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Abstract. Cubic splines with equidistant spline sampling
points are a common method in atmospheric science, used for
the approximation of background conditions by means of fil-
tering superimposed fluctuations from a data series. What is
defined as background or superimposed fluctuation depends
on the specific research question. The latter also determines
whether the spline or the residuals – the subtraction of the
spline from the original time series – are further analysed.

Based on test data sets, we show that the quality of ap-
proximation of the background state does not increase con-
tinuously with an increasing number of spline sampling
points and/or decreasing distance between two spline sam-
pling points. Splines can generate considerable artificial os-
cillations in the background and the residuals.

We introduce a repeating spline approach which is able to
significantly reduce this phenomenon. We apply it not only
to the test data but also to TIMED-SABER temperature data
and choose the distance between two spline sampling points
in a way that is sensitive for a large spectrum of gravity
waves.

1 Introduction

It is essential for the analysis of atmospheric wave signa-
tures like gravity waves that these fluctuations are properly
separated from the background. Therefore, particular atten-
tion must be attributed to this step during data analysis.

Splines are a common method in atmospheric science for the
approximation of atmospheric background conditions. The
shortest wavelength or period which can be resolved by the
spline is twice the sampling point distance according to the
Nyquist theorem. Depending on the field of interest, either
the smoothed data series or the residuals – the subtraction of
a spline from the original time series – are further analysed
(see, for example, the work of Kramer et al., 2016; Baum-
garten et al., 2015; Zhang et al., 2012; Wüst and Bittner,
2011, 2008; Young et al., 1997; Eckermann et al., 1995).

Algorithms for the calculation of splines are implemented
in many programming languages and in various code pack-
ages, making them easy to use. Nevertheless, spline approx-
imations sometimes need to be handled with care when it
comes to physical interpretation.

Figure 1 explains our motivation for the work presented
below. It shows the squared temperature residuals averaged
over 1 year for the years 2010–2014 versus height between
44 and 48◦ N and 5 and 15◦ E (approximately 500 profiles per
year). This region includes the Alps, where gravity waves are
supposed to be generated. The vertical temperature profiles
are derived from the SABER (Sounding of the Atmosphere
using Broadband Emission Radiometry) instrument on board
the satellite TIMED (Thermosphere Ionosphere Mesosphere
Energetics Dynamics), data version 2.0 (details about this
data version can be found in Wüst et al. (2016) and refer-
ences therein, for example). For the calculation of the resid-
uals, we applied a cubic spline routine with equidistant sam-
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Figure 1. Mean squared temperature residuals for the years 2010
to 2014 (colour-coded). They are derived from TIMED-SABER,
data version 2.0 by using a cubic spline routine with equidistant
sampling points for detrending. The distance between two spline
sampling points is 10 km. All vertical SABER temperature profiles
which were retrieved between 44 and 48◦ N and 5 and 15◦ O are
used (that means approximately 30–50 profiles per month and ap-
proximately 500 profiles per year).

pling points. As mentioned above, the shortest wavelength
which can be resolved by the spline is two times the dis-
tance between two consecutive spline sampling points. At
the same time, this wavelength is the largest resolvable one
in the residuals. The number of spline sampling points (and
the length of the data series) therefore determines the sen-
sitivity of the spline to specific wavelengths. The distance
of 10 km between two spline sampling points ensures sensi-
tivity for a large spectrum of gravity waves. Therefore, we
take the squared temperature residuals as a simple proxy for
gravity wave activity with vertical wavelengths up to 20 km.
It is evident that the mean squared residuals do not only
reveal a strong and continuous increase with height (note
the logarithmic x axis) as expected since gravity wave am-
plitudes should increase due to the exponentially decreas-
ing atmospheric background pressure with altitude. Super-
imposed on this general increase of gravity wave activity are
well-pronounced oscillations with wavelengths of ca. 10 km,
which is nearly equal to the distance between two spline sam-
pling points.

Since we are not aware of any physical reason for this
oscillation, we formulate the hypothesis that this is an arte-
fact of the analysis. In order to avoid or at least reduce such
problems, here we propose a repeating variation of the cu-
bic spline approach, which we explain in Sect. 2. In Sect. 3,
we apply the original and the repeating approach to test data
sets. The results are discussed in Sect. 4. A brief summary is
given in Sect. 5.

