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Abstract. Evaluating and attributing uncertainties in total
column atmospheric CO; measurements (XCO,) from the
OCO-2 instrument is critical for testing hypotheses related to
the underlying processes controlling XCO, and for develop-
ing quality flags needed to choose those measurements that
are usable for carbon cycle science.

Here we test the reported uncertainties of version 7 OCO-
2 XCO, measurements by examining variations of the XCO,
measurements and their calculated uncertainties within small
regions (~ 100km x 10.5 km) in which natural CO; variabil-
ity is expected to be small relative to variations imparted by
noise or interferences. Over 39000 of these “small neigh-
borhoods” comprised of approximately 190 observations per
neighborhood are used for this analysis. We find that a typi-
cal ocean measurement has a precision and accuracy of 0.35
and 0.24 ppm respectively for calculated precisions larger
than ~ 0.25 ppm. These values are approximately consistent
with the calculated errors of 0.33 and 0.14 ppm for the noise
and interference error, assuming that the accuracy is bounded
by the calculated interference error. The actual precision for
ocean data becomes worse as the signal-to-noise increases or
the calculated precision decreases below 0.25 ppm for rea-
sons that are not well understood. A typical land measure-
ment, both nadir and glint, is found to have a precision and
accuracy of approximately 0.75 and 0.65 ppm respectively
as compared to the calculated precision and accuracy of ap-
proximately 0.36 and 0.2 ppm. The differences in accuracy
between ocean and land suggests that the accuracy of XCO»
data is likely related to interferences such as aerosols or sur-
face albedo as they vary less over ocean than land. The ac-
curacy as derived here is also likely a lower bound as it does

not account for possible systematic biases between the re-
gions used in this analysis.

1 Introduction

Variations of total column CO; (XCO3) resulting from pho-
tosynthesis and respiration in tropical forests (e.g., Parazoo
et al., 2013), urban emissions (e.g., Kort et al., 2012) or
tropical fires range from 2—5 ppm. Consequently, in order to
use space-based measurements of XCO, to infer fluxes or
properties of the processes controlling these variations, un-
certainties in XCO» should ideally be much smaller than
this variability (Miller et al., 2007). The Orbiting Carbon
Observatory-2 (OCO-2) was launched in July 2014, to mea-
sure the atmospheric column averaged carbon dioxide (CO5)
dry air mole fraction, XCO, with the precision, accuracy, and
coverage needed to quantify variations on regional scales at
monthly intervals. These measurements are being used to in-
vestigate the underlying carbon cycle processes controlling
atmospheric CO,. The radiative transfer and XCO; estima-
tion (or retrieval) algorithms (Boesch et al., 2006, 2011; Con-
nor et al., 2008; O’Dell et al., 2012) were developed and
tested using observed radiances from the Japanese TANSO
GOSAT instrument (Kuze et al., 2009; Yoshida et al., 2011),
which measured similar spectral regions as the OCO-2 mis-
sion. As discussed in Wunch et al. (2011), Crisp et al. (2012),
and Mandrake et al. (2013), these algorithms also allowed
extensive evaluation of quality flags and metrics needed to
reject estimated XCO, values that were outside the expected
range for XCO,, likely because of poorly estimated values
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for aerosols, clouds, surface albedo or surface pressure. In
this paper we evaluate the calculated uncertainties due to
noise and interferences in the OCO-2 data product (version
7). Our approach follows the methodology described in Boxe
et al. (2010) and Kuai et al. (2013) in which variations of the
observed trace gas over a small “area” are compared to the
calculated errors.

2 Overview of OCO-2 data

The OCO-2 instrument measures radiances in the molecu-
lar oxygen (O2) A-band (0.765 um), the “weak” CO, band
at 1.61 um, and the “strong” CO; band at 2.06 um. The
OCO-2 instrument is an imaging spectrometer that collects
eight samples, or “spatial footprints” across a narrow (0.8°)
swath track. Observations are taken in three different modes:
(1) “Nadir”, where the spacecraft points the instrument’s
aperture at the ground directly downward along the orbit
track; (2) “Glint”, where the spacecraft points instrument’s
aperture near the “glint spot” where sunlight is specularly re-
flected by the surface, near the specular reflection point for
sunlight; and (3) “Target”, where the spacecraft points the
instrument aperture at a stationary surface target, such as a
validation site or city.

