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Abstract. In this work, a two-step algorithm to obtain wa-
ter vapour profiles from a combination of Raman lidar and
microwave radiometer is presented. Both instruments were
applied during an intensive 2-month measurement campaign
(HOPE) close to Jülich, western Germany, during spring
2013. To retrieve reliable water vapour information from in-
side or above the cloud a two-step algorithm is applied. The
first step is a Kalman filter that extends the profiles, trun-
cated at cloud base, to the full height range (up to 10 km)
by combining previous information and current measure-
ment. Then the complete water vapour profile serves as input
to the one-dimensional variational (1D-VAR) method, also
known as optimal estimation. A forward model simulates the
brightness temperatures which would be observed by the mi-
crowave radiometer for the given atmospheric state. The pro-
file is iteratively modified according to its error bars until
the modelled and the actually measured brightness tempera-
tures sufficiently agree. The functionality of the retrieval is
presented in detail by means of case studies under different
conditions. A statistical analysis shows that the availability
of Raman lidar data (night) improves the accuracy of the
profiles even under cloudy conditions. During the day, the
absence of lidar data results in larger differences in compar-
ison to reference radiosondes. The data availability of the
full-height water vapour lidar profiles of 17 % during the
2-month campaign is significantly enhanced to 60 % by ap-
plying the retrieval. The bias with respect to radiosonde and
the retrieved a posteriori uncertainty of the retrieved profiles
clearly show that the application of the Kalman filter con-
siderably improves the accuracy and quality of the retrieved
mixing ratio profiles.

1 Introduction

In accordance with the latest report of the Intergovernmental
Panel on Climate Change (IPCC), water vapour plays a key
role in the description of the thermodynamic state of the at-
mosphere (Hartmann et al., 2013) and is the most impor-
tant greenhouse gas (Twomey, 1991). Its amount in the at-
mosphere is controlled mostly by the air temperature, rather
than by emissions (Hartmann et al., 2013). Therefore, tropo-
spheric water vapour is considered as a feedback agent more
than a forcing to climate change (Soden and Held, 2006).
The water vapour amount is highly variable in space and
time, since it can considerably increase due to evaporation
or decrease due to condensation and precipitation (Stevens
and Bony, 2013). Furthermore, the latent heat strongly influ-
ences the energy cycle. The typical residence time of water
vapour in the atmosphere amounts to 10 days (Myhre et al.,
2013). Due to its spatio-temporal variability and its involve-
ment in many atmospheric processes (e.g. cloud formation)
it is difficult to properly implement water vapour in climate
models (Held and Soden, 2000; Tompkins, 2002).

In the last decades, the resolution of atmospheric circula-
tion models has been improved, more atmospheric processes
have been incorporated and the parametrizations of physi-
cal processes have been improved (Randall et al., 2007). In
order to evaluate and improve model forecasts, parametriza-
tion schemes and satellite retrievals, the observations need
to be enhanced. Uncertainties in both observations and mod-
elling of water vapour strongly affect the representation of
clouds and precipitation in climate models and predictions.
For that reason the German research project High Definition
Clouds and Precipitation for advancing Climate Prediction
(HD(CP)2) was initiated aiming to improve cloud and precip-
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itation representation in models and to quantify the errors as-
sociated. One part within the HD(CP)2 initiative was the in-
tensive observation campaign HD(CP)2 Observational Proto-
type Experiment (HOPE) in Jülich (Macke et al., 2016). Data
from this campaign will be used in this work which presents
a retrieval of water vapour profiles from ground-based re-
mote sensing. During HOPE, different remote sensing instru-
ments to measure water vapour, both active and passive, were
deployed.

An active method is given by the Raman lidar tech-
nique (Ansmann et al., 1992; Whiteman et al., 1992;
Wandinger, 2005). Water vapour mixing ratio has been deter-
mined for several decades using this technique (Melfi et al.,
1969; Cooney, 1970; Melfi, 1972). With advancing technol-
ogy Raman lidars enabled high vertical resolution measure-
ments of water vapour and extended their range to the whole
troposphere (Ferrare et al., 1995; Sherlock et al., 1999; Di
Girolamo et al., 2009; Leblanc et al., 2012), during daytime
(Renaut et al., 1980; Ferrare et al., 2006) or automatically
(Goldsmith et al., 1998; Turner et al., 2002). However, water
vapour Raman lidars should be calibrated using simultaneous
and collocated measurements from for example a microwave
radiometer (MWR) or radiosonde (RS) (Mattis et al., 2002;
Madonna et al., 2011; Foth et al., 2015). Until now, Raman
lidars were mostly used as research instruments that did not
work unattended or automatically on a routine basis. An-
other major drawback of Raman lidars is that they do not
provide any water vapour information from inside the cloud
or above due to the strong signal attenuation, especially in
liquid clouds. Hence, these measurements are limited from
the surface to the cloud base. Furthermore, daytime measure-
ments are limited in height due to the presence of scattered
solar radiation (Turner and Goldsmith, 1999).

Another approach is to use passive remote sensing to
sound the thermodynamic state of the atmosphere. Passive
microwave radiometry can provide atmospheric water vapour
observations with high temporal resolution, but limited ver-
tical information (Solheim et al., 1998; Westwater et al.,
2005). However, the integrated water vapour (IWV) can be
retrieved very accurately. Microwave radiometers can be op-
erated during all weather conditions except for precipitation
(Güldner and Spänkuch, 1999). As with many remote sens-
ing techniques accurate calibrations are crucial for obtaining
precise measurements (Maschwitz et al., 2013; Küchler et al.,
2016).

By contrast to the already presented remote sensing ob-
servations, water vapour profiles can be measured in situ
using RS (Miloshevich et al., 2006). Routine RS launches
are mostly performed by national weather services usually
twice a day at special locations. Therefore, both horizontal
and temporal resolution of routine measurements are rather
low. However, these profiles can serve as reference for re-
mote sensing observations.

As described above, it is a challenge to provide continu-
ous high-resolution water vapour profiles with a single in-

strument. In recent years, the Leipzig Aerosol and Cloud Re-
mote Observations System (LACROS) (Bühl et al., 2013),
installed a combination of ground-based remote sensing sys-
tems. The synergy of complementary information from both
active and passive instruments can provide a more compre-
hensive understanding of atmospheric processes (Stankov,
1998; Furumoto et al., 2003; Bianco et al., 2005; Delanoë and
Hogan, 2008). From a combination of radar reflectivities and
liquid water path from MWR, Frisch et al. (1998) success-
fully derived liquid water content (LWC) profiles. Han et al.
(1997) presented a method based on a Kalman filter (Kalman,
1960; Kalman and Bucy, 1961) that incorporates current and
past measurements followed by a statistical inversion that
combines the lidar with the radiometric and climatological
data. The Cloudnet project is comprised of a number of al-
gorithms for the continuous analysis of cloud properties by
means of remote sensing with lidar, MWR and cloud radar
(Illingworth et al., 2007). The instruments synergy allows
for a continuous evaluation of the representation of clouds in
climate and weather forecast models (Sengupta et al., 2004;
Hogan et al., 2009; Bouniol et al., 2010). Additionally, the
data set enables the development and validation of new cloud
remote sensing synergy algorithms.

Löhnert et al. (2004, 2008) developed the so-called in-
tegrated profiling technique (IPT) that integrates a ground-
based MWR, a cloud radar and a priori information, e.g.
from RS. This approach enables the derivation of tempera-
ture, humidity and liquid water content profiles (Ebell et al.,
2010) and their associated error estimates. The IPT is based
on a variational scheme, also known as optimal estima-
tion (Rodgers, 2000). Cimini et al. (2010) as well as Hewison
and Gaffard (2006) used a similar approach as Löhnert et al.
(2004) but with background information from a short-range
numerical weather prediction model instead of RS climatol-
ogy.