2 Methods and algorithms

The approach we investigate here relies on cubic splines with
equidistant sampling points. Since spline theory is well elab-
orated, we will not go into much detail here. The algorithm
we use is based on Lawson and Hanson (1974).

The first step for the adaption of a spline function to a data
series on an interval [a, b] is choosing the number of spline
sampling points (also called knots). These points divide the
interval for which the spline is calculated into subintervals of
equal length. For each subinterval a third-order polynomial
needs to be defined, which means the coefficients have to
be determined. At the spline sampling points, not only the
function value, but also the first and second derivatives of
the two adjacent polynomials need to be equal. The optimal
set of coefficients is calculated according to a least squares
approach where the sum of the squared differences between
the data series and the spline is minimized.

As mentioned above, the number of spline sampling points
(and the length of the data series) determines the sensitivity
of the spline to specific wavelengths. Since the length of the
data series must be an integer number of the distance be-
tween two spline sampling points, only certain distances be-
tween two consecutive spline sampling points can be chosen
if the whole data series is approximated. We would like to
operate the spline algorithm by providing the shortest wave-
length which shall be resolved by the spline. That means that
we have to cut the upper part of the profile in each case. This
is only possible for data sets of sufficient length such as the
SABER temperature profiles, which we used for this pur-
pose. In detail, our spline algorithm works as follows. The
scheme includes the repeating as well as the non-repeating
algorithm.

Step 1: Provision of shortest wavelength

We provide the algorithm with the shortest wavelength
which shall be resolved by the spline (in the following
denoted by lim). It is equal to the doubled distance be-
tween two spline sampling points; therefore the distance
between two spline sampling points is equal to lim/2.

Step 2: Determination of x-values of the spline sampling
points

The minimal x-value of the data series is subtracted
from the maximal x-value, the difference is divided by
lim/2. If the result is a whole number, 1 is added. If this
is not the case, the closest integer less than the result is
calculated and 1 is added. This is the number of spline
sampling points used for the next step. It is denoted by
n:

n=

(
xmax− xmin

lim/2
−
xmax− xmin

lim/2
mod1

)
+ 1. (1)

Knowing lim/2 and the minimal x-value, the x-values
of the further spline sampling points can be calculated.
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Step 3: Calculation of spline approximation

The spline approximation is calculated based on Law-
son and Hanson (1974). If the length of the data series
is not equal to an integer multiple of lim/2, the surplus
part at the end of the data series is not subject of this
step. For the non-repeating approach, the spline algo-
rithm stops here.

Step 4 (only in the case of the repeating approach):
Iteration of starting point

The first point of the data series is removed and steps
2 and 3 are repeated. If the starting point is equal to
the original minimal x-value plus lim/2, the algorithm
proceeds with step 5.

Step 5 (only in the case of the repeating approach):
Calculation of the final spline

The mean of all splines derived before is calculated.
That is the final (repeating) spline.

For the repeating approach, the length of the data series
is not the same in each iteration since data at the beginning
and the end of the data series are not necessarily part of each
iteration: at the beginning of the data series, this holds for all
x-values between the minimal x-value and the minimal x-
value plus lim/2 (see step 4), and at the end of the data series,
this is the case for all values between the maximal x-value
and the maximal x-value minus lim/2 (see step 3).

For the non-repeating approach, data are cut only at the
end of the data series if the length of the data series is not
equal to an integer multiple of lim/2.

3 Case studies

The purpose of this section is to help to understand the gen-
eral behaviour of splines if the data set contains waves with
a wavelength of double the sampling point distance, which
may happen in the general case of an unknown mixture of
waves.

We generate a basic example using an artificial sine with a
vertical wavelength of 3 km, a phase of zero and an amplitude
of one. The function is sampled every 375 m (that means at
its zero crossings, at its extrema and once in between the zero
crossing and the next extremum/the extremum and the next
zero crossing).

The values for the sampling rate and the vertical wave-
length are set arbitrarily. However, the spatial resolution of
375 m is motivated through the spatial resolution of TIMED-
SABER, an instrument which is commonly used for the in-
vestigation of gravity waves (e.g. Zhang et al., 2012; Ern et
al., 2011; Wright et al., 2011; Krebsbach and Preusse, 2007)
and which delivered also the temperature profiles we used in
Fig. 1.

