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Abstract. This paper deals with the analysis of the sam-
pling setup for Doppler profilers aiming at the determina-
tion of vertical profiles of the wind. An explicit solution for
the retrieval of mean wind vectors under the assumption of
local homogeneity is presented for the case of a symmetric
velocity–azimuth display sampling, and a stability analysis
is performed. Furthermore, the explicit solution allows a de-
tailed investigation of the propagation of radial wind mea-
surement errors on the retrieved wind vector.

1 Introduction

The wind vector is a fundamental variable for describing the
state of the atmosphere (Dutton, 1986); it can be measured
with a variety of in situ and remote sensors. The latter are typ-
ically ground-based active systems emitting artificially gen-
erated electromagnetic (lidar, radar) or acoustic waves (so-
dar). In the so-called Doppler systems, the frequency shift of
the scattered waves is used to measure the motion of the scat-
tering medium directly. While the details of the measurement
process differ between the various instruments, the common
feature of all Doppler instruments is that the velocity can
only be determined along a single direction, called the line
of sight or radial direction. This provides merely one com-
ponent of the full 3-D wind vector. Of course it is possible
to use three Doppler instruments to sample the same volume
from different directions, but this approach is impractical for
operational meteorology (Stephens, 1994) and only used for
special applications (Fuertes et al., 2014). Vertical wind pro-

filing attempts to estimate the wind vector as a function of
height using data from a single instrument.

A number of different retrieval methods have been pro-
posed for uniform or linear wind fields (Browning and
Wexler, 1968; Waldteufel and Corbin, 1979; Koscielny et al.,
1984; Caya and Zawadzki, 1992; Stephens, 1994). These
methods are known as velocity–azimuth display (VAD), vol-
ume velocity processing (VVP) or Doppler beam swinging
(DBS), and its different variants are successfully used in op-
erational meteorology.

It is obvious that such simplifying assumptions can in gen-
eral not be made for the instantaneous wind field in a turbu-
lent flow. However, it is customary to decompose a turbulent
wind field into a mean and a fluctuating component describ-
ing the deviations from the mean (Salby, 1996; Davidson,
2004; Vallis, 2006). This is justified by the claim of an ex-
isting spectral gap between the mean flow and (microscale)
turbulence (Stull, 1988). Indeed, evidence for such a spectral
gap in the boundary layer was recently reported by Larsén
et al. (2016). The wind measurement can thus be split up into
two tasks, namely first the determination of the mean value
and, second, the estimation of the Reynolds stress tensor or
other statistical parameters describing the turbulent part of
the flow (Sathe and Mann, 2013; Sathe et al., 2015; Newman
et al., 2016).

For operational applications, like data assimilation for nu-
merical weather prediction models, the interest is clearly
in the mean wind. This is due to the fact that such mod-
els are unable to resolve the small (turbulent) scales di-
rectly. Processes on such scales must instead be parame-

Published by Copernicus Publications on behalf of the European Geosciences Union.



3266 G. Teschke and V. Lehmann: Sampling strategies for wind vector retrieval

terized (Warner, 2011). For operational Doppler profilers
it is therefore enough to aim at the determination of the
mean wind vector profile, with typical averaging times of
O(10 min). This restriction makes it more likely that simpli-
fying assumptions like homogeneity or linearity of the wind
field hold at least on average without incurring large errors.
In fact the assumption of statistical (local) homogeneity and
quasi-steadiness can often be applied in boundary layer me-
teorology (Wyngaard, 2010) even though it is clear that there
are limits to these assumptions (Maurer et al., 2016).

Practical experiences from comparisons of various wind
retrieval methods with Doppler radars suggest that the sim-
plest methods for the retrieval of the horizontal winds give
the best accuracy in comparison with independent wind sen-
sors (Holleman, 2005) – a seemingly counterintuitive re-
sult, given the large area scanned in comparison with spe-
cial wind profiling instruments like radar wind profilers or
Doppler lidars (Cifelli et al., 1996). A possible explanation is
that the retrievals using more complex wind field models are
ill-conditioned (Shenghui et al., 2014). Given these results
and the importance for wind profile measurements for opera-
tional meteorology, it seems therefore appropriate to further
investigate the wind retrieval methods for the rather simple
assumption of horizontal homogeneity and quasi-steadiness
(or stationarity).