The synergy of Raman lidar and MWR is beneficial for
continuously observing the vertical water vapour distribu-
tion. When both Raman lidar and MWR are measuring col-
located and simultaneously, continuous water vapour profiles
can be obtained operationally (Ferrare et al., 2006; Adam and
Venable, 2007; Adam et al., 2010). However, the Raman li-
dar needs to be calibrated on a routine basis. A calibration
method that is based on the IWV from MWR is suited for
this issue (Foth et al., 2015). In previous approaches the total
precipitable water from MWR in combination with RS has
been used to calibrate the water vapour profiles (Turner and
Goldsmith, 1999; Turner et al., 2002). Calibration methods
only based on RS (England et al., 1992; Mattis et al., 2002;
Reichardt et al., 2012) are often inappropriate for continuous
monitoring of the tropospheric water vapour with Raman li-
dar because of their low temporal resolution and the require-
ment of regular RS launches.

The aim of this study is to present a two-step algorithm
that combines a Raman lidar and a MWR by using an opti-
mal estimation approach. The retrieval can be seen as an ex-
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tension of the IPT by Löhnert et al. (2009). Barrera-Verdejo
et al. (2016) also generated a variational retrieval based on
these two instruments. At first glance, both approaches seem
to be similar, but they are fundamentally different with re-
gard to the optimal estimation method. Barrera-Verdejo et al.
(2016) used both (Raman lidar and MWR) as part of the ob-
servation vector. Because the water vapour profiles from Ra-
man lidar are strongly disturbed by clouds, they are truncated
at the cloud base. In the present work, the truncated Raman
lidar profiles are extended to the full height range by using
a Kalman filter in a first step. Then the Kalman-filtered pro-
files serve as input to the optimal estimation. This approach is
based on studies of Schneebeli (2009). Additionally, the fo-
cus of the presented work is to develop a method that enables
routine retrieval of a continuous time series of water vapour
profiles and their error estimates during all non-precipitating
conditions.

2 Instrumentation

In the framework of the HD(CP)2 initiative HOPE was con-
ducted around Jülich in western Germany during April and
May 2013 (Macke et al., 2016). The goal of HOPE was
to probe the atmosphere with a specific focus on bound-
ary layer development and the development of clouds and
precipitation. Two observatories were set up in addition to
JOYCE (Löhnert et al., 2015). The LACROS site (Wandinger
et al., 2012; Bühl et al., 2013) was temporarily built up in
Krauthausen, which is about 4 km south of JOYCE. Both
JOYCE and LACROS observatories are equipped with a set
of active and passive remote sensing instruments such as li-
dars and MWRs which allow the application of the proposed
retrieval. Radiosondes were launched at the KIT (Maurer
et al., 2016) station in Hambach, which is about 4 km away
from JOYCE and LACROS. Furthermore, a 120 m tower pro-
vide surface meteorological data as pressure, temperature
and humidity.

2.1 Raman lidar PollyXT

At LACROS, the lidar measurements were conducted with
the fully automatic portable multiwavelength Raman and po-
larization lidar PollyXT (Althausen et al., 2009) by the Leib-
niz Institute for Tropospheric Research (TROPOS). PollyXT

measures backscattered light at wavelengths of 355, 532 and
1064 nm and Raman scattered light at 387, 407 and 607 nm
wavelengths. From that, water vapour profiles can be deter-
mined (Whiteman, 2003; Wandinger, 2005). In the lower-
most heights the overlap of the laser beam with the receiver
field of view of the bistatic system is incomplete. However,
the overlap of both Raman channels is assumed to be iden-
tical and for that reason the overlap effect should be neg-
ligible regarding water vapour measurements. Nevertheless,
there are some uncertainties in the lowermost 600 m. There-

fore, the signal ratio is set constant to account for the overlap
problem. Additionally, the mixing ratio error is artificially in-
creased resulting in less impact of erroneous profiles near the
surface to enlarge the influence of both Kalman filter and op-
timal estimation. During daytime, no water vapour measure-
ments can be performed due to the high daylight background
and the weak signal from Raman scattering. The PollyXT raw
data (30 m and 30 s) are processed and calibrated to mixing
ratio profiles as explained in Foth et al. (2015). The vertical
and temporal resolution of the calibrated profiles amounts to
90 m and 5 min to decrease the measurement noise and to re-
trieve water vapour from higher altitudes. The calibrated wa-
ter vapour profiles are then used for the proposed retrieval.

An overview of the area of operation and the automated
measurement capabilities of Polly systems all over the world
is extensively introduced by Baars et al. (2016).

2.2 Microwave radiometer HATPRO

The humidity and temperature profiler (HATPRO), built by
Radiometer Physics GmbH, Germany, is a passive instru-
ment that measures atmospheric emission at two frequency
bands in the microwave spectrum. Seven channels are along
the 22.235 GHz H2O absorption line. From these observa-
tions humidity information can be retrieved. The seven chan-
nels of the other band from 51 to 58 GHz along the O2 ab-
sorption complex contain the vertical temperature profile in-
formation. The fully automatic microwave radiometer HAT-
PRO makes it possible to derive temperature and humidity
profiles as well as integrated quantities such as integrated wa-
ter vapour (IWV) and liquid water path (LWP) with a high
temporal resolution up to 1 s (Rose et al., 2005). Their un-
certainties are 0.5 kgm−2 for IWV (Steinke et al., 2015) and
22 gm−2 for low LWP values and increase up to 45 gm−2 for
LWP values higher than 500 gm−2, respectively (Ebell et al.,
2011). Observations are possible during nearly all weather
conditions except precipitation.

Statistical algorithms were used to retrieve temperature
profiles, IWV and LWP from the measured brightness tem-
peratures by means of a multi-linear regression between
modelled brightness temperatures and atmospheric profiles.
That algorithm is based on a long-term data set of De Bilt
radiosondes (Löhnert and Crewell, 2003).

Weighting functions are well suited to describe the ability
for humidity profiling. Figure 1 shows the weighting func-
tions for the seven HATPRO frequencies along the H2O ab-
sorption band. Generally, the measured brightness temper-
atures do not originate from an isolated height level. The
weighting functions describe the contribution of a certain
height to the observed signal. Ideally, the weighting functions
are peaked functions and several frequencies contribute in-
formation from different height levels. Three weighting func-
tions (22.24, 23.04 and 23.84 GHz) differ considerably from
each other. The higher frequencies have a similar shape as
the atmosphere is optically thin at these frequencies. For that
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Figure 1. Absolute humidity weighting function for the HATPRO
frequencies for a cloud-free model atmosphere.

reason they add only little information and the vertical distri-
bution of humidity is limited.

The usage of the 31 GHz channel caused unrealistic re-
sults. The reason for that behaviour was not identified but
might be induced by the forward model or a faulty calibra-
tion.

The MWR was also equipped with a standard meteoro-
logical weather station measuring temperature, pressure and
relative humidity. These values are only used to calculate the
pressure profile that is used in the forward model. The sur-
face values needed for the optimal estimation originate in the
surface tower measurement which is much more accurate.
Arising pressure uncertainties result in negligible deviation
in the modelled brightness temperatures.

2.3 Radiosondes

During HOPE, radiosondes (RSs) were launched a minimum
twice a day (11:00 and 23:00 UTC) and more often during
intensive observation periods (IOPs) at the KITCube site in
Hambach. The RS (type Graw DFM-09) measures tempera-
ture, humidity, pressure and wind velocity (Nash et al., 2011;
Wang and Zhang, 2008). Due to the vicinity of the RS station
to an open-cast mining with a depth of nearly 400 m, hor-
izontal inhomogeneities between the RS launch station and
LACROS are likely (Foth et al., 2015).

3 Retrieval methodology

The focus of this work is to retrieve a continuous time series
of water vapour profiles from a combination of ground-based
remote sensing with Raman lidar and MWR in a straight-
forward way to offer a broad application. Most of this sec-
tion has already been described and presented in Foth (2017)
without explicit citation. The retrieval is a two-step algorithm
that combines the Raman lidar mixing ratio profile with the
MWR brightness temperatures. The Kalman filter (first step)
eliminates measurement disruptions (e.g. clouds) to provide
a full-height mixing ratio profile that serves as input to the
one-dimensional variational assimilation (optimal estimation
method). The retrieval can be applied to raw data (photon

Kalman filter 1D-VAR

MWR TB, 
surf. hum.

Estimated st.

Analysed st.

Calibr. lidar 
profiles

Filtered st.

Analysed st.

Estimated st.

Figure 2. Sketch of the retrieval scheme. Details are given in the
text. This figure is adapted from Schneebeli (2009).

counts) using the calibration method based on Foth et al.
(2015) or using already calibrated profiles.