Figure 2a shows the test data series (dotted line) be-
tween 15 and 100 km height. This large height range is cho-
sen since it facilitates the demonstration of our results. A
non-repeating spline with a distance of 1.5 km between two
spline sampling points is fitted (solid line). According to the
Nyquist theorem, the chosen distance between two spline
sampling points is small enough to resolve the oscillation
in our test data. In parts (b) and (c) of Fig. 2, a spline
with a distance of 1.6 and 1.4 km between two spline sam-
pling points is calculated. Parts (d) to (f) of Fig. 2 focus on
the height range of 15 to 50 km of Fig. 2a to c: here, the
height-coordinates of the spline sampling points are plot-
ted additionally (dashed-dotted lines). The asterisks mark
the sampling points of the original sine. The spline adaption
in Fig. 2a/d differs significantly from the spline adaption in
Fig. 2b/e and 2c/f: apart from a slight oscillation at the begin-
ning/end of the height interval, the spline is equal to zero in
Fig. 2a/d. The spline approximation plotted in Fig. 2b and c
shows a beat-like structure across the whole height range.

In order to give an overview concerning the quality of
adaption not only for some chosen examples as they were
shown in Fig. 2, the test data set is approximated by a cu-
bic spline with varying numbers of spline sampling points.
The squared differences between the spline and the test data
are summed up between 20 and 40 km (this height interval
is chosen in order to be consistent with Fig. 7 later). We
call this value the sum of squared residuals which is equal
to the approximation error in this case. It does not decrease
continuously with an increasing number of spline sampling
points and/or decreasing distance between two spline sam-
pling points but it is characterized through a superimposed
oscillation which reaches its maximum for a distance of ca.
1.5 km between two spline sampling points (Fig. 3, solid
line). When changing the phase of the test data set to π/2
(instead of zero), the sum of squared residuals for a distance
of ca. 1.5 km between two spline sampling points is much
lower (Fig. 3, dashed line). This makes it clear that the sum
of squared residuals depends on the phase of the oscillation
(one can also say on the exact position of the spline sampling
points).

The analysis described above is repeated, but the phase of
the oscillation varies between 0 and 2π . The sum of squared
residuals (between 20 and 40 km) is calculated for three dif-
ferent distances between two spline sampling points: 1.5 km
(Fig. 4, solid line), 1.4 km (Fig. 4, short dashes) and 1.6 km
(Fig. 4, long dashes). The dependence on the phase is most
pronounced for a distance of 1.5 km: the sum of squared
residuals is minimal for a phase of π/2 and 3π/2. For a phase
of 0 and π , the opposite holds.

This example directly motivates the application of the
repeating spline approach on the same test data set (see
Fig. 5a–f, which can be directly compared to Fig. 2a–f: the
black line represents the final spline approximation and the
different colours refer to the spline approximations during
the different iteration steps). In this case, the sum of squared

www.atmos-meas-tech.net/10/3453/2017/ Atmos. Meas. Tech., 10, 3453–3462, 2017



3456 S. Wüst et al.: Smoothing data series by means of cubic splines

-2 -1 0 1 2
Temperature [K]

20

40

60

80

100

H
ei

gh
t [

km
]

-2 -1 0 1 2
Temperature [K]

20

40

60

80

100

H
ei

gh
t [

km
]

-2 -1 0 1 2
Temperature [K]

20

40

60

80

100

H
ei

gh
t [

km
]

-2 -1 0 1 2
Temperature [K]

15

20

25

30

35

40

45

50
H

ei
gh

t [
km

]

-2 -1 0 1 2
Temperature [K]

15

20

25

30

35

40

45

50

H
ei

gh
t [

km
]

-2 -1 0 1 2
Temperature [K]

15

20

25

30

35

40

45

50

H
ei

gh
t [

km
]

(a) (b)

(c) (d)

(f)(e)

Figure 2. This figure shows the approximation of a cubic spline
using different numbers of spline sampling points. (a) A spline with
a distance of 1.5 km between two spline sampling points is fitted
(solid line) to the test data (dotted line). (b) Same as (a) but the
distance between two spline sampling points is 1.6 km. (c) Same as
(a) but the distance between two spline sampling points is 1.4 km.
(d) Same as (a) but restricted to the height range between 15 and
50 km. The dashed–dotted lines refer to the height-coordinate of the
spline sampling points. The asterisks show the sampling points of
to the original sine. (e) Same as (b) but restricted to the height range
between 15 and 50 km. (f) Same as (c) but restricted to the height
range between 15 and 50 km.

residuals depends much less on the distance between two
spline sampling points (Fig. 6a) and on the phase of the test
data set (Fig. 6b). Only for a distance of 1.6 km between two
spline sampling points is a slight phase dependence still vis-
ible (Fig. 6b).