The paper is organized as follows: the first section is
concerned with an algebraic description of the wind re-
trieval problem for a Doppler profiler. This includes an ex-
tension/recasting to a frame-based sensing concept. In the
second section, an explicit solution for the case of symmet-
ric VAD sampling with constant elevation is provided. This
allows a direct calculation of the retrieval error and provides
a guideline for an optimal sampling configuration.

2 Reconstruction of constant wind vector

Under the assumption of a stationary, horizontally homoge-
neous and vertically piecewise constant wind field, the wind
retrieval can be described algebraically. The new aspect is an
interpretation of the sensing setup based on the mathematical
concept of frames (Christensen, 2008) which allows, for spe-
cific sensing scenarios, an explicit computation of involved
matrices and therewith an explicit derivation of the associ-
ated eigenvalues.

2.1 Sensing model and retrieval

For a given azimuth α and zenith angle φ, the beam direction
can be described by a unit vector given as

e =

 sinα sinφ
cosα sinφ

cosφ

 ∈ R3 .

The goal is to retrieve an unknown wind vector v ∈ R3 from
projections of v on a set of different beam vectors {ek}Nk=1.

Figure 1. Schematics of sampling for N = 4.

This set of beam vectors defines the spatial sampling. The
assumption is that within the sampling volume and sampling
time the wind vector to be determined v ∈ R3 is constant,
i.e. within the sampling volume we assume a constant wind.
This assumption appears to be overly restrictive, but the goal
is not to determine the instantaneous wind vector in an ar-
bitrary turbulent wind field, but rather the mean (horizontal)
wind vector over an averaging time of O(10–30 min). For
the average wind field, horizontal homogeneity has to be as-
sumed over the area spanned by the beam directions, which is
for Doppler profilers typically O(0.1–10 km), and stationar-
ity has to be assumed over the averaging time. In the vertical,
the wind field is assumed to be piecewise constant over lay-
ers with a thickness of the order of the radial resolution of
the Doppler profiler, namely O(10–100 m).

The sampling process can be described through the appli-
cation of projection matrices. Geometrically the projection of
a vector v onto a vector e can be described by the 3×3 matrix
P = eeT , which easily follows since the projection of v onto
e can be expressed as 〈e,v〉e = e〈e,v〉 = eeT v = P v, where
〈·, ·〉 denotes the inner product; i.e. for two given vectors
a,b ∈ R3 we have 〈a,b〉 =

∑3
i=1 = ai · bi = a

T b. By con-
struction, the projection P is a rank one matrix, and, more-
over, P is idempotent and symmetric; i.e. PP = P and P T =
P . Assume now that the spatial sampling consists ofN beam
vectors, e1, . . .,eN , for which we can associate N projec-
tions, P1, . . .,PN . Each beam direction provides us with one
radial velocity vector, denoted by pk , k = 1, . . .,N ; hence for
each k we can write a 3× 3 linear system, pk = Pkv. Note
that the magnitude of pk is equal to the (radial) component
of the wind field in the beam direction. Combining all N lin-
ear systems into one single system results in

 p1
...

pN


︸ ︷︷ ︸

p

=

 P1
...