Figure 2 gives a brief overview of the retrieval framework.
It starts with the latest analysed state x̂k−1, which is advanced
to the estimated state xE

k , with k being the time index. This
state is then combined with the current lidar measurement
yk to obtain the filtered state xF

k using the Kalman filter.
xF
k is then used as the a priori input to the one-dimensional

variational assimilation. The a priori profile is modified such
that the modelled brightness temperature matches those mea-
sured with the microwave radiometer (MWR) zk , resulting
in the most probable estimated state x̂k , which is again pro-
jected in time in the consecutive step. Inverse methods for
atmospheric sounding are well described in Rodgers (2000).
For clarity the same notation is used.

3.1 Definition of quantities

In this section the state vector and the two measurement vec-
tors are described. The first measurement vector contains the
mixing ratio profile from the lidar measurement. It is used
in the first retrieval step (Kalman filter). The second mea-
surement vector consists of the brightness temperatures from
the MWR measurement and a surface mixing ratio from a
standard meteorological station. This vector is used in the
optimal estimation.

The atmospheric state is described by the state vector

x = [q1, . . ., qn]
T , (1)

which contains the humidity variable q at different height
levels from 0 to height n (e.g. 10 km). The vertical resolu-
tion originates from the lidar measurements and is equal to
90 m. The humidity variable q is given as the natural loga-
rithm of water vapour mixing ratio. The benefit of using the
logarithm is the limited range of variation and the prevention
of negative unphysical values resulting in a lower amount of
unrealistic states (Phalippou, 1996).

The lidar measurement vector of length my

y = [q1, . . ., qmy ]
T (2)
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contains the water vapour mixing ratio at each height level
from ground up to a possible cloud base. The lidar profiles y
and the associated errors εy are usually given in mixing ra-
tio. For the reasons mentioned above, both have to be trans-
formed into q values. The transformed errors define the di-
agonal elements of the lidar measurement covariance matrix
Sy . The off-diagonal elements are assumed to be zero which
means that no correlation exists between the errors at differ-
ent height levels.

The second measurement vector, called from now on ob-
servation vector, is given as

z=
[
TB,1, . . . ,TB,mν ,qs

]T (3)

with the dimension mz. It contains the brightness tempera-
ture T B at a certain frequency ν and the surface mixing ratio
qs from a standard meteorological station. In this study only
zenith observations and frequencies along the water vapour
absorption band are chosen. The combined measurement and
forward model covariance matrix Sz contains the errors from
the MWR observation, from the surface mixing ratio mea-
surement and from the forward model. The errors from the
MWR observation are the radiometric noise. Its variance is
set to 0.25 K2 at each frequency. The off-diagonal elements
are set to 0.01 K2, meaning small covariances between the
frequencies (Barrera-Verdejo et al., 2016). The determina-
tion of the forward model error is described in Sect. 3.3. For-
ward model uncertainties that occur due to assumptions in
the LWC profiles are illustrated in Sect. 3.4. The measure-
ment uncertainty of the surface mixing ratio is roughly as-
sumed to be 0.1 gkg−1. However, the uncertainty is increased
due to the distance between the measurement site and the
surface humidity sensor (see Sect. 2) and is assumed to be
0.3 gkg−1.

First-guess profiles and errors are created for the HOPE
campaign. Usually they are formed by a certain number of
RS. Therefore the covariance matrix is sometimes called
RS climatology. For the HOPE campaign 211 RS that were
launched during April and May 2013, were used to calcu-
late a mean profile that serves as a first-guess profile and is
used after a long measurement disruption. Additionally, the
correlation and covariance matrices are determined (Fig. 3).
Here, the humidity variable is interpolated to the state grid
space (lidar height grid) and is transformed to the natural log-
arithm before calculating the matrices. Both clearly illustrate
the correlations between water vapour at different heights in
the atmosphere. Naturally, the correlation is close to 1 near
the main diagonal and is smaller for off-diagonal terms. Due
to well-mixed conditions the correlation in the lowest 1.5 km
is higher. These matrices are similar to those from previous
studies (Ebell et al., 2013; Barrera-Verdejo et al., 2016).

3.2 Kalman filter

In the presence of clouds, the lidar profile is truncated at the
cloud base due to the strong attenuation within the cloud. We
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Figure 3. Correlation (a) and covariance matrix (b) derived from
211 radiosondes for HOPE. Both are shown for the natural loga-
rithm of the mixing ratio (ln(MR)) as a function of height with a
resolution of 90 m.

use the Kalman filter to expand the truncated lidar profile to
the full height range using previous information. The Kalman
filter is based on the following two equations:

yk =Hkxk + εy,k, (4)
xk+1 =Mkxk + εt,k. (5)

The evolution operator (e.g. forward model) Hk projects the
state into measurement space (Eq. 4). Since xk and yk use the
same humidity variable, the forward model matrix Hk equals
the unity matrix with dimension my × n. Equation (5) de-
scribes the transition of the state vector at time step k to time
step k+1. The transition matrix Mk is assumed to be the unity
matrix due to the lack of an atmospheric model. The square
of the transition error εt,k forms the diagonal elements of the
covariance matrix St,k . For the calculation of St,k the Schnee-
beli method can be applied (Schneebeli, 2009). Schneebeli
generated a time series of synthetic profiles from a combi-
nation of consecutive radiosondes and ground values. St,k is
finally calculated from an ensemble of these consecutive pro-
files. A similar approach is described by Han et al. (1997).
After a large number of time steps, it might happen that the
correlations between layers get lost which can result in unre-
alistic profiles. Additionally, the retrieval tends to be unstable
with either unphysical solutions or even be non-convergent
when using the transition error. Another possibility is to start
with the RS climatology covariance (Sclim) as previous co-
variance matrix (Ŝk−1) at every consecutive time step. Using
this approach the addition of the transition covariance matrix
(St,k) can be skipped. In this application the latter approach
is used which is much more stable.

Using Eq. (5) and the assumptions explained above, the
last analysed state x̂k−1 and its covariance matrix Ŝk−1 are
propagated as follows:

xE
k =Mkx̂k−1 = x̂k−1, (6)

SE
k =MkŜk−1MT

k +St,k = Sclim, (7)
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where xE
k and SE

k are the estimated state and its covariance
matrix, respectively. These are then combined with the lidar
measurement at time step k to obtain the filtered state:

xF
k = x

E
k +GK

k

[
yk −Hkx

E
k

]
, (8)

with GK
k being the Kalman gain matrix:

GK
k = SE

kHT
k

[
HkSE

kHT
k +Sy,k

]−1
. (9)

The covariance matrix of the filtered state is determined by

SF
k = SE

k −GK
k HkSE

k . (10)

Finally, xF
k and SF

k serve as input to the optimal estimation.
The application of this technique for linear filtering and

prediction problems was first described by Kalman (1960)
and Kalman and Bucy (1961).

3.3 Forward model

In the optimal estimation framework microwave brightness
temperatures (T B) at given frequencies (ν) are modelled
from the a priori atmospheric profiles and are compared to
those that are measured. However, in this work only zenith
observations are used. Based on Simmer (1994), F(x) mod-
els the non-scattering microwave radiative transfer using gas
absorption by Rosenkranz and liquid water absorption by
Liebe (Rosenkranz, 1998; Liebe et al., 1993) for each height
level of the retrieval grid (90 m). The Rosenkranz gas ab-
sorption model is corrected for the water vapour continuum
absorption according to Turner et al. (2009). The humidity
information (q) of the a priori profile originates from the
Kalman-filtered state, whereas the temperature profiles (T )
are provided by statistical retrievals from MWR observations
(Sect. 2.2). The pressure profiles (p) are calculated by sur-
face pressure observations from MWR and the barometric
formula. Because the retrieval grid is limited to 10 km, the
thermodynamic state between 10 and 30 km is taken from
a RS climatology above Essen, which is in the vicinity of the
HOPE area. The restriction to the troposphere up to 10 km
would lead to errors of around 1 K in the calculation of the
brightness temperatures. Assumptions about the liquid wa-
ter content (LWC) and its determination are described in
Sect. 3.4. The forward modelling of the surface mixing ra-
tio is trivial. It is a one-to-one translation to the lowest level
of the state vector x. In conclusion, F(x) is of the following
form:

F(x)=


RTO(T ,q,p,LWC,ν1)

...