Until now, we showed only test data which are not su-
perimposed on a larger-scale variation like the atmospheric
temperature background. Now, three sinusoidals with verti-
cal wavelengths of 3, 5 and 13 km, phase 0, π/3 and π/5, and
amplitude 2.0 (growing amplitude with height neglected for
simplicity reasons) are superimposed on a realistic vertical
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Figure 3. This figure shows the differences between the spline and
the approximated test data (solid line: phase of 0, dashed line: phase
of π/2) which are summed up between 20 and 40 km. They are
plotted against the distance between the number of spline sampling
points and/or the distance between spline sampling points. The
number of spline sampling points and/or distance between spline
sampling points refers to the whole height range between 15 and
100 km.
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Figure 4. Dependence of the sum of squared residuals on the phase
of the wave with a wavelength of 3.0 km and a distance of 1.4 km
(short dashes), 1.5 km (solid line) and 1.6 km (long dashes) between
two spline sampling points.

temperature background (Fig. 7a). The background is based
on CIRA-86 (COSPAR International Reference Atmosphere,
Committee on space Research and NASA National Space
Science Data Center, 2006) temperature data for 45◦ N for
January, which are transferred to a regular grid using a cu-
bic spline with a distance of 3 km between two spline sam-
pling points. It was checked that the spline did not cause
additional signatures. The sum of squared residuals shows
three steps but no superimposed oscillations (Fig. 7b): the
first step at ca. 6 to 7 km (distance between two spline sam-
pling points), the second one at ca. 2 to 3 km and the last one
at 1 to 2 km. Following Nyquist’s sampling theorem, this ob-
servation can be explained through the ability of the spline to
adapt the original wavelengths. Even if the sum of squared
residuals decreases much more smoothly for the repeating
approach than for the non-repeating one with decreasing dis-
tance between two spline sampling points, the approxima-
tion of the CIRA-background is in both cases not optimal
(Fig. 7d and dashed lines in Fig. 7a and b). The realistic back-
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Figure 5. Here, the results based on the repeating spline approach
are shown. The different colours refer to the different spline ap-
proximations (to keep it as clear as possible, we only show the first
four iterations, a fifth one exists for case (b) and (e); see step 4 of
the algorithm). The black line represents the final spline approxima-
tion. The distance between two spline sampling points in parts (a)
to (f) agrees with the respective values in Fig. 2 parts (a) to (f).
While parts (a) to (c) show the height range between 15 and 100 km,
parts (d) to (f) focus on the height range between 15 to 50 km. The
asterisks have the same meaning as in Fig. 2.

ground makes it clear why we restrict the calculation of the
sum of squared residuals to the height range between 20 and
40 km: this height interval is especially chosen to exclude
the stratopause, since the fast changing temperature gradient
can cause additional problems for the spline approximation.
Furthermore, the choice of this interval ensures that the data
used for Fig. 7b are part of each iteration step (which is not
the case for the data at the beginning and the end of the data
series; see Sect. 2).
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Figure 6. Part (a) is equivalent to Fig. 3, part (b) is equivalent to
Fig. 4, but here the repeating spline approach is used.

4 Discussion

In Sect. 3, we showed that the quality of a spline which ap-
proximates the background, and its ability to filter for a spe-
cific part of the wave spectrum, vary:

1. with the number of spline sampling points, and

2. with the exact position (height coordinate) of the spline
sampling points.

While the first statement can be explained Nyquist’s sam-
pling theorem, the second one is not well known.