Nadir observations usually return useful measurements
only over land. Glint observations return useful data over
both land and ocean. Here, we discriminate land-glint and
ocean-glint observations because they have different error
statistics. We do not evaluate Target data in this analysis due
to spurious statistics that are observed with the Target data.

As discussed in Boesch et al. (2006), Connor et al. (2008),
and O’Dell et al. (2012 and references therein), total column
estimates of XCQO,, are derived from OCO-2 observed ra-
diances using a Bayesian optimal estimation approach that
depends on COy, all the geophysical parameters or interfer-
ences that affect the radiances in these bands, and a priori
statistics of the atmosphere and these interferences.

We use version 7 of the OCO-2 data, the first OCO-
2 product distributed for general users. These data, like
those described for GOSAT data in Wunch et al. (2011),
are bias-corrected using a fit to retrieved aerosol optical
depth and the retrieved vertical CO, gradient based on com-
parisons between OCO-2 and total column measurements
from the ground-based Total Carbon Column Observing Net-
work (TCCON) and regions where XCOQO» variations are ex-
pected to be small relative to the measurement uncertain-
ties (Wunch et al., 2011, 2017). We find that use of the
bias-corrected data greatly improves comparisons between
expected variability within a neighborhood and the actual
observed variability (see Appendix). Data quality is eval-
uated using a variety of metrics that depend on the esti-
mated cloud, aerosol, and surface properties, convergence,
and known statistics of the retrieved XCO; values (e.g., Man-
drake et al., 2013). Data quality flags are given as “warn

Atmos. Meas. Tech., 10, 2759-2771, 2017

J. R. Worden et al.: Evaluation and attribution

levels” with values ranging from O (best) to 19 (worst).
Data with lower warn levels are more likely to represent
the statistics of the observed CO, whereas data with higher
warn levels are likely too strongly affected by interfering ef-
fects. The warn levels are primarily evaluated empirically;
for these reasons we conservatively use only data with warn
levels of 10 or smaller to ensure that the corresponding er-
rors are likely well characterized: https://docserver.gesdisc.
eosdis.nasa.gov/public/project/OCO/OCO2_DUG.V7.pdf.

We find empirically that use of data with warn levels less
than 10 improves the comparison between the calculated un-
certainties and observed variance as discussed in the Ap-
pendix.

3 Evaluation of uncertainties

We evaluate the uncertainties of the XCO; observations by
examining the variations of XCO, within small neighbor-
hoods of approximately 10.5 by 100km in size. Within a
neighborhood there are about 190 observations that are taken
consecutively. After warn level filtering, this “small neigh-
borhood” test set is composed of approximately 1.5 million
land-nadir soundings, 1.0 million land-glint soundings, and
5.0 million ocean-glint soundings. We only select neighbor-
hoods that contains at least 50 soundings that pass these crite-
ria. There are approximately 39 000 small neighborhoods in
total across the three modes. stretching from approximately
30° S to 30° N. The strict filtering used in this analysis (warn
levels < 10), and the need for at least 50 measurements per
bin limits this analysis to latitudes between 30° S and 30° N,
primarily over drier, subtropical regions over land but no ob-
vious preferential distribution over the ocean (not shown).
As discussed in O’Dell et al. (2012), a CO; profile is si-
multaneously estimated with all other geophysical param-
eters that affect the observed radiance such as aerosols,
albedo, and surface pressure. The “column-averaged dry air
mole fraction” of CO; or XCO3 is then calculated by apply-
ing the column operator (e.g., Connor et al., 2008; Worden
et al., 2015) to the estimated CO, profile. As discussed in
Rodgers (2000), Worden et al. (2004), Connor (2008), and
Bowman et al. (2006), when this nonlinear retrieval con-
verges to a solution, the estimated XCO», can be written as

