering
properties for a given scene. The development of more parti-
cle models, e.g., lightly rimed aggregates or graupels to bet-
ter represent the natural variability of observed snowflakes, is
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Figure 5. MASC-observed fall speeds for the 23 April snowfall
event at Barrow are plotted in black. Results are compared to cal-
culations from LH74 parameterization schemes for crystal types
similar to those observed by MASC during the storm event. Green
represents graupel-like snow, while red represents dendritic aggre-
gates. Near-surface Doppler fall speeds from the KAZR are plotted
in blue. The MASC fall-speed observations had correlation coef-
ficients of −0.34 and 0.66 with the KAZR and LH74 fall speeds,
respectively.

a current line of research. In terms of the optimal-estimation
technique, this will reduce a major source of uncertainty in
the forward model (Sy term in Eq. 2).

Observations of particle fall speeds from the MASC were
used to translate retrieved snow water contents into surface
snowfall rates. Figure 5 shows MASC-observed snowflake
fall speeds plotted as hourly averages for the 23 April snow
event. This plot shows that fall speeds from the MASC obser-
vations were almost always lower than those measured from
the KAZR Doppler and those predicted from LH74 parame-
terization schemes (graupel-like snow and aggregates of den-
drites). Discrepancies in fall speed between the MASC and
KAZR Doppler observations were expected. Both of these
measurements depend upon still air–particle fall speed re-
lationships, but they also depend upon atmospheric vertical
motion which is expected to vary between the near-surface
MASC and aloft Doppler measurements. The MASC obser-
vations would also be influenced by near-surface turbulence
and disruptions to airflow as the snowflakes pass through
the sampling ring and infrared sensors. Indeed, the hourly
MASC and KAZR Doppler fall speeds had a Pearson corre-
lation coefficient of −0.34. We note that these discrepancies
could have been exacerbated, in part, from the unshielded
status of the MASC.

The LH74 fall speeds (m s−1) were estimated through
Eqs. (4) and (5) as below:

V = 1.1D0.28 for graupel, (4)

V = 0.8D0.16 for dendrites, (5)

where the snowflake maximum dimensions (mm) used for
the LH74 parameterization schemes were calculated using
MASC observations. The discrepancies in Fig. 5 are in gen-
eral agreement with Garrett and Yuter (2014), who noticed
differences between MASC observations of fall speed at
the Alta Ski Resort in Utah and LH74 parameterizations.
The LH74 schemes predicted fall speeds poorly for low-
temperature and highly turbulent environments that might be
expected during high-latitude Arctic snow events. However,
the hourly MASC observations still had a higher Pearson cor-
relation coefficient with the LH74 schemes (0.66) than with
the Doppler fall speeds (−0.34).

3 Snowfall retrieval results

3.1 Snow events and retrieval assumptions

The KAZR–MASC retrieval approach was applied to five
snow events as observed at the Barrow site during Spring
2014. KAZR reflectivities for these storms are shown in
Figs. 4 and 6. These events were selected as they produced
measurable snowfall at the nearby Barrow National Weather
Service site and triggered coincident MASC snowflake im-
ages. Retrieved estimates of total snowfall accumulation
were compared with NWS snowfall observations to evaluate
retrieval performance.

We examined the impact of snowflake habit, slope pa-
rameter (λ), and fall-speed assumptions on retrieved snow-
fall liquid water equivalent (LWE) for these events. In terms
of habit, we selected the CloudSat B8pr-30 particle model,
sector plates, and hexagonal columns. The CloudSat particle
model not only performed well in CloudSat snowfall vali-
dation studies but also was visually consistent with MASC
images of the general shape of snowflakes seen at Barrow.
Sector plates and hexagonal columns were chosen as they
too were observed during these snow events. Scattering prop-
erties for these pristine habits were derived following the
constrained discrete dipole modeling method described by
Wood et al. (2015) with particle dimension relationships
from Auer and Veal (1970) and particle mass constraints
from Mitchell (1996).

For PSD assumptions, we used MASC estimates of the
slope parameter with uncertainties as listed in Table 1 as in-
troduced through the a priori guess and covariance terms in
Eq. (2). We also employed an a priori PSD λ assumption
(2.8 mm−1) as derived from snowflake observations during
the C3VP snow measurement field campaign (Wood et al.,
2014) for snow events with similar snowfall rates as the Bar-
row events. For fall-speed assumptions, we used MASC and
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Figure 6. KAZR reflectivities (dBZ) for snow event systems as observed at the NSA Barrow Climate Research Facility site. Areas of orange
and red indicate likely periods with snowfall.

KAZR Doppler observations, LH74 fall-speed parameteriza-
tions, and a general 1 m s−1 value. For the MASC fall-speed
calculations, retrieved snowfall water contents for a given
KAZR reflectivity profile were converted to precipitation rate
via their corresponding average hourly fall-speed value.

We performed retrievals with permutations of habit, PSD,
and fall-speed assumptions to determine which combinations
produce the best match with snowfall rates observed at the
Barrow NWS site. Our best guess or base assumptions were
the CloudSat B8pr-30 particle model, MASC fall speed, and
MASC PSD λ. Given the non-unique nature of snowfall re-
trievals and the difference in location between radar and the
NWS observations, we do not pretend that agreement be-
tween retrieval results and NWS snowfall observations val-
idates our retrieval assumptions. Furthermore, the accurate
measurement of snowfall amount from precipitation gauges
is a challenging research topic in its own right (Goodison
et al., 1998; Rasmussen et al., 2012). Numerous studies over
the past century have sought to quantify uncertainties in these
measurements and then provide a correction factor for envi-
ronmental conditions (e.g., Black, 1954; Larson and Peck,
1974; Yang et al., 1995, 2005). During windy and turbu-
lent conditions, for example, the gauges will likely underesti-
mate snowfall amount as the snowflakes cannot settle into the
gauge opening. Overall, collection efficiency is a complex
function of instrument design, shielding, wind, turbulence,
temperature, and topography among other factors (Folland,
1988; Goodison et al., 1998; Rasmussen et al., 2012; The-

riault et al., 2015) and can result in snowfall uncertainties
on the order of 25–50 % over the course of a winter sea-
son (Wolff et al., 2015). As such, we understand that the re-
ported NWS snowfall values cannot be taken at absolute face
value. However, the numerical experiments presented in this
work do quantify the sensitivity of snowfall retrieval results
to snow microphysical parameters that can be observed by in
situ instrumentation. A better understanding of the impact of
these parameters, in turn, should provide a platform in which
we can then examine other sources of error in the snowfall
problem.