RTO(T ,q,p,LWC,νmν )
q1

 , (11)

with RTO being the radiative transfer operator.

Table 1. Forward model error for each frequency due to different
absorption codes. Uncertainties are given as square root of the di-
agonal elements of the covariance matrix.

Channel number Frequency HATPRO uncertainty
(GHz) (K)

1 22.24 0.07
2 23.04 0.2
3 23.84 0.42
4 25.44 0.56
5 26.24 0.55
6 27.84 0.53
7 31.40 0.51

The forward model error is calculated as covariance of
the difference between brightness temperatures modelled by
two different absorption codes of Rosenkranz and Liebe
(Rosenkranz, 1998; Liebe et al., 1991) applied to a long-
term data set of radiosondes from Lindenberg, Germany.
The diagonal elements of its covariance matrix are shown
in Table 1. One has to consider that there are significant off-
diagonal terms. This error is part of the combined observa-
tion and forward model covariance Sz. The uncertainties of
the gas absorption models cause biased mixing ratio profiles
(see Sect. 5).

3.4 Liquid water assumption

Since liquid water strongly affects the absorption in the mi-
crowave spectrum, its amount and height have to be known.
However, from MWR only the integral value can be derived,
and not its vertical distribution. In order to determine LWC
profiles, the cloud boundaries have to be determined. The
cloud base of a liquid water cloud is identified by the gradi-
ent method based on the 1064 nm channel from lidar (Baars
et al., 2008) which has been shown to be a more robust
method for the automatic detection of the cloud base than
the wavelet covariance transform (Brooks, 2003; Baars et al.,
2008). However, a threshold value has to be chosen carefully
to distinguish between thin liquid water clouds and optically
thick aerosol layers below liquid water clouds. Additionally,
liquid water clouds are only detected if the LWP is larger
than a narrow threshold of 5 gm−2.

The LWC is calculated from the modified adiabatic as-
sumption (Karstens et al., 1994):

LWC= LWCad [1.239− 0.145 ln(h)] , (12)

where h indicates the height above cloud base in m and h
within the range of 1–5140 m. The adiabatic LWCad is calcu-
lated using the temperature and pressure profiles and is cor-
rected for effects of dry air entrainment, freezing drops or
precipitation. The LWC is integrated over all layers until the
calculated LWP equals the LWP measured with MWR. This
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Figure 4. (a) Brightness temperature difference as a function of
LWP (dots) using two different LWC assumptions. The colours in-
dicate the according frequencies (top right). The mean and the stan-
dard deviation per bin size are indicated by coloured lines and error
bars, respectively. The bin size amounts to 0.05 kgm−2. The num-
ber of occurrences is given in grey bars at the top. (b) Exemplary
covariance matrix for an LWP between 0.45 and 0.5 kgm−2. The
channel numbers correspond with the HATPRO frequencies given
in (a), which means, for example, that 1 refers to 22.24 GHz.

height is finally defined as cloud top. However, any profile is
treated as single-layer cloud with this method.

Usual approaches to diagnose LWC profiles from ra-
diosonde are based on a threshold method (Wang et al.,
1999). Cloud bases or tops are identified when the relative
humidity exceeds or falls below 95 %, respectively. Within
the cloud the LWC is calculated using the modified adiabatic
assumption (Löhnert and Crewell, 2003). The uncertainty
that results in the assumption of single-layer clouds is esti-
mated by comparing both mentioned methods. This is done
for a long-term data set of radiosondes from Lindenberg,
Germany. For these radiosonde profiles, brightness temper-
atures are modelled at the HATPRO frequencies using both
LWC profile assumptions. The brightness temperature differ-
ence as a function of LWP is illustrated in Fig. 4a. As can be
seen, the means and standard deviations (coloured lines and
error bars) increases with increasing LWP. In addition, the
difference increases from the 22.24 to 31.4 GHz. Naturally,
there is no difference for single-layer clouds indicated by the
dots at 0 K. The number of occurrences decreases with in-
creasing LWP (grey bars on the top). However, only clouds
with an LWP larger than 0.02 kgm−2 are considered. Fig-
ure 4b shows an exemplary covariance matrix for an LWP
between 0.45 and 0.5 kgm−2. These uncertainties contain
significant off-diagonal terms and are larger for the channels
that are more sensitive to liquid water (31.4 GHz). According
to the observed LWP the corresponding covariance is added
to the combined observation and forward model covariance
matrix Sz to account for the assumption of single-layer liquid
water clouds.

3.5 Optimal estimation method (OEM)

A schematic overview over the optimal estimation is given
in Fig. 6. In basic terms, the forward model simulates what
the MWR would observe given an arbitrary state. The prob-
lem is that several different states may produce the same
measurement. This is a so-called ill-posed problem. To con-
strain the state space a priori information as lidar profiles
are needed. In the proposed retrieval the lidar profiles are
Kalman filtered as mentioned above. Finally, the optimal es-
timation finds the most probable solution (mixing ratio pro-
file) from a class of solutions. The theory of inverse mod-
elling based on optimal estimation methods is briefly intro-
duced in this section and described in more detail in Rodgers
(2000).

The optimal estimation of an atmospheric state by a given
observation vector z and an a priori state xa = x

F can be
found by minimizing the cost J (x̂) function of the form

J (x̂)= Ja(x̂)+ Jz(x̂)+ Jsup(x̂). (13)

Here Ja(x̂) indicates the a priori costs, Jz(x̂) the observation
costs and Jsup(x̂) is a penalty term to avoid supersaturation.
Since both liquid and ice phase can occur in clouds at tem-
peratures between −38 and −5 ◦C (Heymsfield and Sabin,
1989; Koop et al., 2000; Ansmann et al., 2009; Kanitz et al.,
2011), the saturation mixing ratio is defined as follows:

qsat
=


qsat

liq : −5 ◦C< ϑ

qsat
lin : −38 ◦C< ϑ <−5 ◦C
qsat

ice : ϑ <−38 ◦C,

(14)

where qsat
liq and qsat

ice are the saturation mixing ratios above
liquid water and ice, respectively. The qsat

lin denotes a linear
function that describes the transition from qsat

liq to qsat
ice . The

related uncertainty is defined as the difference between qsat
liq

and qsat
lin and between qsat

lin and qsat
ice , respectively. It amounts to

a maximum of 0.23 gkg−1 at −8 ◦C and decreases with de-
creasing temperature which usually means increasing height.
Jsup(x̂) adds a penalty if the retrieval produces supersat-

uration all over the profile (Phalippou, 1996; Schneebeli,
2009). This function is defined by

Jsup(x̂)=

n∑
j

J sup(xj ), (15)

J sup(xj )=

0 : qj6qsat
j

ζ
(
qj − q

sat
j

)3
: qj > q

sat
j .

(16)

The constant ζ = 106 drives the strictness of the constraint.
The larger ζ , the more strict is the constraint. Here, a large
value is set to avoid supersaturation all over the profile. How-
ever supersaturation is not completely avoided due to the un-
certainties in the temperature profiles from the MWR that are
the basis of the saturation mixing ratio qsat.
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Figure 5. Retrieved mixing ratio profiles both with (red) and with-
out (green) supersaturation constraint on 23 April 2013, 01:02 UTC.
Cloud base is indicated by the dashed line. The saturation mixing
ratio is illustrated by the dotted grey line. The a priori profile (blue)
for both scenarios is the same.

Figure 5 illustrates the benefit of the supersaturation con-
straint on 23 April 2013, 01:02 UTC. The disregard of the
constraint results in too large mixing ratio values in altitudes
above 5 km. This overestimation corresponds to a supersat-
uration of 200 up to 300 % relative humidity. The applica-
tion of the constraint prevents the overestimation of humid-
ity. The resulting values are in good agreement with the satu-
ration mixing ratio with relative humidity values not exceed-
ing 115 %, which is more realistic.

The implementation of a constraint that prohibits subsatu-
ration within clouds is not beneficial in this application. The
assumption of single-layer liquid water clouds and the un-
certainties in the temperature profile would result in uncer-
tain saturation mixing ratio profiles and finally lead to wrong
retrievals.