X = Xa +hTAxx (x _xa)
+hT Ay (y—y,) + R Gn+RT G Kidi, ()

where X is the estimated total column for COa,, )A(a is the
a priori value used to help regularize the retrieval, and the
vector x is the “true” CO; profile in units of volume mix-
ing ratio (VMR), discretized onto the forward model atmo-
spheric pressure grid used to calculate the transfer of radi-
ation needed to model the observed radiance. The x, is the

a priori for the CO; profile. The vector “y” contains all the
other parameters that are simultaneously estimated with x
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such as aerosol properties, surface albedo, surface pressure.
The vector “n” is the actual noise in the radiance. The quan-
tities x, y, and n are not known exactly, only their statistical
properties can be estimated. The vector “A” is the column op-
erator which maps a profile on the pressure grid defined by
“x” into a dry air total column. The averaging kernel matrix
A describes the sensitivity of the estimate to each retrieved
parameter (Rodgers, 2000). In Eq. (1) the averaging kernel
matrix is composed of two parts, Ay, and A, described by

A A
A= XX Xy . 2
|: A)’X A)’)’] ( )

For example Ay, describes the sensitivity (or %) of the
estimated CO; on each level, x, to its true value, whereas
A, describes the sensitivity of the estimated CO; on each
level, x, to all other simultaneously estimated parameters,
e.g., aerosols. The matrix G is the gain matrix, which is the
derivative of the estimated CO; on each level, x, to the ob-
served radiance, L (or G = g—z). The matrix K is the Jaco-
bian, or sensitivity of the observed radiance to a parameter
(e.g,. K= %). The last term, §, describes the error in all pa-
rameters that are not estimated for this retrieval, but are as-
sumed constant, such as absorption coefficients or instrument
functions (e.g., Connor et al., 2008). The mean CO; column
is written as

A 1
Xmean = Xa + hTﬁ j-v:lAj (xj _xa)
1 s,
+ NhT ZAblcy (J’j - ya)
Jj=1

N
+%j§hTGJ- (nj‘f‘zi’jKi,jai,j)v 3)

where N is the number of observations within the small
neighborhood and for simplicity we assume the column op-
erator £ is constant across the domain.

For the next three sections, we test the following hypothe-
ses regarding the observed distributions within the collection
of “small neighborhoods” and their calculated uncertainties:

— HI: observed variability in small neighborhood is due
to natural XCO; variability.

— H2: observed variability in small neighborhood is due
to measurement noise.

— H3: observed variability is correlated.

— H4: observed variability within a small neighborhood is
described by a slowly varying bias that is not explained
by natural XCO, variability.

We look at the variability with respect to the neighborhood
mean in two ways: (1) for small neighborhoods, the predicted
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errors for a neighborhood are averaged from the observa-
tions that comprise that neighborhood, making the statistics
technically a sum of Gaussians, and (2) the variability with
respect to the neighborhood mean, sorted by predicted er-
ror and aggregated over many neighborhoods — the statistics
in this case should be Gaussian; however the locality of the
analysis is somewhat reduced.

To evaluate whether measurement noise in the radiances is
the primary factor driving variability within a small neigh-
borhood we first assume that the terms Ayy(y; —y,) and
systematic errors K; ;8; ; do not vary. Based upon these ap-
proximations, the difference between an observation and its
mean is given by

N N 1 &
Xobs — Xmean = Sobs = 0XC0, + GobsMobs — ﬁ ZGjnj , (4
J

where dxco, = hT A(xobs — Xmean) and is the difference be-
tween the individual “true”” XCO, and the mean of the “true”
XCO; values within the neighborhood. Assuming that the
measurement noise is spatially uncorrelated, the variance
within the small neighborhood (e.g., Bowman et al., 2006)
is

Var ‘ ‘Xobs — Xmean

2 2
= Oobs = 9XCO,
1 & 2
2 2 2
+ Ohoise T _zzaj - %% ®)
N? & N

roise = GK SkGIT< is the measurement uncertainty due
to noise. The oxco, is the variability of the true XCO, within
the small neighborhood. The Sy is the spectral instrumental
noise covariance and is calculated during calibration of the
instrument. The individual oyise Values are provided for each
measurement in the OCO-2 product files. For large N, Eq. (5)
is approximately equal to