3.2 23 April snow event

Radar reflectivities and MASC images for a 23 April snow
event that produced a total snow accumulation of 4.57 mm
(0.18 inches) liquid equivalent are shown in Fig. 4. Retrieval
results assuming different particle model, slope parameter,
and fall-speed combinations as described in Sect. 3.1 are pre-
sented in Table 2. The percentage difference term in the table
is defined through Eq. (6):

%Difference=
(Retrieved Snowfall-NWS Snowfall)

NWS Snowfall
× 100. (6)

Error values ranged from −51 to +132 % for this snow
event. We found the best agreement with the NWS observa-
tions using our “base” assumptions of MASC fall speed and
PSD λ, CloudSat B8pr-30 particle model with a retrieved ac-
cumulated snowfall of 4.88 mm liquid equivalent, which is

www.atmos-meas-tech.net/10/2557/2017/ Atmos. Meas. Tech., 10, 2557–2571, 2017



2564 S. J. Cooper et al.: A variational technique to estimate snowfall rate

Table 2. Retrieved snowfall amounts for a 23 April snow event for designated retrieval assumption combinations. Nearby NWS observations
suggested 4.57 mm (0.18 inches) of snowfall liquid equivalent. The MASC-derived PSD slope parameters (λ) used for this event are listed
in Table 1.

Particle model λ (PSD slope) Fall speed Snowfall % Difference
(mm)

CloudSat MASC MASC obs 4.88 +7
CloudSat MASC Doppler 9.17 +100
CloudSat MASC LH74, dendritic aggregates 7.24 +58
CloudSat MASC LH74, graupel 10.62 +132
CloudSat MASC 1 m s−1 8.31 +82
CloudSat Field-C3VP MASC obs 6.07 +33
Sector plates MASC MASC obs 3.33 −27
Sector plates MASC Doppler 6.30 +38
Sector plates MASC 1 m s−1 5.72 +25
Sector plates Field-C3VP 1 m s−1 6.02 +32
Hex columns MASC MASC obs 2.23 −51
Hex columns MASC Doppler 4.24 −7

a difference of +7 %. This accuracy was closely matched
with the use of the combination of hexagonal columns,
KAZR Doppler fall speeds, and the PSD λ from the MASC.
For these two scenarios, the highly reflective per unit mass
hexagonal columns and high-fall-speed Doppler observa-
tions offset the lower reflective per unit mass CloudSat par-
ticle model and low-fall-speed MASC observations to pro-
duce nearly equivalent snow accumulations. Since hexagonal
columns were not observed during the snowstorm, however,
that solution is not valid. The worst agreement (+132 %)
arose from the use of the MASC PSD λ, the CloudSat B8pr-
30 particle model, and the LH74 graupel fall speed. This
large discrepancy was driven by the high fall speed of the
LH74 graupel parameterization as seen in Fig. 5.

These calculations allowed us to quantify the sensitivity
of retrieval results to assumptions of PSD λ, fall speed, and
crystal habit for a given storm event. The assumed PSD
slope parameter had the least impact on variability in es-
timated snowfall accumulation. Snowfall totals of 4.88 and
6.07 mm were found when using the MASC PSD λ and the
C3VP-field-campaign-observed PSD λ, respectively, holding
fall speed and habit fixed. In terms of the optimal-estimation
scheme, changes in the PSD λ are offset by corresponding
changes in the PSD number density. Therefore, larger par-
ticles (smaller slope parameter) require fewer particles to
match radar reflectivity, and vice versa. Such a relationship
modulates the impact of changes in particle size distribution
on estimated snowfall rates. These results suggest that use
of the C3VP PSD λ provides a reasonable alternative when
lacking coincident MASC measurements.

By contrast, differing assumptions of fall speed led to a
factor of 2 differences in retrieved snowfall rates. Accumu-
lations varied from 4.88 mm with MASC fall-speed observa-
tions to 10.62 mm with LH74 graupel-like snow parameteri-
zations, holding base habit and PSD fixed. These results were

driven by the variability in fall speeds as plotted in Fig. 5 and
the linear impact of fall speed on retrieved snowfall rate. In-
terestingly, retrieved snowfall rates using low level Doppler
fall speeds were twice those found using MASC fall-speed
observations. Such results imply the need for further research
to determine which fall-speed observation is appropriate for
a given scene.

Differing assumptions of particle model also led to a
factor of 2 differences in retrieved snowfall rates. Esti-
mated snowfall accumulations varied from 4.88 mm for the
CloudSat B8pr-30 particle model to 2.23 mm for hexago-
nal columns, given fixed fall-speed and PSD assumptions.
NWS “truth” (4.57 mm) fell between results assuming the
branched CloudSat particle (4.88 inches) and sector plates
(3.33 mm) where both of these habits were seen during the
storm event as in Fig. 4. Given the presence of rimed par-
ticles throughout the storm, however, we would not expect
perfect agreement given use of non-rimed particle models for
the retrieval.

In addition to total accumulation, we also considered the
temporal distribution of the snowfall during the event. Fig-
ure 7 plots NWS hourly snowfall accumulations for the 23
April storm against retrieved values arising from different as-
sumption permutations. Estimates from the CloudSat B8pr-
30 particle model (with MASC fall speed and MASC PSD)
agreed reasonably well in trend and magnitude with the NWS
hourly observations with a Pearson correlation coefficient
of 0.65 and a +7 % overestimate of snowfall over the en-
tire event. Retrieval results had a higher correlation with
the hourly observations for the first part of the storm (0.92)
than the second (0.12) even though differences in subsection
snowfall totals were greater for the first section (+11 %) than
for the second (+1 %). However, we do not necessarily ex-
pect perfect correlation between the NWS observations and
the retrieved values given the differences in location between
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Table 3. Retrieved snowfall amounts for a 15 May snow event for retrieval assumption combinations. Nearby NWS observations suggested
7.62 mm (0.30 inches) of snowfall liquid equivalent. The MASC-derived PSD slope parameters (λ) used for this event are listed in Table 1.

Particle model λ (mm−1) Fall speed Snowfall (mm) % Difference

CloudSat MASC MASC obs 4.34 −43
CloudSat MASC Doppler 11.91 +56
CloudSat MASC LH74, dendritic aggregates 6.88 −10
CloudSat MASC LH74, graupel 9.63 +26
CloudSat MASC 1 m s−1 8.41 +10
CloudSat Field-C3VP MASC obs 5.33 −30
Sector plates MASC MASC obs 2.95 −61
Sector plates MASC Doppler 8.10 +6
Sector plates MASC 1 m s−1 5.72 −25
Sector plates Field-C3VP 1 m s−1 6.02 −21
Hex columns MASC MASC obs 1.98 −74
Hex columns MASC Doppler 5.49 −28

Figure 7. Hourly NWS snowfall accumulations (mm) plotted
against retrieved values for the 23 April event for different retrieval
assumption permutations. MASC PSD slope parameter (λ) is as-
sumed for all curves.

the snow gauge and KAZR. For example, the NWS snow
gauges observed significant snowfall (0.76 mm) over the last
2 h of the event even though low KAZR reflectivities sug-
gested perhaps the weakest part of the storm.

The sector plate model (with MASC fall speed and MASC
PSD) produced slightly too little snowfall throughout the
course of the event. The hexagonal column model (with
MASC fall speed and MASC PSD) produced even less. The
three curves for the retrieval scenarios using the MASC fall
speeds in Fig. 7 were highly correlated with each other (co-
efficients of 0.99), given common reflectivity and fall-speed
assumptions. These curves had a weaker correlation (coeffi-
cients near 0.8) with the Doppler scenario given marked dis-
crepancies in fall speed as seen in Fig. 5.