PN


︸ ︷︷ ︸

P

v , (1)
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where p ∈ R3N and P ∈ R3N,3. As each Pk is of rank one
and as we are usually faced with noisy measurements, di-
rectly solving Eq. (1) is impossible. A stable retrieval of v
can be achieved through a minimization of ‖p−P v‖2 with
respect to v. The optimal v is given through the solution of
the normal equation:

(P T P)v = P T p. (2)

A unique solution requires invertibility of P T P in Eq. (2),
which can be achieved if the rank of P T P equals three.
Hence, at least three linearly independent beam directions are
(obviously) required to obtain a unique solution. To obtain
feasible numerical approximations of v, one has to ensure
numerical stability of the inversion process especially in the
case of noisy data; i.e. we have to ensure reasonable approx-
imation quality also for the case pε = p+ ε with ‖ε‖ ≤ δ.
As we have to solve the normal equation, we first express the
symmetric map P T P by its eigensystem, P T P = UDUT ,
where U is the orthogonal matrix of eigenvectors of P T P
and D = diag(λ1,λ2,λ3) is the diagonal matrix of eigenval-
ues of P T P . Then, it follows that

v = (P T P)−1P T p = UD−1UT P T p. (3)

With vε = (P T P)−1P T pε , we obtain

‖v− vε‖ ≤ ‖(P T P)−1P T (p−pε)‖ ≤ ‖UD−1UT P T ‖ (4)

‖ε‖ ≤ ‖U‖‖D−1
‖‖UT ‖‖P T ‖δ ≤

δ

λmin
,

where λmin denotes the smallest eigenvalue. Therefore, the
recovery error can be minimized by maximizing the small-
est eigenvalue of P T P . This can be achieved by a proper
choice of the corresponding beam vectors e1, . . .,eN . Hence,
the main question to answer is how to set up the beam vectors
determining the spatial sampling.

2.2 Frame-based recast of the sampling design

In order to answer this question, we consider the set of beam
vectors as a frame. Without mathematical rigour, a frame can
be seen as a collection of vectors that span the full vector
space and which are not necessarily linearly independent.
Such a system of vectors is called overcomplete or redun-
dant and allows given vectors to be represented in differ-
ent ways (non-uniqueness). The redundancy has useful error-
suppressing effects. Using this approach, the goal is to find a
simple description of reconstruction stability and reconstruc-
tion error dependent on the sampling design.

A set of vectors {ek}Nk=1 forms a frame for R3 if there exist
constants 0<A≤ B <∞, the so-called frame bounds, such

that for all v ∈ R3

A‖v‖2 ≤

N∑
k=1
|〈v,ek〉|

2
≤ B‖v‖2 or, equivalently, (5)

〈Av,v〉 ≤ 〈Sv,v〉 ≤ 〈Bv,v〉 ,

where S is the frame operator introduced below. This frame
condition ensures first that all radial components have finite
energy and second that the set of beam directions is com-
plete; i.e. there exists no (wind) vector in R3 that is orthogo-
nal to all beam directions.

Let us first reformulate the reconstruction problem. Let
e1, . . .,eN ∈ R3 denote the individual unit vectors of beam
directions, and consider the so-called pre-frame operator T :
RN → R3, T c =

∑N
k=1ckek , with adjoint T ∗ : R3

→ RN ,
given by T ∗ = {〈·,ek〉}Nk=1. Then the frame operator defined
as S = T T ∗ : R3

→ R3 is given by

S =

N∑
k=1
〈·,ek〉ek , (6)

which is self-adjoint and symmetric. The frame operator
(Eq. 6) relates to the above-mentioned projections as follows:

S = T T ∗ = P1+ . . .+PN = P1P1+ . . .+PNPN (7)

= P T1 P1+ . . .+P
T
NPN = P

T P ,

and thus the invertibility of S is ensured by selecting three
linearly independent projections (as already mentioned). In
what follows we aim to elaborate how the number of beam
directions might change the frame bounds of S, which coin-
cide with the smallest and largest eigenvalues of P T P ; i.e.
for the bounds in Eq. (5) we have A= λmin and B = λmax.