With each term written out Eq. (13) becomes

J (x̂)=
[
x̂− xa

]T S−1
a
[
x̂− xa

]
+
[
z−F(x̂)

]T S−1
z

[
z−F(x̂)

]
+ Jsup(x̂). (17)

For clarity the time index is omitted here. x̂ is the optimal
estimate of the atmospheric state. Sa and Sz denote the co-
variance matrices of the a priori state and the observation,
respectively. The optimum solution can be found iteratively
using the Levenberg–Marquardt method:

xi+1 = xi +
[
(1+ γ )S−1

a +KT
i S−1

z Ki + J̈sup

]−1

×

[
KT
i S−1

z (z−F(xi))+S−1
a (xi − xa)+ J̇ sup

]
, (18)

with i being the iteration index. The dots above J indi-
cate the first and the second derivative, respectively. The
Levenberg–Marquardt parameter γ is increased by a fac-
tor of 10 if J (x̂i+1)> J (x̂i) and reduced by a factor of 2
if J (x̂i+1) < J (x̂i). In this work the initial value of γ = 2.

Figure 6. Illustration of the optimal estimation method. Details are
given in the text.

It was found that the Levenberg–Marquardt method does
not reach convergence faster but more reliably than the
Gauss–Newton approach (γ = 0) (Rodgers, 2000; Schnee-
beli, 2009). If γ→∞, the step tends towards the steepest
descent of the cost function, allowing for leaving a local
minimum towards a global minimum (Hewison and Gaffard,
2006). Ki denotes the weighting function matrix, also known
as Jacobian or kernel (hence K), but from now on Jacobian.
It is defined as

K=
∂F(x̂)
∂x̂

(19)

and calculated by perturbing the state vector at each height
level by ln(0.1 gkg−1). Equation (18) is iterated until the fol-
lowing criterion is fulfilled:[
F(xi+1)−F(xi)

]
S−1
δz

[
F(xi+1)−F(xi)

]
�m, (20)

with Sδz being the covariance matrix between the measure-
ment and F(x̂):

Sδz = Sz
(

KSaKT
+Sz

)−1
Sz. (21)

Finally, the covariance matrix of the resulting analysed state
vector (a posteriori) is calculated as

Ŝ=
(

KT S−1
z K+S−1

a

)−1
. (22)

Since the retrieval might converge to a false minimum it
is necessary to check the retrieval for correct convergence.
Therefore, the χ2 test for consistency of the optimal retrieval
(xop) with the observation (zobs) is introduced:

χ2
=
[
F(xop)− zobs

]T S−1
δz

[
F(xop)− zobs

]
. (23)

Here, the forward modelled state F(xop) and the observation
vector zobs are compared with the error covariance matrix
Sδz. The test is usually used to look for outliers, i.e. cases
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where the χ2 value is larger than a threshold value (χthr).
χthr is calculated for a probability of 5 % that χ2 is greater
than the threshold for a theoretical χ2 distribution with mz
degrees of freedom. All retrieved profiles with a χ2 value
that exceeds the threshold are marked as untrustworthy. The
χ2 values of all retrieved profiles are analysed and discussed
in Sect. 5.

The averaging kernel matrix A gives the sensitivity of the
retrieval to the true state:

A=
∂x̂

∂x
=

(
KT S−1

z K+S−1
a

)−1
KT S−1

z K. (24)

The rows aTi of A are the averaging kernels. In an ideal in-
verse method, A would be a unity matrix. Generally the aver-
aging kernels are peaked functions which indicate the smear-
ing of information across multiple levels. In this work, the av-
eraging kernels are not peaked functions, because the MWR
observation does not provide enough vertical information.
This issue is covered in detail in Sect. 4.1. The averaging
kernel has an area aarea, which is a measure of fraction that
comes from the observation, rather than the a priori. The area
of ai is the sum of its elements and can be calculated as Au
where u is a vector with unit elements.

The information content of a measurement can be ex-
pressed by the degree of freedom (d), which is the trace of
A. d is a measure of how many independent quantities are
measured. One has to consider that the larger the a priori un-
certainty, the larger d and the larger the retrieved a posteriori
uncertainty (Ebell et al., 2010).

In summary, the retrieval is strongly driven by the a pri-
ori uncertainty which constrains the subspace in which the
retrieval must lie. The larger the off-diagonal elements of
this covariance, that means the higher the correlations and
the smaller is the subspace. For that reason the a priori co-
variance has to be estimated very carefully. In the proposed
retrieval the a priori covariance is strongly decreased by the
application of the Kalman filter that reduces the subspace of
possible solutions.

4 Retrieval application

4.1 Cloud-free conditions

In this section the general functionality of the retrieval of
water vapour profiles and basic parameters such as aver-
aging kernels and degree of freedom are introduced using
a straightforward cloud-free case. Figure 7 gives an overview
of a mostly cloud-free day (5 May 2013). It shows the LWP,
the height–time display of the mixing ratio measured by the
Raman lidar PollyXT and the height–time display of the re-
trieved profiles after applying the two-step algorithm. The
vertical and temporal resolution of the Raman lidar mixing
ratio profiles is 90 m and 5 min, respectively. In the early
morning up to 03:00 UTC the mixing ratio could be mea-
sured very well by the lidar (Fig. 7b). With the rising sun
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(b) Measured Raman lidar profiles
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(c) Optimal estimated profiles
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Figure 7. Overview of a mostly cloud-free case on 5 May 2013.
(a) liquid water path (LWP). (b) Height–time display of the mixing
ratio measured by the Raman lidar. (c) Height–time display of the
retrieved optimal estimated mixing ratio. The solid line indicates
the height where the Raman lidar profiles are truncated. The dotted
line defines the cloud base height determined by the lidar.

the profiles are more and more noisy such that even the low-
ermost values are disturbed. For that reason the lidar pro-
files can be no longer used; they serve as an input to the
OEM only if they are available. At 05:00 UTC the water
vapour channel is automatically switched off and usually
switched on again at 18:00 UTC. The noise decreases af-
ter sunset allowing an undisturbed water vapour observation
from 20:00 UTC on. An automated depolarization calibration
produces a gap around 22:00 UTC. The cloud base height in-
dicates the development of boundary layer clouds which can
also be seen in the LWP values during daytime (Fig. 7a). Al-
though there are no lidar profiles during the day, a complete
time series of mixing ratio profiles can be retrieved (Fig. 7c).
In the following, the retrieval application of two different
conditions, with full height and without mixing ratio profiles
from lidar, are distinguished.

Figure 8 illustrates the algorithm processing in the pres-
ence of full-height calibrated Raman lidar profiles on
5 May 2013, 23:02 UTC. The last analysed state (from 5 min
ago) is propagated in time to the estimated state (Fig. 8a).
The propagation is a 1 : 1 translation. Its uncertainty is small
because it originates in the last analysed state that was also
driven by a lidar profile. The plotted uncertainties are the
square roots of the diagonal elements of the corresponding
covariance matrix. The Kalman filter combines the current
lidar measurement and the estimated state to the filtered state
that is more driven by the estimated state than by the lidar
measurement (Fig. 8b). The filtered profile serves as input
(a priori) to the optimal estimation (Fig. 8c). The small un-
certainties of the a priori forces the retrieval to resemble the
filtered state with similar uncertainties. The ability of the li-
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Figure 8. Overview of cloud-free scene on 5 May 2013, 23:02 UTC.
Mixing ratio (MR) profiles from the Raman lidar and the esti-
mated (a), the Kalman-filtered (b) and the optimally estimated
state (c). Additionally, the mixing ratio of the radiosonde (RS) is
shown (c). Error bars are added to the profiles at the different states
of the processing. (d) Averaging kernel for a subset of 10 levels indi-
cated by the coloured numbers. (e) Accumulated degree of freedom
dacc (solid) and the area of the averaging kernel Aarea (dotted).

dar to perform precise water vapour measurements results in
small differences to the reference RS. The comparison to RS
is discussed in detail in the next paragraph. Figure 8d shows
the averaging kernels for a subset of 10 levels. They demon-
strate how the information in one retrieved bin is derived
from an average of those around it. Ideally the averaging
kernels are peaked functions. However, the vertical humid-
ity information at the HATPRO frequencies is limited, which
results in smooth functions that are similar to each other. The
area of the averaging kernels aarea describes the sensitivity to
a unit perturbation. It gives an indication of where the MWR
observation is sensitive to the true state and where the final
information originates. aarea values around unity or differing
from unity indicate that the information originates in the ob-
servation (z) or in the a priori, respectively. In Fig. 8e, aarea
is close to zero up to 6 km and increases to values around
1.8 for higher altitudes. This means that the MWR observa-
tion is not sensitive to the true state, caused by small a priori
(Kalman filtered) uncertainty. In this case the retrieved pro-
file is driven by the accurate a priori state that originates in
the lidar measurement. The information content that comes
from the observation is given by the degree of freedom d.
Figure 8e represents the accumulated degree of freedom dacc
which maximally amounts to ∼ 0.4. That means that 0.4 in-
dependent pieces of information are added by the observation
(MWR and surface value).