Figure 8. Typical rimed and graupel-like particles observed by the
MASC on 15 May.

3.3 15 May snow event

Table 3 lists retrieved accumulated snowfall amounts for a 15
May snow event as depicted in the upper left panel of Fig. 6.
This storm produced approximately 7.62 mm (0.30 inches)
liquid equivalent of snowfall as observed by the NWS be-
fore transitioning to light rainfall. Although the use of our
base CloudSat particle model, MASC fall speed, and MASC
λ assumptions produced snowfall estimates close to NWS
observations for the 23 April event, these same assumptions
performed poorly for this storm. We found a −43 % differ-
ence relative to NWS observations.

For all retrieval permutations, differences between re-
trieved snowfall and NWS observations varied from −74 to
+56 %. The best agreement with NWS values came with the
permutations of sector plates, MASC λ, and KAZR Doppler
fall-speed assumptions (+6 %) and CloudSat B8pr-30 par-
ticle model, MASC λ, and LH74 dendritic aggregate fall-
speed assumptions (−10 %). Again, it is the compensating
nature of fall speed and particle model for these two differ-
ent retrieval permutations that allows them to produce results
consistent with NWS observations. Agreement was particu-
larly poor for those cases that assumed the highly reflective
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Table 4. Total retrieved snowfall amounts over five Barrow snow events for designated retrieval assumption combinations. Nearby NWS
observations suggested 16 mm (0.63 inches) of snowfall liquid equivalent. The MASC-derived PSD slope parameters used for these events
are listed in Table 1. The “ % Difference” value refers to the difference between the NWS and retrieved accumulations over the five snow
events. The “Avg % difference” value refers to the average difference for the individual events.

Particle model λ Fall speed Snowfall % Difference Avg %
(mm−1) (mm) difference

CloudSat MASC MASC obs 13.11 −18 36
CloudSat MASC Doppler 30.35 +89 89
CloudSat MASC LH74, dendritic aggregates 20.60 +29 38
CloudSat MASC LH74, graupel 30.99 +94 94
CloudSat MASC 1 m s−1 25.63 +60 60
CloudSat Field-C3VP MASC obs 15.47 −3 35
CloudSat Field-C3VP Doppler 35.53 +122 122
Sector plates MASC MASC obs 8.58 −46 46
Sector plates MASC Doppler 19.74 +23 23
Sector plates MASC 1 m s−1 16.46 +3 27
Sector plates Field-C3VP 1 m s−1 17.20 +7 27
Hex columns MASC MASC obs 5.79 −64 64
Hex columns MASC Doppler 13.38 −16 21
Hex columns Field-C3VP 1 m s−1 11.94 −26 28

hexagonal column particle model, e.g., a difference of−74 %
was found with columns when used with MASC-observed
fall speeds and PSD λ. The use of these columns (which
were not seen during the event) could not generate enough
retrieved snowfall to match observations regardless of fall-
speed assumptions.

A possible reason for these observed discrepancies in this
case is the presence of heavy riming in observed snowflakes.
MASC images suggest lumpy graupel-like snowflakes and
aggregates throughout the entire snow event as shown in
Fig. 8. Such particles would be expected to be denser and
thus have more mass for given maximum dimension than
the un-rimed particle models employed in this study. Such
conditions would cause the snowfall retrievals to underesti-
mate snow rate, with all other variables fixed. Similarly, the
particle-backscatter relationship would change given a coat-
ing of frozen or possibly liquid water on the particles, further
biasing results. Current work by the authors focuses on scat-
tering calculations for rimed particle models assuming dif-
ferent densities. Ideally, these properties could be used with
a hydrometeor classification scheme that estimates degree of
riming and melt water such as Praz et al. (2017) or similar
for better retrieval performance.

3.4 Totals for five snow events

Table 4 lists total retrieved liquid water equivalent over the
five snow events at Barrow for different retrieval assump-
tion permutations. The approximate accumulated snowfall
was 16.0 mm (0.63 inches) liquid equivalent for these five
events as measured by the nearby NWS site. Use of our
base assumptions (MASC fall speed, MASC PSD λ, and

CloudSat particle model) led to total accumulated snowfall
of 13.11 mm, which represents a difference of −18 % rela-
tive to NWS observations.

Use of the C3VP a priori PSD λ led to a slightly better
match with NWS observations (−3 %) than the use of MASC
PSD λ (−18 %) when used with base particle model and fall-
speed assumptions. This relatively close agreement in results
is not surprising given the limited sensitivity of retrieval re-
sults to changes in PSD λ. Additionally, the a priori λ value
of 2.8 mm−1 falls within the range of observed MASC PSD
λ values from 0.74 to 3.42 mm−1. Therefore, it would be
expected that retrieved values using the a priori assumption
would be greater than those found using MASC values for
some cases but less than for others, producing similar results
when totaled over the five events.

Other assumption permutations found retrieved liquid wa-
ter accumulations with differences ranging from −64 to
+122 % relative to NWS observations. These results again
highlight the likelihood of compensating errors when invert-
ing radar observations to estimate snowfall. The best agree-
ment (3 %) came for two retrieval scenarios with different as-
sumptions for each habit, PSD λ, and fall speed. The Cloud-
Sat particle model, C3VP a priori PSD λ, and MASC fall
speed combination resulted in 3 % less retrieved snowfall
than NWS observations. Sector plates, MASC PSD λ, and
a 1 m s−1 fall speed resulted in 3 % more retrieved snowfall
than NWS observations. To further illustrate this idea of com-
pensating uncertainties, consider the use of assumptions that
are all demonstrably wrong (hexagonal columns, 1 m s−1 fall
speed, and C3VP a priori PSD λ) for the vast majority of
these observed snow events. This retrieval permutation gen-
erates a value for accumulated snowfall of 11.94 mm that is
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very close to the 13.11 mm found using our base assump-
tions.

The use of total accumulation over multiple snow events
provides a practical metric to evaluate retrieval performance
over time. However, it is also important to evaluate the av-
erage error for the individual storm events since a retrieval
scheme could produce perfect results over multiple storm
events while being markedly wrong for each event. Table 4
lists the accumulation-weighted average absolute differences
for the individual snow events for different retrieval permuta-
tions. We chose this accumulation-weighted approach since
two of the storm events had snowfall accumulation less than
1.05 mm liquid equivalent. If we had equally weighted the
events, small differences in retrieved snowfall values on the
order of 0.5 mm for these events could heavily skew overall
average differences.