In order to provide an explicit computation of the solution
and therewith an explicit stability analysis, we recast the opti-
mization problem by means of the pre-frame operator T ; i.e.
we aim to find an equivalent formulation for ‖p−P v‖2R3N .
First, we have T ∗ = (e1, . . .,eN )

T
: R3
→ RN , and by pk =

ekVk = ek(ek)
T v = Pkv the normal equation reads as

Sv = T T ∗v = TV , (8)

where V ∈ RN is comprised of the radial wind components
for the given beam configuration; see e.g. Päschke et al.
(2015). This holds true due to

P T P v = Sv =

N∑
k=1
〈v,ek〉ek (9)

=
(
e1 . . . eN

) (e1)
T

...

(eN )
T

v
= T T ∗v = TV = P T p.
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The equivalence of the optimization problems is immediate,

‖p−P v‖2R3N =

N∑
k=1
‖ekVk − ek(ek)

T v‖2R3 (10)

=

N∑
k=1

(
Vk − (ek)

T v
)2

= ‖V − T ∗v‖2RN ,

and we have a reduction of dimension by a factor of 3.

3 Explicit solution and error analysis

In practice, the linear system (Eq. 3) can be solved numer-
ically through the singular value decomposition (see e.g.
Päschke et al., 2015), to minimize errors from finite computa-
tional accuracy. This method provides numerical solutions in
the general case, and it can therefore be implemented in op-
erational Doppler systems. Nevertheless, an explicit solution
of Eq. (3) would provide more insight into error propagation
and thus allow a further investigation of optimal sampling
conditions. Such an explicit solution can indeed be given for
a VAD-like sampling scenario. In the following section it is
shown that all the involved quantities and error bounds can
be explicitly calculated. As these error bounds depend di-
rectly on the sensing parameters, the sampling design can be
optimized towards a minimal error in the retrieval.

3.1 Equispaced circular VAD-like sampling

With pre-assigned equispaced azimuth angles αk = 2πk/N ,
k = 0, . . .,N − 1 and constant zenith angle φ we have

T ∗ =

 sinα0 sinφ cosα0 sinφ cosφ
...

sinαN−1 sinφ cosαN−1 sinφ cosφ

 , (11)

V =

 V0
...

VN−1

 , v =

uv
w

 .
The minimization of ‖V − T ∗v‖2 results in Sv = TV or,
equivalently, in P T P v = P T p. Hence, in order to provide
an explicit expression for the solution of this linear system,
we have to derive P T P , which is given by

P T P = (12) ∑N−1
k=0 sin2αksin2φ

∑N−1
k=0 sinαk cosαksin2φ

∑N−1
k=0 sinαk sinφ cosφ∑N−1

k=0 sinαk cosαksin2φ
∑N−1
k=0 cos2αksin2φ

∑N−1
k=0 cosαk sinφ cosφ∑N−1

k=0 sinαk sinφ cosφ
∑N−1
k=0 cosαk sinφ cosφ

∑N−1
k=0 cos2φ

 .
The key for evaluating this matrix is interpreting each of the
entries as finite geometric series. Therefore, with the help of
the following summations,

Figure 2. Plot of N2 sin2φ (blue) and Ncos2φ (red) for N = 3.

N−1∑
k=0

sin2αk =

N−1∑
k=0

(
eiαk − e−iαk

2i

)2

=
N

2

N−1∑
k=0

cos2αk =

N−1∑
k=0

(
eiαk + e−iαk

2

)2

=
N

2

N−1∑
k=0

sinαk =
N−1∑
k=0

eiαk − e−iαk

2i
= 0

N−1∑
k=0

cosαk =
N−1∑
k=0

eiαk + e−iαk

2
= 0

N−1∑
k=0

sinαk cosαk=
N−1∑
k=0

(
eiαk − e−iαk

2i

)(
eiαk + e−iαk

2

)
= 0,

the matrix P T P simplifies to

P T P = S =

N
2 sin2φ 0 0

0 N
2 sin2φ 0

0 0 Ncos2φ

 . (13)

This means that the frame operator S is diagonal for each φ
and N ≥ 3 with frame bounds (see Fig. 2)

A= λmin =min
{
N

2
sin2φ,Ncos2φ

}
, (14)

B = λmax =max
{
N

2
sin2φ,Ncos2φ

}
.