where o2

2 2
GXC02 + Onoise*

3.1 H1: observed variability is due to natural XCO,
variability

In order to test whether natural variability, or aicoz,
affects the observed variance of XCO, within each
neighborhood we examine XCO, estimates from the
NASA GMAO high-resolution free-running GEOS-5 CO,
simulation available at https://gmao.gsfc.nasa.gov/global_
mesoscale/7km-G5NR/data_access. We use model fields that
correspond to each measurement within each neighborhood.
There is a spatial mis-match because the model fields are at
7km x 7km resolution whereas the OCO-2 data are taken
every 3 km; however, we discount the role of spatial res-
olution because our results do not fundamentally change
when smoothing the data from 7km x 7km (lat/long) to
14km x 7km (lat/long). The dates of the model run (2006)
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also do not match the dates of the OCO-2 data (2014-2015).
However, since we are looking to quantify the approximate
range of natural variability we would not expect inter-annual
differences in XCO; from winds or fluxes to substantively
alter our conclusions when looking at XCO;, over a large
swath of the Earth; as discussed next, comparisons with
other data and model are consistent with this conclusion.
From the GMAO model, we find that natural variability typ-
ically accounts for about 0.08 ppm of the variability within a
~ 100 km neighborhood over land and about 0.06 ppm within
a typical ~ 100 km neighborhood over the ocean (see the Ap-
pendix). We subsequently assume that natural variability has
negligible impact on our conclusions as we find it is on aver-
age much smaller than the observed variability.

3.2 H2: observed variability in small neighborhood is
due to measurement noise

We next compare observed variability across all the neigh-
borhoods to the calculated uncertainties using two ap-
proaches. In the first approach we gather all observations that
have approximately the same calculated measurement uncer-
tainty due to noise, UI%Oise, (to within 0.01 ppm) as provided
in the OCO-2 product files and compare to the actual vari-
ability of these observations. The steps for this comparison

are as follows:

1. Calculate the 845 or difference between an observation
and its mean within a small neighborhood as shown in

Eq. 4).

2. Collect all of the §ops values from all neighborhoods
used in this analysis whose corresponding oyeige val-
ues (measurement uncertainty) are the same to within
0.01 ppm and bin them as a function of oyise. There are
typically about 1000 observations per opoise bin.

3. Compare the standard deviation of the collection of
dobsvalues within each bin to the expected standard de-
viation due to noise or, opeise- Based on Eq. (5) we
should expect to get a linear, one-to-one relationship if
the dominant parameter affecting the variability within
a small neighborhood is noise.

The results of these comparisons for land-nadir, land-glint,
and ocean-glint observations are shown in the upper left pan-
els of Figs. 1, 2, and 3 respectively. These results show the
calculated measurement uncertainty due to noise has skill —
i.e., there is a linear relationship between calculated and ac-
tual error. However, over land the observed random variabil-
ity is approximately 0.4 ppm larger than the variability ex-
pected from noise. We discount synoptic variations in XCO;
as discussed in the previous section. Other sources of vari-
ability could be due to the strong nonlinearities in the re-
trieval (e.g., Kulawik et al., 2008) or local variability between
the true and a priori in the interferences, or non-retrieved pa-
rameters. Over the ocean there appears to be an even stronger
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one-to-one relationship between the calculated uncertainty
and the actual uncertainty except for calculated uncertain-
ties less than approximately 0.25 ppm which show a strong
inverse relationship. We find that these observations (not
shown) tend to occur in the tropics in cloudy regions and
that the observations tend to have very high signal-to-noise
ratios.

We next test whether the calculated measurement noise is a
useful value for predicting the expected distribution of obser-
vations within a neighborhood. Because each o is drawn
from a distribution with a different variance, we treat the
sample of each set of observations, [§1, d2,...0n], as being
drawn from an uncorrelated distribution with individual vari-
ances G()zbs' Accordingly, the variance of this sample should
be the average of the individual variances oozbs:

VarllRops — el = 151,82, .8x 11l = >0 6)
The top right panel of Fig. 1 shows a comparison of the ob-
served variance of the XCO; distributions (using the left side
of Eq. 6) within each neighborhood (black circles) versus the
expected variance in XCO; using the right side of Eq. (6).
Each black symbol represents a single neighborhood. In con-
trast to the top left panel of Fig. 1, this result suggests that
the measurement error has no skill in predicting the observed
variance of XCO, within a neighborhood.

We next test whether the observed variance, versus that
due to measurement noise or sampling, explains the upper
right panel of Figs. 1, 2, and 3. To perform this test, we per-
form the following steps:

1. Within each neighborhood, replace the calculated mea-
surement error with the “actual” measurement error as
shown by the solid red line in the upper left panel of
Figs. 1, 2, and 3, for each observation.