Table 4 shows accumulation-weighted average absolute
differences ranging from 21 to 122 % relative to NWS obser-
vations for the different retrieval permutations. For our base
assumptions (MASC fall speed, MASC PSD λ, and Cloud-
Sat particle model), we found an accumulation-weighted av-
erage absolute difference of 36 %. This result is similar to
the 35 % value found with use of the C3VP a priori PSD λ,
again demonstrating the limited sensitivity of retrieval results
to changes in PSD λ for these events. Two of the smallest
average difference values (21 and 27 %) were found using
hexagonal columns. Again, since columns were very rarely
seen during these events, it is likely that such agreement
arises from compensating errors from other retrieval assump-
tions. Similar average difference values (23, 27, and 27 %)
were found for a variety of retrieval combinations based upon
a sector plate particle model. Such consistent results iden-
tify the sector plate model as a likely habit candidate for a
Barrow-based snowfall retrieval scheme.

In theory, analyses of retrieval performance could be bro-
ken down as a function of meteorological conditions. For ex-
ample, we might expect that the retrievals would match snow
gauge observations poorly under windy conditions. Snowfall
gauge measurements can suffer significant uncertainties that
are a strong function of wind speed (Black, 1954; Larson and
Peck, 1974; Goodison et al., 1998; Yang et al., 2005, Wolff
et al., 2015; among numerous others). Likewise, sampling
artifacts for MASC particle size and fall-speed observations
are likely as increased wind speed and turbulence disrupt the
settling of snowflakes as they pass through the MASC sam-
pling volume. In practice, we had only a handful of snow
events during the Barrow deployment, making a thorough ex-
ploration of this topic difficult. For example, retrievals with
our base assumptions matched the snow gauge observations
better for the slightly less windy 23 April event (2.85 m s−1)
than the 15 May (4.40 m s−1) event. For the 23 April event,
however, the hourly snow gauge and retrieval estimates were
more highly correlated during the windier first part of the
storm (3.96 m s−1) than the calmer second part (2.17 m s−1).
Both events were also complicated by habit uncertainties,

making it difficult to identify a clear wind signature without
more observations of snow storms.

Perhaps of more interest, the 21 May event had the
strongest average winds at 9.41 m s−1 (21.0 mph), the great-
est measured slope parameter, and thus the smallest particles.
These results would be consistent with blowing snow com-
posed of shattered ice crystals. If so, we would expect poor
retrieval performance as the PSD and habit measurements
near the surface would not be representative of the snow-
fall conditions aloft. The total snowfall accumulation for this
high wind event was only 1 mm (LWE), so again it would be
unwise to make conclusions on retrieval performance until
we get more data.

Finally, we contrast snowfall estimates found with our
variational approach with those found from two different
35 GHz reflectivity–snowfall relationships. Our use of in situ
observations from the Barrow event, in theory, should pro-
duce more accurate results than those derived from these pa-
rameterizations. Kulie and Bennartz (2009, hereafter KB09)
estimated snowfall as in Eq. (7),

Ze = 24.04S1.51, (7)

where they assumed a three-bullet rosette particle model
(Liu, 2008b) with scattering particles derived from DDA. S
is snowfall in mm h−1. Matrosov (2007, hereafter M07) as-
sumed aggregate snowflakes with scattering properties mod-
eled from spheres and T-matrix theory to parameterize snow-
fall through Eq. (8).

Ze = 56.00S1.2 (8)

These equations were derived for vertically pointing radar
and dry snowfall conditions that lack significant attenuation
at 35 GHz.

Table 5 lists total estimated snowfall and accumulation-
weighted average absolute differences for the KB09 and M07
schemes for the five Barrow storm events. KB09 found a to-
tal accumulation with a +37 % difference relative to NWS
observations with an average error of 50 % for the individ-
ual events. M07 found a total accumulation with a −48 %
difference relative to NWS observations with an average er-
ror of 49 % for the individual events. These values fall well
within the range of results presented in Table 4, although
they are slightly larger than those found in the better case
optimal-estimation retrieval scenarios. Likewise, the corre-
lation coefficient between hourly Ze–S estimates and NWS
observations (0.41) was slightly worse than that found be-
tween the base optimal-estimation scheme and NWS obser-
vations (0.65). Again, it is hoped the continued refinement
of our combined radar, in situ approach will produce results
consistently more accurate than such Ze–S relationships.
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Table 5. Retrieved snowfall amounts as derived from two different Ze–S relationships for the 23 April, 15 May, and all snow events seen at
Barrow. These results are contrasted with those found using our base optimal-estimation scheme and NWS observations. Difference values
are defined as in Table 4.

Apr. 23 May 15 All events

LWE (mm) % Difference LWE (mm) % Difference LWE (mm) % Difference Avg % difference

NWS 4.57 – 7.62 – 16.0 – –
Base scheme 4.88 +7 4.34 −43 13.11 −18 36
Kulie 09 8.71 +90 6.63 −13 21.97 +37 50
Matrosov 07 3.53 −23 2.68 −65 8.37 −48 49

4 Discussion and conclusions

In this work, we present an optimal-estimation retrieval
scheme to calculate surface snowfall rates using coincident
radar and in situ snow particle observations. The scheme was
modified from the W-band CloudSat snowfall algorithm and
applied to measurements from the ground-based Ka-band
ARM zenith radar located at the ARM NSA Barrow Climate
Research Facility site. Multi-Angle Snowflake Camera esti-
mates of particle size distribution and fall speed were used
to constrain the inverse calculations based upon KAZR re-
flectivities. Images of snowflakes from the MASC were used
as a guide to select the most appropriate particle model for
a given storm event, e.g., branched aggregates, sector plates,
or columns. Retrieved snowfall accumulation were compared
with snowfall measurements at the nearby NWS Barrow of-
fice for a first-order evaluation of our results.

Retrieval snowfall values found using MASC observations
as assumptions were contrasted with those found using al-
ternate assumptions such as the Locatelli and Hobbs fall-
speed parameterizations, Doppler fall-speed observations,
and field campaign observations of snow particle size dis-
tributions. Use of these different permutations of retrieval
assumptions (habit, PSD λ, and fall speed) allowed us to
determine which combination of assumptions best matched
nearby NWS snowfall observations for five different snow
events. Differences between these approaches also quantified
the sensitivity of estimated snowfall amounts to PSD λ, par-
ticle fall speed, and snowflake particle model. Although the
number of events and snowfall totals with coincident MASC
and KAZR observations is limited, they do provide an initial
data set to demonstrate the technique and to quantify retrieval
performance across multiple snow events.

Use of the base assumptions (CloudSat particle model,
MASC fall speed, and MASC PSD λ) resulted in estimated
snowfall totals over the five events with a −18 % differ-
ence relative to nearby NWS snowfall observations. This
agreement, of course, could result in part from compensat-
ing errors in individual storm totals. We also calculated the
accumulation-weighted average absolute difference for the
individual events and found a value of 36 %. Such results
demonstrate that modification of the CloudSat particle model

to Ka-band frequency and use of MASC observations can
produce reasonable snowfall values for spring conditions at
Barrow. This agrees in spirit with the validation studies from
the C3VP program in which simulated reflectivities using the
CloudSat particle model matched well with field observa-
tions as demonstrated in Fig. 2. The use of the sector plate
model with different fall-speed and PSD assumptions often
produced average error values lower than 30 %, suggesting
the sector plate as a candidate for a Barrow-based snowfall
scheme. These results are not surprising since both aggre-
gates and sector plates were seen during these snow events.
These better case retrieval scenarios matched NWS observa-
tions more closely than two 35 GHz Ze–S relationships that
had average errors near 50 % for the Barrow events.