As mentioned above, the retrieved optimal profile (OEM)
fits well with the RS profile. A more intense comparison is
illustrated in Fig. 9a. Instead of feeding the retrieval with li-
dar data, one can only use the MWR data as well. In this
way, the improvement of applying Kalman-filtered lidar pro-
files as a priori is emphasized. In such cases (OEMMWR)
the Kalman filter is completely skipped. The profile corre-
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Figure 9. (a) Comparison of mixing ratio profiles on 5 May 2013
around 23:00 UTC: retrieved profile (OEM, red), retrieved profile
with RS climatology as a priori (OEMMWR, blue), profile from
the MWR statistical retrieval (green), the Raman lidar measurement
(grey) and RS (black) as reference. Error bars are added to the op-
timally estimated profiles (red, blue, grey). Absolute (b) and rela-
tive (c) difference from the reference RS.

sponding to d = 2 is added to Fig. 9a. The uncertainties are
larger over the whole profile in comparison to the OEM.
Both the OEMMWR and the MWR profiles from the statis-
tical retrieval (MWRstat) are unable to distinguish vertical
structures as indicated by the OEM and RS. For that rea-
son, their absolute differences to the RS are larger than those
from the OEM (Fig. 9b). Furthermore, in this application the
OEMMWR clearly overestimates the humidity below 1 km.
The OEM profile fits best and the zero line (no difference) is
within the error bars over nearly the whole profile. The OEM
is slightly more accurate especially near the surface and with
smaller uncertainties over the whole profile. The relative dif-
ferences (to RS) are smaller below 4 km and large for al-
titudes where the mixing ratio from RS is small (Fig. 9c).
In summary, the OEM profile fits best with small uncertain-
ties and differences referred to the RS. However, in cases
with full-height lidar profiles the optimal estimation is not
necessary, because the Raman lidar profiles already contain
nearly all information. But full-height lidar profiles are only
available 18 % of the time during HOPE and by applying the
OEM the data set is extended to 60 % coverage (see Sect. 5).

In contrast to 23:02 UTC there is no mixing ratio pro-
file from lidar available at 07:02 UTC (Fig. 10a). Due to the
missing lidar profiles the estimated and the filtered profiles as
well as their uncertainties are the same (Fig. 10b). The differ-
ence between the filtered and the optimal estimated profile is
very small since the atmospheric changes within a 5 min step
are quite small. However, the uncertainty decreases near the
ground. This is not only caused by the MWR but by the sur-
face measurement which is also part the observation vector
(z). The optimally estimated profile is very smooth, since the
HATPRO frequencies do not provide enough information to
distinguish fine vertical structures. This can be seen in the
difference between the optimal estimated profile and the RS
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Figure 10. As Fig. 8 but on 5 May 2013 07:02 UTC.

profile which is used as reference. The corresponding averag-
ing kernels (Fig. 10d) are smooth functions that are similar to
each other, because the vertical humidity information at the
HATPRO frequencies is limited. The area of the averaging
kernels aarea is around unity (Fig. 10e). This means that the
MWR observation is sensitive to the true state and most in-
formation (nearly all) originates in the observation (z). The
accumulated degree of freedom dacc maximally amounts to
∼ 1.9, meaning that 1.9 independent pieces of information
can be retrieved. Löhnert et al. (2009) used RS climatology
as a priori for different locations and found d values around 2
for humidity profiling with HATPRO. In contrast, one has to
consider that here the observation vector is supplemented by
the surface humidity which also adds information. The dif-
ference might be explained by different a priori covariance
matrices Sa.

In summary, the presence of a lidar measurement results
in more accurate retrievals, whereas retrievals without water
vapour profiles from lidar are mainly driven by the MWR ob-
servation for example during daytime. However, the two-step
algorithm makes it possible to retain structures from high
vertically resolved lidar data to use for periods without lidar
data.

4.2 Cloudy conditions

As introduced in Sect. 3.4, liquid water strongly affects the
absorption in the microwave region. Therefore, the opera-
tion of the retrieval in the presence of clouds containing
liquid water has to be treated separately. Figure 11 shows
an overview of a cloudy day, 21 April 2013. In the course
of the day the LWP increases to a maximum of 600 gm−2

(Fig. 11a). Between 00:00 and 03:30 UTC the measured li-
dar profiles reach from ground up to the cloud base between
2.5 and 3.5 km. Referring to the rather low LWP the cloud
seems to be an ice cloud. During the day, the mixing ratio is
determined on the basis of the MWR observation only dis-
turbed by five short interruptions that are caused by miss-
ing cloud base detection by lidar. From 19:30 UTC on the li-
dar profiles are truncated at the cloud base at around 1.5 km.
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(b) Measured Raman lidar profiles
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(c) Optimal estimated profiles
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Figure 11. As Fig. 7 but on 21 April 2013.

The LWP shows that these clouds contain liquid water. The
possible content of ice water is not relevant for the radiative
transfer in the considered spectrum. However, ice clouds as
well as all other clouds disturb the precise determination of
water vapour with Raman lidar. For that reason the profile
is only considered up to cloud base. The problem of trun-
cated profiles is solved by the application of the Kalman fil-
ter (Sect. 3.2). It enhances the profiles up to 10 km by the
combination of previous information and the respective trun-
cated lidar profile such that a full-height profile can serve as
input to the optimal estimation.

A comparison between the retrieved profiles (OEM),
the retrieved profiles based on climatology (OEMMWR),
the MWR profiles from the statistical retrieval (MWRstat)
and the RS is shown in Fig. 12a. There is a cloud with
LWP= 242 gm−2 between 1.3 and 2.4 km. Both OEMMWR
and MWRstat are unable to distinguish the vertical structure
inside the cloud given by the RS. Furthermore, they show
large differences to the RS profile below and slightly above
the cloud (Fig. 12b). The OEM profile shows a good agree-
ment with the RS profile below the cloud based on available
lidar data. The associated uncertainties are small. Within the
cloud the uncertainty increases. The profile approximates to
the RS. Above the cloud, the OEM uncertainties are in the
same range than the OEMMWR profile, whereas the differ-
ence to the RS profile is smaller. Over nearly the whole range
the RS profile is within the uncertainty range of the OEM
profile. However, for the most part, the RS profile is also
within the OEMMWR uncertainty. The corresponding relative
differences with the RS profile are plotted in Fig. 12c. Up to
4 km the relative difference of the OEM profile is less than
25 %. Above this height the relative difference increases. The
OEMMWR and MWRstat have larger relative differences to
the RS. In summary, the OEM fits best the RS with lowest
differences in and above the cloud.
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Figure 12. As Fig. 9 but on 21 April 2013 around 23:00 UTC. The
grey area indicates the cloud with an LWP of 242 gm−2.

5 Statistical analysis

In the previous section (Sect. 4) the functionality of the re-
trieval is introduced based on clear-sky and cloudy cases dur-
ing HOPE. A statistical analysis of the retrieved water vapour
profiles during the whole HOPE campaign is presented in
the following section. Here, also profiles from RS and the
OEMMWR (without lidar) are used as reference.

First, an overview over the calibrated water vapour profiles
observed by PollyXT during HOPE is given in Fig. 13a. The
grey area indicates regions without lidar data (up to 6 km)
due to cloud attenuation (17 %) and during the day (65 %).
The well-resolved vertical profiles enable the determination
of distinct water vapour structures or inversions that can be
seen, for example, at around 1 km during the night between
26 and 27 May 2013.