2. Create a simulated distribution of observations based on
this new uncertainty.

3. Randomly sample (or take) one of these observations
— label this the “modeled” observation.

4. Repeat steps 1-3 for all observations in the neighbor-
hood.

5. Calculate the variance of this “modeled” set of observa-
tions for each neighborhood.

The red dots in Figs. 1b, 2b, and 3b show the modeled dis-
tributions using the steps discussed above. The modeled dis-
tribution is more consistent with the mean of the observed
distribution relative to the one-to-one line. However, it is
clear from this simulation that errors due to random noise
and sampling do not explain the observed variance for each
neighborhood although the distribution of variances for the
ocean show much better agreement relative to the land distri-
butions.

www.atmos-meas-tech.net/10/2759/2017/
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Figure 1. The calculated, observed, and modeled uncertainties for land-nadir observations. The black circles are the observed distributions
and red circles are modeled distributions. (a) Comparison between expected and actual error when binning all the data by their calculated
uncertainty; the solid black line is the one-to-one line. (b) Comparison between calculated and random error for each neighborhood (black)
versus model (red) when using observed random error from Fig. 1a. (¢) Same as Fig. 1b but now adding a correlation between adjacent data
points. (d) Same as Fig. 1b but now accounting for distribution of observed gradients across the neighborhoods used for analysis.
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Figure 2. Observed and modeled distributions for land-glint data.
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Figure 3. Observed and modeled distributions for sea-glint data.
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Figure 4. Distribution of XCO, values between time steps for the
set of observations from each “small neighborhood” used in this
analysis.

3.3 H3: uncertainties are correlated

We next test whether observed correlations in the data could
explain the distributions of the data within a neighborhood.
Figure 4 shows the joint distribution of the XCO, anomaly
and a 0.3s lagged anomaly in a neighborhood (consistent
with observation sampling). If the data were uncorrelated
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then the joint distribution should be circular; the asymmet-
ric distribution therefore implies that the errors, as empiri-
cally described by the differences, are correlated. Figure Sa
and b show that autocorrelation is observed both in time for
measurements made of the order of 1s of each other, and
with respect to the spatially adjacent “footprints”, the eight
simultaneous measurements made by the OCO-2 instrument
at each time. The range of correlations for the different obser-
vation types, land nadir, land glint, and ocean glint are 0.45,
0.43, and 0.28 as a function of footprint and 0.31, 0.34, and
0.24 as a function of time.

In order to test whether these observed correlations could
explain the distributions shown in Figs. 1, 2, and 3, we con-
servatively use a correlation coefficient of 0.7 for all observa-
tions (an extreme case). We then use the following procedure,
building on the steps described in the previous section.

1. Within each neighborhood replace the calculated mea-
surement error with the “actual” measurement error as
shown in the upper left panels of Figs. 1, 2, and 3 for an
observation.

2. Starting with the first observation (in time) within a
neighborhood for Footprint #1, sample a value for the
observation from the distribution of “actual” measure-
ment errors. Label this the “modeled” observation.

3. For all subsequent observations in time for Footprint #1,
sample each “modeled” observation from a distribution
that is correlated with the modeled observation at the
previous time step and has a variance corresponding to
the “actual” measurement error.

www.atmos-meas-tech.net/10/2759/2017/
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Figure 5. (a) Correlation of differences across pixels between observed minus mean within a neighborhood. (b) Correlation between obser-

vations for a single pixel.

4. For observations in Footprints #2—-8, sample each mod-
eled observation from a distribution correlated with the
modeled observation at the same time step in the pre-
vious (adjacent) footprint, again with a variance corre-
sponding to the “actual” error.

5. Calculate variance of this “modeled” set of observa-
tions, for each neighborhood.

As can be seen in the lower left panels of Figs. 1, 2, and 3,
adding correlations to the data makes the comparison worse
because the modeled distributions become much narrower
relative to the modeled distributions in the upper right panels
of these figures. Our conservative choice of a 0.7 correlation
between observations at adjacent times and footprints illus-
trates this effect clearly. We therefore conclude that while
correlations are empirically observed in the data, they can-
not completely explain the observed distributions within the
small neighborhoods.