Other combinations of retrieval assumptions found differ-
ences in accumulated snowfall ranging from −64 to +122 %
relative to NWS observations as listed in Table 4. The
accumulation-weighted average absolute difference values
for these permutations ranged from 21 to 122 %. The non-
unique nature of the snowfall retrieval problem, however,
makes it difficult to determine if we get good results for the
“right reasons”. For example, the use of a trio of assump-
tions (hexagonal column particle model, C3VP a priori PSD
λ, and a 1 m s−1 fall speed) that are all demonstrably wrong
yielded overall differences (−25 %) that are similar to those
found with our base assumptions (−18 %). Further, this com-
bination had an average difference (28 %) for the individual
storms that was indeed better than the value found for our
base assumptions (36 %). For this “wrong” scenario, com-
pensating errors in fall speed (bias results high) and particle
model (bias results low) likely offset to produce snowfall re-
sults that are reasonable across multiple snow events. The use
of MASC or other habit observations would eliminate these
column scenarios as valid solutions in our retrieval approach.

Use of alternate fall-speed and particle model assumptions
led to factor of 2 differences in retrieved snowfall rates when
averaged over the five snow events. The assumed PSD slope
parameter had less impact on variability in estimated snow-
fall accumulation. Snowfall totals of 13.11 and 15.47 mm
were found when using the MASC PSD λ and the C3VP-
field-campaign-observed PSD λ, respectively, holding fall
speed and habit fixed. In terms of the optimal-estimation
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approach, changes in the PSD λ are offset by correspond-
ing changes in the particle number density. Larger particles
require fewer particles to match radar reflectivity, and vice
versa, thus limiting the impact on estimated snow water con-
tent with changing particle size.

Significant sensitivities to multiple variables imply diffi-
culties for the design and evaluation of radar-based snow-
fall retrieval schemes. Those studies that focus on one or
even a few variables may likely lead to misleading conclu-
sions. Again, we hope the use of coincident in situ obser-
vations of snowfall microphysical properties will reduce the
non-uniqueness of the retrieval problem.

Future work will focus on expanding the coincident radar
and ground-based in situ instrumentation approach presented
here. We will modify existing particle models and DDA scat-
tering properties to match the graupels and rimed particles
often seen in the MASC images as in Figs. 4 and 8. Differ-
ences in the scattering properties and mass-dimensional re-
lationships for rimed and un-rimed particles are anticipated
to explain the large discrepancies in retrieved and observed
snowfall rates observed for the rimed 15 May case. Use
of a hydrometeor classification scheme that estimates de-
gree of riming from MASC images such as that developed
by Praz et al. (2017) would provide a quantitative manner
to link snowflake images with particle scattering properties.
Likewise, we will seek to determine the most appropriate
fall-speed metric given available instrumentation. Large dis-
crepancies were observed between near-surface MASC fall-
speed measurements, lowest radar range bin Doppler veloc-
ities, and particle fall speed–dimension parameterizations.
Meaningful results from such studies will require the quan-
tification of sampling artifacts for the MASC or other in
situ microphysical instrumentation through efforts similar to
Kleinkort et al. (2016). They will also require use of state-of-
the-art snow gauge measurements to the extent possible.

Given the limited data available from the NSA Barrow site,
we stress the need for more data sets with coincident radar,
snowfall microphysical, and snow gauge observations. The
general technique presented here for the KAZR and MASC
could be adapted to any set of coincident radar and PSD in-
strumentation. Along these lines, the authors are deploying a
Micro Rain Radar, MASC, and Precipitation Imaging Pack-
age to two snowfall measurement sites in Scandinavia over
the next two winters. These sites, one run by the Norwegian
Meteorological Institute near Haukeliseter Fjellstue and one
by the Swedish Institute of Space Physics near Kiruna, expe-
rience numerous snowfall events representing a diverse range
of synoptic and mesoscale conditions. Such a comprehen-
sive set of observations should allow us to refine our retrieval
approach and to gain insights into the state-dependence of
snowfall microphysics. In turn, these improved snowfall esti-
mates could be used to explain observed differences between
ground-based radar, satellite-based radar, and snow gauge es-
timates of snowfall (Cao et al., 2014; Smalley et al., 2014;

Norin et al., 2015; Saltikoff et al., 2015; Speirs et al., 2017)
or as input for weather and climate studies.

Data availability. All the data used and produced for the purposes
of this paper are freely available and can be requested from the cor-
responding author.

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. We thank both anonymous reviewers whose
suggestions markedly improved the manuscript. Data were obtained
from the Atmospheric Radiation Measurement (ARM) program
sponsored by the US Department of Energy, Office of Science,
Office of Biological and Environmental Research, Climate and En-
vironmental Sciences Division. All authors were supported through
National Science Foundation grant 1531930 and Department of
Energy grant DE-SC0016045. In addition, parts of this research
conducted by Norman B. Wood and Tristan S. L’Ecuyer were
performed at the University of Wisconsin–Madison for the Jet
Propulsion Laboratory, California Institute of Technology, spon-
sored by National Aeronautics and Space Administration CloudSat
research grant G-3969-1. Parts of the original code development
by Steven J. Cooper was performed under NASA grant number
NNX15AK17G and NSF grant 1303965. We thank Tim Garrett for
processing the MASC data.

Edited by: Dominique Ruffieux
Reviewed by: two anonymous referees

References

Auer Jr., A. H. and Veal, D. L.: The dimensions of ice crystals in
natural clouds, J. Atmos. Sci., 27, 919–926, 1970.

Bharadwaj, N., Lindenmaier, A., Widener, K. B., Johnson, K. L.,
and Venkatesh, V.: Ka-band ARM zenith profiling radar (KAZR)
network for climate study, 36th Conf. on Radar Meteorology,
Breckenridge, CO, Amer. Meteor., 2013.

Black, R. F.: Precipitation at Barrow, Alaska, greater than recorded,
EOS Trans. AGU, 35, 203–207, 1954.

Brown, R., Derksen, C., and Wang, L.: A multi-data set
analysis of variability and change in Arctic spring snow
cover extent, 1967–2008, J. Geophys. Res., 115, D16111,
https://doi.org/10.1029/2010JD013975, 2010.

Brown, R. D.: Northern Hemisphere snow cover variability and
change, 1915–1997, J. Climate, 13, 2339–2355, 2000.

Cao, Q., Hong, Y., Chen, S., Gourley, J. J., Zhang, J., and Kirstetter,
P. E.: Snowfall detectability of NASA’s CloudSat: the first cross-
investigation of its 2c-snow-profile product and national multi-
sensor mosaic QPE (NMQ) snowfall data, Prog. Electromagn.
Res., 148, 55–61, https://doi.org/10.2528/PIER14030405, 2014.