In the case of A= B, i.e. sin2φ = 2cos2φ, the frame is called
tight. The corresponding φ then satisfies sin2φ = 2/3 and
hence φtight = arcsin

√
2/3≈ 54.7356. The wind retrieval

vector is now easily computed as

v = S−1P T p = S−1TV , (15)

where
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Figure 3. Frame bounds dependent on the angle φ (for N = 10).
The red circle indicates the minimum for φtight = arcsin

√
2/3.

S−1
=

 2
N

sin−2φ 0 0
0 2

N
sin−2φ 0

0 0 1
N

cos−2φ

 (16)

with bounds for φ < φtight:B−1
=

1
Ncos2φ

andA−1
=

2
Nsin2φ

,

for φ > φtight: B−1
=

2
Nsin2φ

and A−1
=

1
Ncos2φ

, and for φ =

φtight: A= B = N
3 .

With the help of Eqs. (15) and (16), the explicit algebraic
solution is obtained as

v =


2

Nsin2φ
0 0

0 2
Nsin2φ

0

0 0 1
Ncos2φ

 (17)

sinα0 sinφ . . . sinαN−1 sinφ
cosα0 sinφ . . . cosαN−1 sinφ

cosφ . . . cosφ


 V0

...

VN−1

 .
The matrix multiplications in Eq. (17) of the inverse frame

operator S−1 with the pre-frame operator T , whose columns
are comprised of the unit vectors describing the beams, yield
the explicit solution for the wind vector:

v =

uv
w

=


2
N sinφ

∑N−1
k=0 sinαkVk

2
N sinφ

∑N−1
k=0 cosαkVk

1
N cosφ

∑N−1
k=0 Vk

 . (18)

3.2 Estimation of the retrieval error

Since the wind retrieval for the equispaced VAD sampling
case can be explicitly expressed as v = S−1TV , it is possible
to investigate the propagation of measurement errors in the
radial wind components to the final wind vector directly. In

what follows, the deterministic as well the stochastic error
model will be discussed.

Assume, as before, the deterministic error model V δ =
V +1V , where ‖1V ‖ ≤ δ. For the reconstruction error
we then obtain 1v = vδ − v = S−1T (V δ −V )= S−1T1V ,
which is

1v = S−1

sinφ
∑N−1
k=0 sinαk1Vk

sinφ
∑N−1
k=0 cosαk1Vk

cosφ
∑N−1
k=0 1Vk

 . (19)

Therefore, with the help of the Cauchy–Schwarz inequality,

‖1v‖2 ≤ ‖S−1
‖

2

sin2φ

(
N−1∑
k=0

sinαk1Vk

)2

(20)

+sin2φ

(
N−1∑
k=0

cosαk1Vk

)2

+ cos2φ

(
N−1∑
k=0

1Vk

)2


≤ ‖S−1
‖

2
[
sin2φ

N

2
‖1V ‖2+ sin2φ

N

2
‖1V ‖2

+ cos2φN‖1V ‖2
]
≤ A−2Nδ2.

Consequently, from Eq. (20) we deduce

‖1v‖ ≤ A−1
√
Nδ =



2δ
√
Nsin2φ

for φ < φtight

3δ
√
N

for φ = φtight

δ
√
Ncos2φ

for φ > φtight

. (21)

The essential observation in Eq. (21) is that an increase of the
number of beams leads to a smaller reconstruction error and
that the smallest error (for any N ) is achieved for φ = φtight;
see Fig. 3.