3.4 H4: observed variability within a small
neighborhood is described by a slowly varying bias
that is not explained by natural XCQ; variability

We next examine whether “non-random” uncertainties could
explain the observed distributions in the upper right panels
of Figs. 1, 2, and 3. For example, as shown in Eq. (1), the
jointly retrieved parameters (y — y,) might remain constant
across a neighborhood but the averaging kernel associated
with this term, which is given by A,, = g—z% = GK,, can
vary across a neighborhood as the pointing angle varies. The
effect of non-retrieved parameters such as instrument effects
or spectroscopy on the estimate can vary for the same reason.

Figure 6 shows the variation of XCO; across one of the
ocean neighborhoods for all eight OCO-2 footprints (denoted
by “FP”). The right panel shows the observed distribution in
black relative to the mean XCO, of the neighborhood. For
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reference, the red dashed line in the right panel indicates
the expected distribution if only the calculated random noise
explained the variability. The slope shown in Fig. 6 repre-
sents an extreme case but demonstrates that observations can
pass the set of quality flags but still show this unlikely be-
havior over the ocean. Figure 7a shows the distribution of
all slopes across all land-nadir neighborhoods used in this
study and different fits (Gaussian, Lorentz, Laplace) to the
distribution. The Laplace distribution provides the best over-
all fit so we use its functional form as a simple, convenient
description of the shape of the sharply peaked slope distri-
bution. More complex models such as Gaussian mixtures
might also describe the shape of this distribution of slopes as
drawn from several distinct “populations” of neighborhoods,
but we leave such an analysis to future work. For compari-
son, Fig. 7b shows the expected distribution using the GMAO
model XCO; fields described earlier. As with the OCO-2
data shown in Fig. 7a, the histogram in Fig. 7b describes the
distribution of XCO; gradients across 100 km neighborhoods
spatially corresponding to the OCO-2 data. The expected dis-
tribution of natural variability of XCO; across the 100 km
neighborhoods is much smaller than observed (as with the
conclusions about natural variability discussed for H1); we
therefore do not expect that the natural carbon cycle can ex-
plain these observed variations.

For land-nadir, land-glint, and ocean-glint data the
variance of the slopes is given by 1.28 ppm 100km™!,
1.12 ppm 100 km~", and 0.48/100 km respectively. As shown
in the Appendix, these values are much larger than the gradi-
ents expected from natural variability, such as the latitudinal
gradient in XCO,. Consequently, we expect these gradients
to be related to interferences in the XCQO, data.

To test whether these slowly varying changes explain the
distribution of XCO, within small neighborhoods we follow

Atmos. Meas. Tech., 10, 2759-2771, 2017
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Figure 6. The difference between XCO, and the mean value (or delta XCO,) for one of the small neighborhoods (or areas) used in this
analysis. The left panel shows the differences for each footprint (FP), representative of one of the OCO-2 observations. The right panel shows
the observed distribution (actual) and one calculated if the distributions were representative of the calculated random error.
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Figure 7. (a) The distributions of slopes of the observed XCO, gradients across all the small neighborhoods corresponding to land-nadir
observations. (b) The expected distribution of slopes in XCO based on the GMAO high-resolution model.

the same steps described in Sect. 3.2 and 3.3 but now add
another:

1. Within each neighborhood replace the calculated mea-
surement error with the “actual” measurement error as
shown in the upper left panels of Figs. 1, 2, and 3 for an
observation.

. Starting with the first observation (in time) within a
neighborhood for Footprint #1, sample a value for the
observation from the distribution of “actual” measure-
ment errors. Label this the “modeled” observation.

. For all subsequent observations in time for Footprint #1,
sample each “modeled” observation from a distribution
that is correlated with the modeled observation at the
previous time step and has a variance corresponding to
the “actual” measurement error.

For observations in Footprints #2-8, sample each mod-

eled observation from a distribution correlated with the
modeled observation at the same time step in the pre-

Atmos. Meas. Tech., 10, 2759-2771, 2017

vious (adjacent) footprint, again with a variance corre-
sponding to the “actual” error.

. Adjust each modeled observation with a linear function
where the slope of the linear function is randomly cho-
sen from the fitted Laplace distribution to the slopes
(e.g., the Laplace function shown in Fig. 7).

Calculate variance of this “modeled” set of observa-
tions, for each neighborhood.

Figures 1, 2, and 3 (lower right panels) show the best overall
agreement between modeled distributions of XCO, relative
to the mean and the expected distributions based on observa-
tions, demonstrating that a slowly varying bias is needed to
best explain the observed distributions within a grid of ap-
proximately 100 km x 10 km.