Chandra, A., Zhang, C., Kollias, P., Matrosov, S., and Szyrmer,
W.: Automated rain rate estimates using the Ka-band ARM
zenith radar (KAZR), Atmos. Meas. Tech., 8, 3685–3699,
https://doi.org/10.5194/amt-8-3685-2015, 2015.

www.atmos-meas-tech.net/10/2557/2017/ Atmos. Meas. Tech., 10, 2557–2571, 2017

https://doi.org/10.1029/2010JD013975
https://doi.org/10.2528/PIER14030405
https://doi.org/10.5194/amt-8-3685-2015


2570 S. J. Cooper et al.: A variational technique to estimate snowfall rate

Christensen, M. W., Behrangi, A., L’Ecuyer, T., Wood, N. B., Leb-
sock, M. D., and Stephens, G. L.: Arctic Observation and Re-
analysis Integrated System: A New Data Product for Valida-
tion and Climate Study, B. Am. Meteorol. Soc., 97, 907–915,
https://doi.org/10.1175/BAMS-D-14-00273.1, 2016.

Cohen, J. and Rind, D.: The effect of snow cover on the climate, J.
Climate, 4, 689–706, 1991.

Draine, B. T. and Flatau, P. J.: Discrete-dipole approximation for
scattering calculations, J. Opt. Soc. Am., 11A, 1491–1499, 1994.

Dyurgerov, M. and Meier, M. F.: Glaciers and changing Earth sys-
tem: a 2004 snapshot, INSTAAR, Boulder, 2005.

Feng, Z., McFarlane, S. A., Schumacher, C., Ellis, S., Com-
stock, J., and Bharadwaj, N.: Constructing a merged cloud–
precipitation radar dataset for tropical convective clouds dur-
ing the DYNAMO/AMIE experiment at Addu Atoll, J. Atmos.
Ocean. Tech., 31, 1021–1042, https://doi.org/10.1175/JTECH-
D-13-00132.1, 2014.

Folland, C.: Numerical models of the raingauge exposure problem,
field experiments and an improved collector design, Q. J. Roy.
Meteor. Soc. 114, 1485–1516, 1988.

Frauenfeld, O. W., Zhang, T., Barry, R. G., and Gilichin-
sky, D.: Interdecadal changes in seasonal freeze and
thaw depths in Russia, J. Geophys. Res., 109, D05101,
https://doi.org/10.1029/2003JD004245, 2004.

Gardner, A. S., Moholdt, G., Cogley, J. G., Wouters, B., Arendt,
A. A., Wahr, J., Berthier, E., Hock, R., Pfeffer, W. T., Kaser, G.,
Ligtenberg, S. R. M., Bolch, T., Sharp, M. J., Hagen, J. O., van
den Broeke, M., and Paul, F.: A Reconciled Estimate of Glacier
Contributions to Sea Level Rise: 2003 to 2009, Science, 340,
852–857, https://doi.org/10.1126/science.1234532, 2013.

Garrett, T. J. and Yuter, S. E.: Observed influence of rim-
ing, temperature, and turbulence on the fallspeed of
solid precipitation, Geophys. Res. Lett., 41, 6515–6522,
https://doi.org/10.1002/2014GL061016, 2014.

Garrett, T. J., Fallgatter, C., Shkurko, K., and Howlett, D.: Fall
speed measurement and high-resolution multi-angle photogra-
phy of hydrometeors in free fall, Atmos. Meas. Tech., 5, 2625–
2633, https://doi.org/10.5194/amt-5-2625-2012, 2012.

Garrett, T. J, Yuter, S. E., Fallgatter, C., Shkurko, K., Rhodes, S. R.,
and Endries, J. L.: Orientations and aspect ratios of falling snow,
Geophys. Res. Lett., https://doi.org/10.1002/2015GL064040,
2015.

Goodison, B. E., Louie, P. Y. T., and Yang, D.,: WMO solid pre-
cipitation measurement intercomparison, WMO Instruments and
Observing Methods Rep. 67, WMO/TD-872, 212 pp., 1998.

Hammonds, K. D., Mace, G. G., and Matrosov, S. Y.: Charac-
terizing the radar backscatter-cross-section sensitivities of ice-
phase hydrometeor size distributions via a simple scaling of the
Clausius-Mossotti factor, J. Appl. Meteorol. Clim., 53, 2761–
2774, https://doi.org/10.1175/JAMC-D-13-0280.1, 2014.

Heymsfield, A. J., Field, P., and Bansemer, A.: Exponential
size distributions for snow, J. Atmos. Sci., 65, 4017–4031,
https://doi.org/10.1175/2008JAS2583.1, 2008.

Holland, M. M. and Bitz, C. M.: Polar amplification of climate
change in coupled models, Clim. Dynam., 21, 221–232, 2003.

Holland, M. M., Bitz, C. M., and Tremblay, L.-B.: Future abrupt
reductions in the summer arctic sea ice, Geophys Res. Lett., 33,
L23503, https://doi.org/10.1029/2006GL028024, 2006.

Hudak, D. R., Barker, H. W., Rodriguez, P., and Donovan, D. P.:
The Canadian CloudSat Validation Project, paper presented at
4th European Conference on Radar in Hydrology and Meteo-
rology, Servei Meteorolog. de Catalunya (Meteocat), Barcelona,
Spain, 18–22 September, 2006.

Jacob, T., Wahr, J., Pfeffer, W. T., and Swenson, S.: Recent con-
tributions of glaciers and ice caps to sea level rise, Nature, 482,
514–518, https://doi.org/10.1038/nature10847, 2012.

Kleinkort, C., Huang, G.-J., Bringi, V. N., and Natoro, B. M.: Vi-
sual Hull Method for Realistic 3D Particle Shape Reconstruc-
tion Based on High-Resolution Photographs of Snowflakes in
Freefall from Multiple Views, J. Atmos. Ocean. Tech., 34, 679–
702, https://doi.org/10.1175/JTECH-D-16-0099.1, 2016.

Kulie, M. S. and Bennartz, R.: Utilizing spaceborne radars to re-
trieve dry snowfall, J. Appl. Meteorol. Climatol., 48, 2564–2580,
https://doi.org/10.1175/2009JAMC2193.1, 2009.

Kulie, M. S., Milani, L., Wood, N. B., Tushaus, S. A., and L’Ecuyer,
T. S.: A Shallow Snowfall Census Using Spaceborne Radar, J.
Hydrometeorol., 17, 1261–1279, 2016.

Larson, L. W. and Peck, E. L.: Accuracy of Precipitation Measure-
ments for Hydrologic Modeling, Water Resour. Res., 10, 857–
863, 1974.

Lenaerts, J. T. M., van Angelen, J. H., van den Broeke, M. R.,
Gardner, A. S., Wouters, B., and van Meijgaard, E.: Irreversible
mass loss of Canadian Arctic Archipelago glaciers, Geophys.
Res. Lett., 40, 870–874, https://doi.org/10.1002/grl.50214, 2013.