When the distance between two spline sampling points
matches exactly half the wavelength of the test data, the ap-
proximation is worst for a phase of 0 and π . In this case, the
spline sampling points are located exactly between the ex-
trema of the test data. If the height coordinates of the spline
sampling points agree with the height coordinates of the ex-
trema of the test data, the opposite holds (in Appendix A,
we provide a mathematical explanation for this observation).
The dependence of the quality of approximation on the phase
of the test data decreases with greater/smaller distances be-
tween two spline sampling points (Fig. 3). These findings
directly motivate the use of the presented repeating spline
approach which is characterized by varying positions (height
coordinate) of the spline sampling points.

Furthermore, we showed that if the distance between two
spline sampling points is only slightly larger or smaller than
half the wavelength present in the data series and if enough
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Figure 7. (a) The solid oscillating (non-oscillating) line depicts
three sinusoidals with vertical wavelengths of 3, 5 and 13 km,
phase 0, π/3 and π/5, and amplitude 2.0 (the CIRA background).
The dashed line shows the spline approximations for the repeating
(black) and non-repeating (grey) spline approach (sampling point
distance 10 km). Part (b) is as part (a) but focussing on the height
interval between 20 and 40 km for which the sum of squared resid-
uals is calculated in part (c). The range of the x and y axes differs
from the ones used in Figs. 3 and 6a. Part (d) shows the differ-
ence between the spline (i.e. the approximated background, grey:
non-repeating approach, black: repeating approach) and the CIRA-
background (i.e. the original background).

wave trains are present (which might not be the case in real-
ity), the non-repeating spline resembles a beat (see Fig. 2b
and c; an explanation is given in Appendix B). The sub-
traction of such a beat will lead to an artificial oscillation
in the residuals with a periodically increasing and decreas-
ing amplitude reaching ca. 70–80 % of the original ampli-
tude at maximum (Fig. 2e and f). This oscillation must not
be interpreted as a gravity wave of varying amplitude, for ex-
ample, and the described effect has to be taken into account
when analysing wavelengths similar to the doubled distance
between two spline sampling points.
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Figure 8. (a) As Fig. 1, for detrending the repeating cubic spline
routine with equidistant sampling points as it is described in Sect. 2
is used. (b) Mean squared residuals for the repeating (dashed line)
and the non-repeating (solid line) approach for the year 2014.
(c) Mean (non-squared) residuals for the non-repeating approach
for the years 2010 to 2014 and (d) mean (non-squared) residuals for
the repeating approach.

For our case studies, we used a constant and a realistic
CIRA-based temperature background profile. For both back-
ground profiles, we showed that the sum of squared residuals
decreases much more smoothly with an increasing number of
spline sampling points for the repeating approach compared
to the non-repeating one (compare Fig. 3 to Fig. 6a) and the
amplitude of the beat-like structure is reduced.

However, the motivation for this work was – as already
mentioned – the results shown in Fig. 1 which are character-
ized by a strong superimposed oscillation with a wavelength
of approximately 10 km for which we do not have a phys-
ical explanation. Figure 8a now depicts the mean squared
residuals after the application of the repeating spline to the
same data set; Fig. 8b focuses on the year 2014 (the dashed
line is based on the application of the repeating spline, the
solid line refers to the non-repeating spline). This year is
chosen arbitrarily and allows the direct comparison of the
repeating and non-repeating approach. The amplitude of the
superimposed oscillation is reduced significantly but the os-
cillation can still be observed. This supports our hypothesis
that the strong superimposed oscillation described in Fig. 1 is
an artefact of the non-repeating spline detrending procedure.
Furthermore, it now becomes obvious that gravity wave ac-
tivity increases less with altitude between approximately 45
and 60 km height compared to the height range below and
above. This is in accordance with the literature (e.g. Mzé et
al., 2014; Offermann et al., 2009). For most heights, the mean
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Figure 9. (a) Original CIRA temperature profile (which was de-
trended between ca. 14 and 110 km as the SABER data); (b)–(d) are
residuals for a sampling point distance of 2.5, 5 and 10 km between
20 and 100 km height (grey: non-repeating spline, black: repeating
spline).

squared residuals are smaller for the repeating approach than
for the non-repeating one. At 38 km height, for example, the
difference reaches ca. 2.5 K2, which is approximately 32 %
(referring to the mean value of both approaches). Shuai et
al. (2014) use an earlier version of TIMED-SABER temper-
ature data (1.07) and a different detrending procedure as we
do in order to derive monthly averages of the squared temper-
ature fluctuations for the years 2002–2010. They provide this
parameter in dB (10·log10(T