Each typical observation has a random error related to
noise and a systematic error that is in principle bounded
by the calculated interference error (e.g., Boxe et al., 2010)
and is approximately 0.2 ppm. Within a typical grid box an
OCO-2 observed measurement over land is within 1.28/2, or
~ (.65 ppm of the mean XCO, value. For these reasons, we

www.atmos-meas-tech.net/10/2759/2017/
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expect that a typical observation over land has a systematic
error of at least 0.65 ppm, about 2 to 3 times larger than the
calculated interference error.

In contrast, the observed distributions of slopes for the
ocean data is 0.48ppm 100km~!, or a mean error of
0.24 ppm. This error is 70 % larger than the mean calculated
interference error of 0.14 ppm. Because the distribution of
ocean data within “bins” (Fig. 3, upper left panel) is also
well described by the calculated random error, we conclude
that the ocean-glint data are reasonably well characterized by
their calculated uncertainties for this size of a grid box, ex-
cept for calculated noise (or precision) uncertainties that are
less than ~ 0.25 ppm.

We find no relationship between the distribution of slopes
for a neighborhood and the corresponding mean of the cal-
culated interference error, suggesting that the calculated in-
terference error does not explain the observed slope within
a neighborhood, in contrast to the measurement error. How-
ever, there is a correlation between the slope and the esti-
mated magnitude of interferences, such as aerosol optical
depth, surface albedo, and surface pressure. For example,
the correlation between the slopes of land-glint data with the
mean uncertainty in the interferences is 0.06 whereas the cor-
relation between the observed slopes in XCO, and similarly
calculated observed slopes in aerosol optical depth is 0.37.
This correlation suggests that the observed slow variations in
XCO; across a neighborhood could be related to how inter-
ferences affect the XCO, estimate as OCO-2 takes observa-
tions across a neighborhood.

4 Summary

We compare XCO; variability from OCO-2 observed within
small neighborhoods of ~ 100km x 10.5 km to evaluate the
precision and accuracy of the XCO» data. Our analysis shows
that the calculated precision of the OCO-2 data has skill
as there is a linear relationship between the measurement
noise and the random variation of the OCO-2 data. We find
that the precision and accuracy of a typical ocean measure-
ment is approximately 0.35 and 0.2 ppm respectively, consis-
tent with the calculated errors (assuming that the accuracy
is bounded by the calculated interference error and does not
include smoothing error). The precision and accuracy of a
typical land measurement (both nadir and glint) is approx-
imately 0.75 and 0.65 ppm. These values can be compared
to the calculated measurement and interference errors of ap-
proximately 0.36 and 0.2 ppm. Differences are likely due to
nonlinearities in the retrieval or random components of inter-
ference error which are likely poorly characterized (Connor
et al., 2016). The accuracy is estimated from observed gra-
dients in XCO; of approximately 1.28 ppm 100 km~! across
the small neighborhoods used in this analysis.
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This 0.65 ppm estimate for the accuracy of the land data is
likely a lower bound because it is based on observed gradi-
ents across a region with the bias removed.

For example Wunch et al. (2017) shows that the root-
mean-square difference between the land nadir and glint data
is 1.36 ppm, which is twice the value that we obtain for the
accuracy. However, both ours and that of Wunch et al. (2017)
suggest a relationship between these larger than expected un-
certainties in the OCO-2 data and interferences due to surface
properties or aerosols.

This analysis sheds further light on the sources of uncer-
tainty of the observed XCO, data. For example, the XCO,
gradient variability in the small neighborhoods over the
ocean as compared to the land suggests that the largest un-
certainty in OCO-2 XCO; data is related to surface proper-
ties such as surface pressure or albedo because we expect
larger variations of these geophysical parameters over land.
The observed gradients could also be related to the varia-
tion in solar zenith angle as OCO-2 data take observations
because the effect is manifested as a slowly varying quan-
tity in addition to increased random variability. The observed
distribution of these XCO, gradients over the whole globe,
which has a Laplace distribution, is also a potential clue as
any bottom-up or future analysis that attempts to model the
XCO» uncertainties should also replicate this distribution. A
future study in which the empirically calculated uncertain-
ties presented here are tested using the more refined theoreti-
cal uncertainties discussed in Connor et al. (2016), as well as
the TCCON data, will hopefully reveal and characterize the
likely sources of 70 these uncertainties.