Now assume that the measured radial wind components
follow the simple stochastic model, V δ = V +1V , with
1V ∼N (β,6), where N (β,6) is the N -dimensional nor-
mal distribution with expectation vector β and variance ma-
trix 6. If we assume that the components of β are constant,
βi = β for i = 0, . . .,N − 1, and 6 = diag(σ 2, . . .,σ 2). By
computing the expectation of the bias, E(1v), one obtains

E(1v)= E(S−1T1V )= S−1T E(1V )= S−1T β (22)

= S−1

sinφ
∑N−1
k=0 sinαkβ

sinφ
∑N−1
k=0 cosαkβ

cosφ
∑N−1
k=0 β

= β

cosφ

0
0
1

 .
It can clearly be seen that a constant bias in the radial wind

estimates affects only the estimation of the vertical wind
component, whereas the horizontal wind vector components
remain bias-free. This is due to the symmetry of the sampling
which leads to a cancellation of any existing bias in the radial
winds.
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To compute the mean square error (MSE), standard argu-
ments lead to

E(1v1vT )= S−1T E(1V1V T )T T S−1

= S−1T (6+ββT )T T S−1

= Var(1v)+ (E1v)(E1v)T︸ ︷︷ ︸
bias2

,

which is clear due to 6jk = E(1Vj −β)(1Vk −β)=

E1Vj1Vk −β
2, which is obvious as by independency it

holds for j 6= k that E1Vj1Vk = E1Vj ·E1Vk = β2, and
therefore

E1Vj1Vk =

{
σ 2
+β2, j = k

β2, j 6= k
.

In the stochastic regime, the deterministic error estimate can
be reproduced. Indeed, it can be observed that

E‖1v‖2≤ ‖S−1
‖

2

(
sin2φ

∑
jk

(sinαj sinαk + cosαj cosαk)

E1Vj1Vk + cos2φ
∑
jk

E1Vj1Vk

)
= ‖S−1

‖
2N(σ 2

+β2)+‖S−1
‖

2β2(
sin2φ

(
N
∑
k

cos(2πk/N)−N

)
+N(N − 1)cos2φ

)
= ‖S−1

‖
2N(σ 2

+β2)+‖S−1
‖

2β2N(Ncos2φ− 1)

= A−2Nσ 2
+A−2N2β2cos2φ.

This estimate verifies the deterministic recovery error, and
for growing N this error component can also be made arbi-
trarily small. The second summand, however, cannot be com-
pensated as it is independent of N .

The MSE can be explicitly calculated as follows:

E‖1v‖2 = E
(
(1u)2+ (1v)2+ (1w)2

)
(23)

=

(
4

N2sin2φ

∑
jk

(sinαj sinαk + cosαj cosαk)

E1Vj1Vk +
1

N2cos2φ

∑
jk

E1Vj1Vk

)

=

(
4

N2sin2φ
Nσ 2
+

1
N2cos2φ

(Nσ 2
+N2β2)

)
=
σ 2

N

(
4

sin2φ
+

1
cos2φ

)
+

β2

cos2φ
.

For β = 0 and fixedN , the choice φ = φtight yields the small-
est value for the MSE. The case β 6= 0 changes the situation.
Let

E‖1v‖2 =
σ 2

N

(
4sin−2φ+ c · cos−2φ

)
︸ ︷︷ ︸

=:F(φ)

,

where c = 1+N β2

σ 2 . For extremal values, F ′(φ)= 0 must be
evaluated, which is equivalent to evaluating

(4− c)sin4φ− 8sin2φ+ 4= 0.

We obtain sin2φ = (4− 2
√
c)/(4− c)= 2/(2+

√
c), which

is equivalent to tan2φ = 2/
√
c, and consequently

φ = arctan

√
2
√
c
. (24)

Equation (24) provides us for each given N , β and σ with an
optimal (MSE-minimizing) zenith distance angle φ.

Finally, from the computation of E‖1v‖2 in Eq. (23) it
follows that

E

(1u)2(1v)2

(1w)2

=


2σ 2

Nsin2φ
2σ 2

Nsin2φ
σ 2

Ncos2φ

+
 0

0
β2

cos2φ

 , (25)

supporting and explaining results obtained by Cheong et al.
(2008), who have experimentally shown that the MSE or
likewise the RMSE of the wind retrieval is significantly re-
duced by increasing the number of off-vertical beams in the
Doppler beam-swinging technique in the presence of wind
field inhomogeneities. Note, however, that for the vertical
wind component only the random error can be reduced by
an increase of N .