As introduced in the previous sections, one can use the co-
variance of the RS climatology as uncertainty from the pre-
vious state, instead of lidar data. However, the cloud base
height determined by the lidar is necessary. This approach
(OEMMWR) is only based on the observation with MWR and
surface humidity and is similar to that proposed by Löh-
nert et al. (2009). The corresponding height–time display
is illustrated in Fig. 13b. The gaps (40 %) are caused by
rain, MWR malfunctions, flagged MWR data, the absence
of cloud base height from lidar or that no solution was found
by the retrieval. Nevertheless, the profile availability is 60 %.
Although the data availability for OEMMWR is larger than for
the Raman lidar (Fig. 13a), the vertical resolution is coarser.
This can be seen clearly by comparing to the lidar profiles
(Fig. 13a) of the night between 26 and 27 May 2013.

Figure 13c shows the retrieved mixing ratio profiles
(OEM) based on the method that was described in the pre-
vious sections. The data coverage is nearly the same as for
OEMMWR. However, the OEM is able to retrieve fine water
vapour structures by means of the lidar profiles. The OEM
enables not only the distinction between dry (e.g. beginning
of April) and more humid (e.g. middle of April) periods but
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Figure 13. Three different height–time displays of mixing ratio pro-
files during HOPE: (a) calibrated Raman lidar profiles, (b) optimal
estimated profiles based only on MWR (and surface humidity) with-
out any Raman lidar mixing ratio profile (OEMMWR) and (c) opti-
mal estimated profiles based on Kalman-filtered Raman lidar mix-
ing ratio a priori profiles (OEM).

also the vertical distribution of water vapour especially from
within and above a cloud.

For a more comprehensive investigation of the quality of
the profiles a differentiation between three situations based
on certain initial conditions is helpful. These situations are
in accordance with the case studies presented in the pre-
vious section (Sect. 4). The first situation includes cases
where a full-height lidar profile is available (minimum up
to 8 km). Such a case is presented in Sect. 4.1 especially in
Fig. 8. Referring to the statistical analysis these profiles are
marked in blue unless stated otherwise. The second group in-
cludes cases with lidar profiles which are truncated between
0 and 8 km mostly due to clouds. Such cases were introduced
in Sect. 4.2 in Fig. 12 and are marked in green from now on.
The last group contains all cases without lidar profiles as in-
troduced in Fig. 10 shown in red. An overview is given in
Table 2. The table also lists the sample size for all profiles
and those that are used for comparisons with RS. These are
also distinguished between profiles passing and failing the
χ2 test that is discussed later in this section. Additionally,
the OEMMWR is used as reference and is marked in grey.

To assess the accuracy of a water vapour profile, reference
profiles from RS and OEMMWR profiles are used. In this
work the bias and the root mean square error (RMSE) be-
tween the retrieved profiles and those from RS are applied to
evaluate the quality of the retrieved profiles. For this compar-
ison retrieved profiles that are between RS launch time and
1 h after launch time are used. This results in a maximum
of 12 profiles for one sounding. Only cases which pass the
χ2 test are considered for the comparison. Figure 14a shows
the bias for the specified situations and for the OEMMWR.
The blue line illustrates the retrieved profiles that are based
on lidar profiles in minimum up to 8 km (clear sky). It has
a maximum value of 0.5 gkg−1 near the surface and it de-
creases close to zero above 1.5 km. However, the bias is pos-
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Table 2. Overview of the different situations depending on Raman lidar mixing ratio (RL MR) profile availability and truncation height
(htr) where the RL MR profile is truncated (due to clouds). The three columns on the right indicate the sample size used for the comparison
with radiosonde (RS), to validate the retrieved profiles, and all cases. Furthermore, the profiles that are used for the comparison with RS are
separated between those passing and failing the χ2 test based on a threshold χ2

thr. The temporal resolution of the retrieved profiles amounts
to 5 min.

RL MR profiles Truncation height Sample size

Comparison RS All

χ2 < χ2
thr All

Full height yes htr> 8 km 102 131 665
Truncated yes 0 km< htr≤ 8 km 262 291 2010
No lidar no htr= 0 km 1033 1053 5732
OEMMWR no – 1397 1475 8407
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Figure 14. Statistical analysis of the synergy improvement: mean
difference (bias) between the retrieval and the RS (a), root mean
square error (RMSE) to RS (b) and a posteriori uncertainty (c). It
distinguishes four situations according to Table 2. The sample size
is given by the numbers in the middle panel. Only profiles between
RS launch time and 1 h after are considered.

itive, which means that the retrieved profiles have larger val-
ues than the RS profiles. Above 6 km the retrieved profiles
show higher values than the RS. This bias needs to be in-
vestigated in further studies and is beyond the scope of this
study.

The bias of the situations where the lidar profiles are trun-
cated below 8 km is shown in green (Fig. 14a). The values are
in maximum around 0.6 gkg−1 and are largest in the plane-
tary boundary layer. Above 2.5 km the bias is around zero.
The bias of the situations where no lidar profiles are available
and of the OEMMWR show a similar behaviour to each other.
Both curves show an overestimation of the retrieved mixing
ratio within the boundary layer up to 2 km. Between 2 and
5 km the retrieval underestimates the mixing ratio by around
−0.4 gkg−1. Additionally, the small amount of vertical in-
formation that comes from the MWR observation might not
be able to compensate this misbehaviour and to resemble the
profile given by the reference. This effect can also be seen in
the presented clear-sky case study in Fig. 10. Nevertheless,

situations where no lidar profiles are available show a bias
closer to zero than the OEMMWR. These cases benefit from
the night cases whose vertical structure is propagated into
the day cases. The positive biases of all four curves seem
to have a systematic difference that might be explained by
some sources of uncertainty in the RS profiles. The different
locations of the platform in Krauthausen and the RS launch
station and drifts of the balloon might result in the observa-
tion of different air masses (Foth et al., 2015). Naturally, the
forward model itself is a source of uncertainty. The modelled
brightness temperatures strongly depend on the assumed ab-
sorption line shapes (Turner et al., 2009). Figure 15 illus-
trates a comparison of forward models using two different
gas absorption models: Rosenkranz (1998, R98) and Liebe
et al. (1993, L93). The differences are the line shape param-
eters of the 22.235 GHz water vapour line, as well as the wa-
ter vapour continuum absorption. Both models are corrected
for water vapour continuum absorption according to Turner
et al. (2009). All other parameters, e.g. cloud absorption, are
the same. Both forward models were performed under two
different a priori states, both without lidar. The first uses the
a priori profile and the a priori covariance from RS clima-
tology. It simulates the theoretical uncertainty (theor.) only
induced by the different absorption models. In the other case
the a priori profile is propagated (prop.) from the previous
state as used in the original retrieval. Here, the a priori un-
certainty is also taken from the RS climatology. The bias to
RS in the second case is larger because the theoretical un-
certainty is propagated from each previous state resulting in
an increase in uncertainty (Fig. 15a). It can be seen that the
L93 model has a smaller bias below 1 km. Above 2.5 km the
R98 model simulations better fit the RS with a bias around
−0.3 gkg−1 and a bias close to 0 gkg−1 above 5 km. The re-
trieved uncertainty, the so-called a posteriori uncertainty, of
the R98 simulations are smaller than those from the L93. The
uncertainty of the L93 runs is also largest in heights above
3 km. Finally, the R98 gas absorption model seems to be
more suitable for the presented retrieval. Nevertheless, the
forward model is a major source of uncertainty.
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Figure 15. Mean difference (bias) between the retrieval and the
RS (a) and a posteriori uncertainty (b) for two different absorp-
tion codes: Rosenkranz, (R98, grey) and Liebe (L93, orange). The
retrievals shown are based only on MWR but with different a priori
states. On the one hand, both a priori profile and a priori uncertainty
are taken from the RS climatology (theor.) and on the other hand the
a priori profile is propagated (prop.) from the previous step while the
uncertainty is taken from the RS climatology (red cases in the fig-
ures above). The sample size is given by the numbers. Only profiles
between RS launch time and 1 h after launch time are considered.