Liu, G.: Deriving snow cloud characteristics from Cloud-
Sat observations, J. Geophys. Res., 113, D00A09,
https://doi.org/10.1029/2007JD009766, 2008a.

Liu, G.: A database of microwave single-scattering properties for
nonspherical ice particles, B. Am. Meteorol. Soc., 89, 1563–
1570, 2008b.

Locatelli, J. D. and Hobbs, P. V.: Fall speeds and masses of
solid precipitation particles, J. Geophys. Res., 79, 2185–2197,
https://doi.org/10.1029/JC079i015p02185, 1974.

Manabe, S. and Stouffer, R. J.: Sensitivity of a Global
Climate Model to an Increase of CO2 Concentration
in the Atmosphere, J. Geophys. Res., 85, 5529–5554,
https://doi.org/10.1029/JC085iC10p05529, 1980.

Matrosov, S. Y.: Modeling backscatter properties of snowfall at mil-
limeter wavelengths, J. Atmos. Sci., 64, 1727–1736, 2007.

Matrosov, S. Y., Shupe, M. D., and Djalalova, I. V.:
Snowfall Retrievals Using Millimeter-Wavelength
Cloud Radars, J. Appl. Meteorol., 47, 769–777,
https://doi.org/10.1175/2007JAMC1768.1, 2007.

Mitchell, D. L.: Use of mass- and area-dimensional power laws for
determining precipitation particle terminal velocities, J. Atmos.
Sci., 53, 1710–1723, 1996.

Newman, A. J., Kucera, P. A., and Bliven, L. F.: Presenting the
snowflake video imager (SVI), J. Atmos. Ocean. Tech., 26, 167–
179, 2009.

Noh, Y.-J., Liu, G., Seo, E.-K., Wang, J. R., and Aonashi,
K.: Development of a snowfall retrieval algorithm at high
microwave frequencies, J. Geophys. Res., 111, D22216,
https://doi.org/10.1029/2005JD006826, 2006.

Norin, L., Devasthale, A., L’Ecuyer, T. S., Wood, N. B., and Smal-
ley, M.: Intercomparison of snowfall estimates derived from the
CloudSat Cloud Profiling Radar and the ground-based weather

Atmos. Meas. Tech., 10, 2557–2571, 2017 www.atmos-meas-tech.net/10/2557/2017/

https://doi.org/10.1175/BAMS-D-14-00273.1
https://doi.org/10.1175/JTECH-D-13-00132.1
https://doi.org/10.1175/JTECH-D-13-00132.1
https://doi.org/10.1029/2003JD004245
https://doi.org/10.1126/science.1234532
https://doi.org/10.1002/2014GL061016
https://doi.org/10.5194/amt-5-2625-2012
https://doi.org/10.1002/2015GL064040
https://doi.org/10.1175/JAMC-D-13-0280.1
https://doi.org/10.1175/2008JAS2583.1
https://doi.org/10.1029/2006GL028024
https://doi.org/10.1038/nature10847
https://doi.org/10.1175/JTECH-D-16-0099.1
https://doi.org/10.1175/2009JAMC2193.1
https://doi.org/10.1002/grl.50214
https://doi.org/10.1029/2007JD009766
https://doi.org/10.1029/JC079i015p02185
https://doi.org/10.1029/JC085iC10p05529
https://doi.org/10.1175/2007JAMC1768.1
https://doi.org/10.1029/2005JD006826


S. J. Cooper et al.: A variational technique to estimate snowfall rate 2571

radar network over Sweden, Atmos. Meas. Tech., 8, 5009–5021,
https://doi.org/10.5194/amt-8-5009-2015, 2015.

Palerme, C., Kay, J. E., Genthon, C., L’Ecuyer, T., Wood, N. B., and
Claud, C.: How much snow falls on the Antarctic ice sheet?, The
Cryosphere, 8, 1577–1587, https://doi.org/10.5194/tc-8-1577-
2014, 2014.

Palerme, C., Genthon, C., Claud, C., Kay, J. E., Wood, N. B., and
L’Ecuyer, T.: Evaluation of Antarctic snowfall in global meteo-
rological reanalyses, Atmos. Res., 190, 104–112, 2016.

Perlwitz J., Hoerling, M., and Dole, R.: Arctic Tropospheric Warm-
ing: Causes and Linkages to Lower Latitudes, J. Climate, 28,
2154–2167, https://doi.org/10.1175/JCLI-D-14-00095.1, 2015.

Peterson, B. J., McClelland, J., Curry, R., Holmes, R. M.,
Walsh, J. E., and Aagaard, K.: Trajectory shifts in the Arc-
tic and subarctc freshwater cycle, Science, 313, 1061–1066,
https://doi.org/10.1126/science.1122593, 2006.

Praz, C., Roulet, Y.-A., and Berne, A.: Solid hydrometeor classifica-
tion and riming degree estimation from pictures collected with a
Multi-Angle Snowflake Camera, Atmos. Meas. Tech., 10, 1335–
1357, https://doi.org/10.5194/amt-10-1335-2017, 2017.

Rasmussen, R., Baker, B., Kochendorfer, J., Meyers, T., Landolt,
S., Fischer, A. P., Black, J., Theìriault, J. M., Kucera, P., Gochis,
D., Smith, C., Nitu, R., Hall, M., Ikeda, K., and Gutmann, E.:
How well are we measuring snow: the NOAA/FAA/NCAR win-
ter precipitation test bed, B. Am. Meteorol. Soc., 93 811–829,
https://doi.org/10.1175/BAMS-D-11-00052.1, 2012.

Rodgers, C. D.: Inverse Methods for Atmospheric Sounding, World
Scientific Publishing, 256 pp., 2000.

Romanovsky, V., Burgess, M., Smith, S., Yoshikawa, K., and
Brown, J.: Permafrost Temperature Records: Indicators of Cli-
mate Change, EOS, AGU Transactions, 83, 589–594, 2002.

Saltikoff E., Lopez P., Taskinen A., and Pulkkinen S.: Compari-
son of quantitative snowfall estimates from weather radar, rain
gauges and a numerical weather prediction model, Boreal Envi-
ron. Res., 20, 667–678, 2015.

Serreze, M. C. and Francis, J. A.: The Arctic amplification debate,
Climatic Change, 76, 241–264, 2006.

Serreze, M. C., Walsh, J. E., Chapin, F. S., Osterkamp, T., Dyurg-
erov, M., Romanovsky, V., Oechel, W. C., Morison, J., Zhang,
T., and Barry, R.: Observational evidence of recent change in the
northern high-latitude environment, Climatic Change, 46, 159–
207, 2000.

Skofronick-Jackson, G., Hudak, D., Petersen, W. , Nesbitt, S. W.,
Chandrasekar, V., Durden, S., Gleicher, K. J., Huang, G. J.,
Joe, P., Kollias, P., Reed, K. A., Schwaller, M. R., Stewart, R.,
Tanelli, S., Tokay, A., Wang, J. R., and Wolde, M.: Global Pre-
cipitation Measurement Cold Season Precipitation Experiment
(GCPEX): For measurement’s sake, let it snow, B. Am. Mete-
orol. Soc., 96, 1719–1741, https://doi.org/10.1175/BAMS-D-13-
00262.1, 2015.