4 Conclusions

In this note, the mathematical concept of frames is applied
to the analysis of the spatial (beam configuration) sampling
setup for Doppler profilers for the case of a horizontally
homogeneous and stationary wind field. It could be shown
that it is possible to derive a compact explicit least-squares
wind retrieval solution for a typical symmetric VAD scan-
ning scheme. Such an explicit formula had hitherto not been
published yet. Besides its simplicity, it allows for a straight-
forward stability analysis in the practically relevant case of
noisy data. The explicit solution exhibits the known fact that
the VAD-based estimate for the horizontal wind components
is unbiased even if the radial wind components have a con-
stant (direction-independent) bias. Furthermore it was shown
that the MSE retrieval error is ∝ 1/N up to a constant offset
due to the bias, which means that a larger number of off-
zenith beam directions is beneficial to reduce the variance of
the wind vector components. The total retrieval error is de-
pendent upon the zenith angle φ. For the most relevant case
β = 0 it is minimal if the beam vectors form a tight frame.
The optimal beam zenith angle for this case was calculated as
φ = arcsin

√
2/3= 54.7356◦. It must be noted that the cor-

responding elevation angle of 35.264◦ is a much lower value
than what is used in practical configurations of most Doppler
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systems. However, it is important to appreciate that for the
practically relevant case of an estimate of only the horizon-
tal components of the mean wind (since the mean vertical
wind component will mainly be close to zero, except for spe-
cial meteorological conditions) no such optimum can be de-
rived from purely geometrical arguments. Another reason to
deviate from this optimal elevation angle is due to the re-
quirement to keep the sampled volume small, in an attempt
to minimize deviations from a constant wind field. Technical
constraints like the usable Nyquist velocity range and lim-
ited scanning capabilities of phased array radar antennas are
further reasons why the theoretically optimal elevation is not
used in practice.

Data availability. No data sets were used in this article.

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. We appreciate the efforts of the editor and the
two anonymous reviewers, whose comments helped to improve this
paper.

Edited by: Laura Bianco
Reviewed by: two anonymous referees

References

Browning, K. and Wexler, R.: The Determination of Kinematic
Properties of a Wind Field Using Doppler Radar, J. Appl. Me-
teorol., 7, 105–113, 1968.

Caya, D. and Zawadzki, I.: VAD Analysis of Nonlinear Wind
Fields, J. Atmos. Ocean. Tech., 9, 575–587, 1992.

Cheong, B. L., Yu, T.-Y., Palmer, R. D., Yang, K.-F., Hoffman,
M. W., Frasier, S. J., and Lopez-Dekker, F. J.: Effects of Wind
Field Inhomogeneities on Doppler Beam Swinging Revealed by
an Imaging Radar, J. Atmos. Ocean. Tech., 25, 1414–1422, 2008.

Christensen, O.: Frames and Bases. An Introductory Course, Ap-
plied and Numerical Harmonic Analysis, Birkhäuser, Boston,
2008.

Cifelli, R., Rutledge, S. A., Boccippio, D. J., and Matejka, T.: Hor-
izontal Divergence and Vertical velocity Retrieval from Doppler
Radar and Wind Profiler Observations, J. Atmos. Ocean. Tech.,
13, 948–966, 1996.

Davidson, P. A.: Turbulence, Oxford Univ. Press., New York, 2004.
Dutton, J. A.: The Ceaseless Wind, Dover Publications, New York,

1986.

Fuertes, F. C., Iungo, G. V., and Porté-Agel, F.: 3D Turbulence Mea-
surements Using Three Synchronous Wind Lidars: Validation
against Sonic Anemometry, J. Atmos. Ocean. Tech., 31, 1549–
1556, 2014.

Holleman, I.: Quality Control and Verification of Weather Radar
Wind Profiles, J. Atmos. Ocean. Tech., 22, 1541–1550, 2005.