The RMSE between OEM and RS is illustrated in Fig. 14b.
It gives an indication of the statistic error. The RMSE of all
four curves decreases with height. In addition, the RMSE is
smaller for cases with lidar profiles as a priori and larger for
those without. The RMSE of the HOPE RS profiles is larger
than any RMSE of the retrieved profiles, which is basically
the variance of mixing ratio in the whole period.

Figure 14c illustrates the a posteriori uncertainty of the
mixing ratio profiles (see Eq. 22). The black line indicates
the uncertainty of the RS climatology which is the square
root of the diagonal elements of its covariance matrix. It can
clearly be seen that the retrieved a posteriori uncertainty is
smaller for all situations. The curves of the cases without li-
dar profiles and the OEMMWR are nearly in agreement. In
both cases the Kalman filter is skipped due to the absence
of lidar profiles. Therefore, both use the same a priori un-
certainty and their retrievals are solely driven by the MWR
and surface humidity observation. The presence of lidar data
(full height or truncated) results in much lower uncertainties.
Their small a posteriori uncertainties underline the synergy
improvement.

In summary, Fig. 14 clearly shows that the application of
Kalman-filtered lidar profiles enormously improves the ac-
curacy and quality of the retrieved mixing ratio profiles.

Another possibility to evaluate the accuracy of the re-
trieved profiles is to analyse the bias as a function of the
mixing ratio (Fig. 16). The slope of the regression line is
smaller than the one-to-one line. This means that larger dif-
ferences occur for larger mixing ratios. Figure 16 also indi-
cates the correlation between retrieved and RS mixing ratios.
The squared coefficient of correlation R2 is largest for those
situations with full-height lidar profiles and amounts to 0.97

Figure 16. Comparison of optimal estimated (OEM) and ra-
diosonde (RS) mixing ratio profiles for the four situations (panels a–
d) given in Table 2. The black solid line indicates the regression
line.

(Fig. 16a). The R2 of the OEM based on truncated lidar pro-
files (panel b) is slightly smaller (0.96). In situations without
lidar data and the OEMMWR have still smaller values of 0.92
and 0.91, respectively. Nevertheless, all cases show a better
agreement with RS than the OEMMWR. This illustration also
demonstrates the synergy improvement by implementing the
lidar data with a Kalman filter before applying the OEM.

To assess the quality of retrieved profiles a statistical test
for correct convergence of the solution is applied. The mod-
elled state F(xop) and the observation vector zobs are com-
pared with the error covariance matrix Sδz (see Eq. 21) to
check if the retrieval is consistent with the observation. Fig-
ure 17 shows the χ2 test statistics for all mentioned situa-
tions. The χ2 test was introduced in Sect. 3.5. It can be seen
that 29 profiles are rejected in the situations with full-height
lidar profiles because their χ2 value exceeds the 5 % thresh-
old value of 14 (Fig. 17a). The amount of untrustworthy pro-
files is similar to the situations with truncated lidar profiles.
In both cases the smaller a priori uncertainty prevents an ad-
justment of the modelled brightness temperatures to those
measured by MWR. For that reason, their difference is larger
resulting in a larger χ2 value. The χ2 test rejects a smaller
relative amount of profiles for the daytime cases (panel c) and
at the OEMMWR (panel d). Their larger a priori uncertainty
enables a better match between the modelled and the mea-
sured brightness temperatures. However, all situations show
a peak at small values that originates in a very good agree-
ment between the forward modelled optimal state and the
observation vector. Admittedly, the test is very strict and re-
jects all failing profiles although they might be realistic at-
mospheric states. Nevertheless, it enhances the confidence of
the retrieved profiles.

A good measure for the proportion of information that
comes from the observation is given by the degree of free-
dom. It describes the number of independent pieces of infor-
mation that is added by the retrieval and has already been
introduced in Sects. 3.5 and 4. Figure 18a illustrates the de-
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Figure 17. Histograms of the χ2 test for the four situations given
in Table 2. The dotted lines indicate the theoretical χ2 distribution
withmy degree of freedom. Dashed lines indicate the 5 % threshold
value of 14. The absolute number of cases below and above the
threshold value is given to the left and to the right of the dashed
line, respectively.
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Figure 18. (a) Degree of freedom as a function of truncation height
for different situations introduced in Table 2. (b) Frequency distri-
bution of the degree of freedom. The symbols and error bars cor-
respond to the related mean and standard deviation, respectively.
The numbers indicate the sample size of the considered profiles;
full height (blue), truncated (green), no lidar (red) and OEMMWR
(grey).

gree of freedom as a function of truncation height. It clearly
demonstrates that the lower the truncation height the higher
the degree of freedom. This is caused by the larger a pri-
ori uncertainty in cases with truncated or without lidar mix-
ing ratio profiles. The sample size is much higher than in
the comparisons above because here all profiles can be used
and not only those around the RS launch time. Most of the
grey crosses are not visible because they are covered by the
red diamonds. The related frequency distributions are shown
in Fig. 18b. Both the OEMMWR and the daytime cases are
very similar to each other. Even their mean values and stan-
dard deviations are nearly identical, with values of 1.9±0.22.
These values are in good agreement with those found by Löh-
nert et al. (2009) for a similar approach. The situations with
the truncated lidar profiles show a wide range of values from
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Figure 19. Degree of freedom as a function of IWV for the situa-
tions introduced in Table 2. The lines indicate the according regres-
sion lines.

0.3 to 2.1. The green distribution also has the largest stan-
dard deviation, which amounts to 0.34. The situations with
full-height lidar profiles have the smallest mean and standard
deviation with values of 0.45± 0.17. These cases are mostly
driven by the a priori information and not by the observa-
tion. The variation within each situation is caused by differ-
ent atmospheric conditions. Figure 19 illustrates the degree
of freedom as a function of IWV. It shows an increase in d
with increasing IWV caused by a stronger emission of wa-
ter vapour. For higher IWV, the MWR is able to add more
information to the retrieval. Finally, the behaviour of the de-
gree of freedom and especially its dependence on truncation
height and hence a priori uncertainty agrees well with similar
studies (Löhnert et al., 2009; Ebell et al., 2013).

6 Conclusions

A good knowledge of the water vapour distribution is essen-
tial for the description of the thermodynamic state of the tro-
posphere. Since the continuous observation of water vapour
profiles with a single instrument is challenging, the synergy
of complementary information from active and passive re-
mote sensing has become more important in recent years.

In this study we present a two-step retrieval combining
the Raman lidar water vapour profiles with the MWR bright-
ness temperatures. The Kalman-filtered water vapour profile
serve as input (a priori) to the one-dimensional variational
approach, also known as optimal estimation. In addition to
the water vapour profile, its uncertainty is retrieved.

The retrieval enables the observation of a continuous time
series of water vapour profiles with known uncertainties.
During HOPE, the availability of full-height water vapour
profiles from lidar amounts to 17 % excluding all cloudy and
daytime cases. By applying the retrieval, the availability of
water vapour profiles can be enlarged to 60 %. The bias with
respect to RS and the retrieved a posteriori uncertainty of
the retrieved profiles clearly show that the application of the
Kalman filter considerably improves the accuracy and quality
of the retrieved mixing ratio profiles. In the presence of full-
height Raman lidar profiles, the MWR does not add much
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information to the retrieved profiles. However, cases without
Raman lidar profiles are dominated by the MWR informa-
tion with a larger degree of freedom. The lower the trunca-
tion height of the lidar profiles, the higher the importance of
the MWR.

Furthermore, the retrieval can be applied to raw data (pho-
ton counts) using the calibration method based on Foth et al.
(2015) or using already calibrated profiles.

In future steps, the precipitation evaporation can be as-
sessed by means of observed or retrieved temperature and
humidity profiles. This information can be used to im-
prove model parametrization of physical processes with wa-
ter vapour participation and finally to improve weather and
climate predictions.

The retrieval will be implemented into the Cloudnet pro-
cessing. A better knowledge of the water vapour distribution
and the collocated and simultaneous monitoring of cloud mi-
crophysics within Cloudnet might improve the understanding
of cloud formation, precipitation, evaporation and entrain-
ment rates. The application of this algorithm might help to
decrease uncertainties in the area of cloud and precipitation
formation as well as cloud dissipation, as mentioned in the
latest IPCC report (Boucher et al., 2013).
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