Data availability. The data used in this paper are publicly ac-
cessible at the following web page: https://disc.sci.gsfc.nasa.gov/
datasets/OCO2_L2_Lite_FP_V7r/summary?keywords=OCO-2.
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Appendix A: Ancillary comparisons of GMAO
high-resolution XCO, data

This appendix provides supporting analysis for the results
discussed in the main text by comparing the distribution of
synoptic variability of XCO; as derived by the GMAO high-
resolution 7km x 7km XCO; fields with the variability ex-
pected by the mean random error for all data with a bound of
the variability expected by the interference error.

(a) Sea glint

1 Measured SD

Expected SD
= (Natural + noise + interf.)

0.0 0.2 0.4 0.6 0.8 1.0
(b) (c)  XCO,SD (ppm) (d)
0.0 0.1 0.2 03 0.2 0.3 0.4 05 0.0 0.1 0.2 0.3

Natural SD (ppm) Noise uncert. (ppm) Interf. uncert. (ppm)

Figure A1. Distribution of all data used in this analysis for sea glint
with no data quality flags used (all warn levels are used). (a) The
expected (b, ¢, d) in black and the actual, bias removed, variabil-
ity (red) line. The lower panels show the expected variability from

natural sources (Appendix A), noise, and interferences.

Sea glint (bias corrected)

[ Measured SD

Expected SD
= (Natural + noise + interf.)

0.0 0.2 0.4 0.6 0.8 1.0
XCO, SD (ppm)

0.0 0.1 0.2 03 02 03 0.4 05 0.0 0.1 02 0.3
Natural SD (ppm) Noise uncert. (ppm) Interf. uncert. (ppm)

Figure A2. Same as Fig. Al but using only data with “warn lev-
els” < 10.

Figures A1-A6 show comparisons of the expected distri-
bution for all data used in this analysis (black line) with the
actual distribution (red line). The components due to natu-
ral variability, noise, and interferences are shown on the bot-
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Land glint

[ Measured SD

Expected SD
= (Natural + noise + interf.)

0.0 0.5 1.0 15 2.0
XCO; SD (ppm)

0.0 0.1 0.2 0.3 04 0.2 0.3 0.4 0.5
Natural SD (ppm) Noise uncert. (ppm)

0.6 0.0 0.1 0.2 0.3 0.4
Interf. uncert. (ppm)

Figure A3. Same as Fig. A1 but for land glint.

Land glint (bias corrected)

1 Measured SD

Expected SD
3 (Natural + noise + interf.)

e
0.0 0.5 1.0 15 2.0
XCO; SD (ppm)

0.0 0.1 0.2 0.3
Natural SD (ppm)

04 02 0.3 0.4 0.5
Noise uncert. (ppm)

06 0.0 0.1 0.2 0.3 0.4
Interf. uncert. (ppm)

Figure A4. Same as Fig. A2 but for land glint.

tom of each figure. Note that the x axes for the three bottom
figures are different in order to illustrate the full range and
shape of the distribution. Figures A1-A6 show that the natu-
ral variability on average is about a factor of 3 less than that
expected from noise and interferences. Use of the warn levels
greatly improves the comparison between the actual and ex-
pected distribution, especially for the ocean. The actual vari-
ability is consistent with the results shown in Figs. 1-3 with
the variability primarily attributed to the observed gradients
in OCO-2 XCO; data across the ~ 100 km neighborhoods.
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Land nadir
1 Measured SD
Expected SD
= (Natural + noise + interf.)
0.0 0.5 1.0 15 2.0
XCO;, SD (ppm)
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Figure AS. Same as Fig. Al but for land-nadir scenes.

Land nadir (bias corrected)

1 Measured SD

Expected SD
3 (Natural + noise + interf.)

0.0 0.5 1.0 15 2.0
XCO; SD (ppm)

0.0 0.1 0.2 0.3 04 0.2 0.3 0.4 0.5 0.6 0.0 0.1 0.2 0.3 0.4
Natural SD (ppm) Noise uncert. (ppm) Interf. uncert. (ppm)

Figure A6. Same as Fig. A2 but for land-nadir scenes.
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