Skofronick-Jackson, G. M., Kim, M. J., Weinman, J. A., and Chang,
D. E.: A physical model to determine snowfall over land by mi-
crowave radiometry, IEEE T. Geosci. Remote, 42, 1047–1058,
2004.

Smalley, M., L’Ecuyer, T., Lebsock, M., and Haynes, J.: A compar-
ison of precipitation occurrence from the NCEP StageIV QPE
Product and the CloudSat Cloud Profiling Radar, J. Hydrol., 15,
444–458, https://doi.org/10.1175/JHM-D-13-048.1, 2014.

Speirs, P., Gabella, M., and Berne, A.: A Comparison between
the GPM Dual-Frequency Precipitation Radar and Ground-
Based Radar Precipitation Rate Estimates in the Swiss Alps and
Plateau, J. Hydrometeorol., 18, 1247–1269, 2017.

Stroeve, J., Serreze, M., Drobot, S., Gearheard, S., Holland, M.,
Maslanik, J., Meier, W., and Scambos, T.: Arctic sea ice extent
plummets in 2007, EOS, Trans. Am. Geophys. Union, 89, 13–14,
2008.

Stroeve, J. C., Markus, T., Boisvert, L., Miller, J., and Bar-
rett, A.: Changes in Arctic melt season and implications
for sea ice loss, Geophys. Res. Lett., 41, 1216–1225,
https://doi.org/10.1002/2013GL058951, 2014.

Thériault, J. M., Rasmussen, R., Petro, E., Trepanier, J. Y., Colli,
M., and Lanza, L. D.: Impact of Wind Direction, Wind Speed,
and Particle Characteristics on the Collection Efficiency of
the Double Fence Intercomparison Reference, J. Appl. Meteo-
rol. Clim., 54, 1918–1930, https://doi.org/10.1175/JAMC-D-15-
0034.1, 2015.

Van Tricht, K., Lhermitte, S., Lenaerts, J. T. M., Gorodet-
skaya, I. V., L’Ecuyer, T., Noel, B., van den Broeke, M.
R., Turner, D. D., and van Lipzig, N. P. M.: Clouds en-
hance Greenland ice sheet meltwater runoff, Nat. Commun., 7,
https://doi.org/10.1038/ncomms10266, 2016.

Vavrus, S.: The role of terrestrial snow cover in the climate system,
Clim. Dynam., 29, 73–88, https://doi.org/10.1007/s00382-007-
0226-0, 2007.

Wolff, M. A., Isaksen, K., Petersen-Øverleir, A., Ødemark, K., Rei-
tan, T., and Brækkan, R.: Derivation of a new continuous adjust-
ment function for correcting wind-induced loss of solid precipita-
tion: results of a Norwegian field study, Hydrol. Earth Syst. Sci.,
19, 951–967, https://doi.org/10.5194/hess-19-951-2015, 2015.

Wood, N. B.: Estimation of snow microphysical properties with ap-
plication to millimeter-wavelength radar retrievals for snowfall
rate, PhD dissertation, Colorado State University, 231 pp., 2011.

Wood, N. B., L’Ecuyer, T., Vane, D. G., Stephens, G. L., and Par-
tain, P.: Level 2C snow profile process description and interface c
ontrol document, Tech. rep., Colorado State University, available
at: http://www.cloudsat.cira.colostate.edu/sites/default/files/
products/files/2C-SNOW-PROFILE_PDICD.P_R04.20130210.
pdf (last access: 3 August 2015), 2013.

Wood, N. B., L’Ecuyer, T. S., Heymsfield, A. J., Stephens,
G. L., Hudak, D. R., and Rodriguez, P.: Estimating snow
microphysical properties using collocated multisensor
observations, J. Geophys. Res.-Atmos., 119, 8941–8961
https://doi.org/10.1002/2013JD021303, 2014.

Wood, N. B., L’Ecuyer, T. S., Heymsfield, A. J., and Stephens,G. L.:
Microphysical Constraints on Millimeter-Wavelength Scattering
Properties of Snow Particles, J. Appl. Meteorol. Climatol., 54,
909–931, https://doi.org/10.1175/JAMC-D-14-0137.1, 2015.

Yang, D., Goodison, B. E., Metcalfe, J. R., Golubev, V. S., Bates,
R., Pangburn, T., and Hanson, C. L.: Accuracy of NWS 8 Stan-
dard Nonrecording Precipitation Gauge: Results and Application
of WMO Intercomparison, J. Atmos. Ocean. Tech., 15, 54–69,
1995.

Yang, D., Kane, D., Zhang, Z., and Goodison, B.: Bias cor-
rections of long-term (1973–2004) daily precipitation data
over the northern regions, Geophys. Res. Lett., 32, 1–5,
https://doi.org/10.1029/2005GL024057, 2005.

www.atmos-meas-tech.net/10/2557/2017/ Atmos. Meas. Tech., 10, 2557–2571, 2017

https://doi.org/10.5194/amt-8-5009-2015
https://doi.org/10.5194/tc-8-1577-2014
https://doi.org/10.5194/tc-8-1577-2014
https://doi.org/10.1175/JCLI-D-14-00095.1
https://doi.org/10.1126/science.1122593
https://doi.org/10.5194/amt-10-1335-2017
https://doi.org/10.1175/BAMS-D-11-00052.1
https://doi.org/10.1175/BAMS-D-13-00262.1
https://doi.org/10.1175/BAMS-D-13-00262.1
https://doi.org/10.1175/JHM-D-13-048.1
https://doi.org/10.1002/2013GL058951
https://doi.org/10.1175/JAMC-D-15-0034.1
https://doi.org/10.1175/JAMC-D-15-0034.1
https://doi.org/10.1038/ncomms10266
https://doi.org/10.1007/s00382-007-0226-0
https://doi.org/10.1007/s00382-007-0226-0
https://doi.org/10.5194/hess-19-951-2015
http://www.cloudsat.cira.colostate.edu/sites/default/files/products/files/2C-SNOW-PROFILE_PDICD.P_R04.20130210.pdf
http://www.cloudsat.cira.colostate.edu/sites/default/files/products/files/2C-SNOW-PROFILE_PDICD.P_R04.20130210.pdf
http://www.cloudsat.cira.colostate.edu/sites/default/files/products/files/2C-SNOW-PROFILE_PDICD.P_R04.20130210.pdf
https://doi.org/10.1002/2013JD021303
https://doi.org/10.1175/JAMC-D-14-0137.1
https://doi.org/10.1029/2005GL024057

	Abstract
	Introduction
	Methodology
	CloudSat snowfall retrieval scheme
	Multi-Angle Snowflake Camera
	Combined radar--MASC retrieval

	Snowfall retrieval results
	Snow events and retrieval assumptions
	23 April snow event
	15 May snow event
	Totals for five snow events

	Discussion and conclusions
	Data availability
	Competing interests
	Acknowledgements
	References