Koscielny, A. J., Doviak, R. J., and Zrnic, D. S.: An Evaluation
of the Accuracy of Some Radar Wind Profiling Techniques, J.
Atmos. Ocean. Tech., 1, 309–320, 1984.

Larsén, X. G., Larsen, S. E., and Petersen, E. L.: Full-Scale Spec-
trum of Boundary-Layer Winds, Bound.-Lay. Meteorol., 159,
349–371, 2016.

Maurer, V., Kalthoff, N., Wieser, A., Kohler, M., Mauder,
M., and Gantner, L.: Observed spatiotemporal variability of
boundary-layer turbulence over flat, heterogeneous terrain, At-
mos. Chem. Phys., 16, 1377–1400, https://doi.org/10.5194/acp-
16-1377-2016, 2016.

Newman, J. F., Klein, P. M., Wharton, S., Sathe, A., Bonin, T. A.,
Chilson, P. B., and Muschinski, A.: Evaluation of three lidar
scanning strategies for turbulence measurements, Atmos. Meas.
Tech., 9, 1993–2013, https://doi.org/10.5194/amt-9-1993-2016,
2016.

Päschke, E., Leinweber, R., and Lehmann, V.: An assessment of the
performance of a 1.5 µm Doppler lidar for operational vertical
wind profiling based on a 1-year trial, Atmos. Meas. Tech., 8,
2251–2266, https://doi.org/10.5194/amt-8-2251-2015, 2015.

Salby, M. L.: Fundamentals of Atmospheric Physics, International
Geophysics Series, Academic Press, 1996.

Sathe, A. and Mann, J.: A review of turbulence measurements using
ground-based wind lidars, Atmos. Meas. Tech., 6, 3147–3167,
https://doi.org/10.5194/amt-6-3147-2013, 2013.

Sathe, A., Mann, J., Vasiljevic, N., and Lea, G.: A six-beam method
to measure turbulence statistics using ground-based wind lidars,
Atmos. Meas. Tech., 8, 729–740, https://doi.org/10.5194/amt-8-
729-2015, 2015.

Shenghui, Z., Ming, W., Lijun, W., Chang, Z., and Mingxu, Z.: Sen-
sitivity Analysis of the VVP Wind Retrieval Method for Single-
Doppler Weather Radars, J. Atmos. Ocean. Tech., 31, 1289–
1300, 2014.

Stephens, G. L.: Remote Sensing of the Lower Atmosphere, Oxford
University Press, New York, 1994.

Stull, R. B.: An Introduction to Boundary Layer Meteorology,
Kluwer Academic Publisher, 1988.

Vallis, G. K.: Atmospheric and Ocean Fluid Dynamics, Cambridge
University Press, 2006.

Waldteufel, P. and Corbin, H.: On the Analysis of Single-Doppler
Radar Data, J. Appl. Meteorol., 18, 532–542, 1979.

Warner, T. T.: Numerical Weather and Climate Prediction, Cam-
bridge University Press, New York, 2011.

Wyngaard, J. C.: Turbulence in the Atmosphere, Cambridge Uni-
versity Press, New York, 2010.

www.atmos-meas-tech.net/10/3265/2017/ Atmos. Meas. Tech., 10, 3265–3271, 2017

https://doi.org/10.5194/acp-16-1377-2016
https://doi.org/10.5194/acp-16-1377-2016
https://doi.org/10.5194/amt-9-1993-2016
https://doi.org/10.5194/amt-8-2251-2015
https://doi.org/10.5194/amt-6-3147-2013
https://doi.org/10.5194/amt-8-729-2015
https://doi.org/10.5194/amt-8-729-2015

	Abstract
	Introduction
	Reconstruction of constant wind vector
	Sensing model and retrieval
	Frame-based recast of the sampling design

	Explicit solution and error analysis
	Equispaced circular VAD-like sampling
	Estimation of the retrieval error

	Conclusions
	Data availability
	Competing interests
	Acknowledgements
	References