′

GW
2
))with the squared tempera-

ture fluctuation T ′GW
2. For 100 km (25 km) height, we extract

a yearly mean of ca. 21 dB (4 dB) for 50◦ N from their Fig. 2,
which means a squared temperature fluctuation of ca. 126 K2

(2.5 K2). These values agree very well with the ones provided
here but it cannot be decided whether they match better with
the ones based on the repeating or non-repeating approach
(Figs. 1 or 8a). However, the overall structure, which is char-
acterized by a slow increasing or even a nearly constant grav-
ity wave activity in the upper stratosphere, can be observed
in their Fig. 2 (and in parts also Fig. 3a) and our Fig. 8a.

In order to give a comprehensive comparison of the re-
peating and non-repeating spline algorithm, we also calcu-
late the mean (non-squared) residuals. In this case, the re-
sults look very similar. In both cases, they again show an os-
cillation with a vertical wavelength of 10–20 km (Fig. 8c for
the non-repeating approach, Fig. 8d for the repeating spline
approach). We can explain this in the following way: when
calculating the mean (non-squared) residuals and the mean
squared residuals at a specific height, one refers to two dif-
ferent parameters of the distribution of residuals at that spe-
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Figure 10. (a) Superposition of Fig. 9d (dashed lines, residuals af-
ter detrending the CIRA temperature background without superim-
posed gravity waves) and Fig. 7d (solid lines, difference between
the original and the approximated background in the presence of
gravity waves); (b) and (c) are residuals of the repeating (black)
and non-repeating (grey) spline approximation (max. wavelength:
20 km) of the CIRA temperature profile detrended between varying
starting heights (15–20 km) and 115 km.

cific height. While the mean (non-squared) residuals estimate
the mean of the distribution, the mean squared residuals re-
fer to the variance of the distribution. We conclude that at
a defined height, the repeating approach changes the mean
of the distribution of the residuals only slightly, but it re-
duces its spread significantly. For individual profiles, the ap-
proximation through the repeating approach is therefore less
variable on average and can be recommended. The repeat-
ing approach can also be recommended if squared residu-
als are needed for further analysis (e.g. for the calculation
of the wave potential energy). If non-squared residuals will
be analysed, it does not make a difference on average which
approach is applied; for the individual profile, however, this
does not necessarily hold. In this case, only waves with am-
plitudes larger than 0.5 K in the stratosphere and 1.0 K in the
mesosphere (Fig. 8c and d) should be taken seriously.

It is known that the tropo-, strato- and mesopause, where
the temperature gradient becomes zero and changes, are chal-
lenging for approximation methods. The same holds for the
beginning and the end of a data series. This becomes evident
when a smooth profile like a CIRA-temperature profile is de-
trended with different numbers of spline sampling points (see
Fig. 9a–d). In these cases, the residuals show oscillations for
both approaches, the repeating and the non-repeating spline,
which become smaller with decreasing distance between two
spline sampling points. Compared to Fig. 7d, which shows
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the difference between the approximated background and the
real one in the presence of typical gravity wave signatures,
and restricted to the height range above 40 km, the strength
and the position of the oscillations (in Fig. 9d) change only
slightly (see Fig. 10a). That means the non-optimal approx-
imation of the smooth temperature background, i.e. without
any gravity waves, is the most likely reason for the oscilla-
tions observed in the mean SABER residuals for both ap-
proaches (see Fig. 8c and d).

However, for the non-repeating approach strength and po-
sition of the oscillation in the residuals (detrended CIRA
background) change when another starting height is chosen
while the oscillation is only slightly shifted in the vertical for
the repeating approach (Fig. 10b and c). For Fig. 1, the start-
ing height varied mostly in the range of ca. 2 km. A com-
parison of Figs. 1 and 8c reveals that the height coordinates
of the local extrema of the mean residuals correspond ap-
proximately to the ones of the mean squared residuals. The
less pronounced dependence of the repeating spline approach
on the starting height (Fig. 10b) is therefore the most likely
reason for the lower variance of the residuals (as described
above).

There exist many methods to approximate/detrend/filter
time series (see e.g Baumgarten et al., 2015, and references
therein) and we do not claim that the presented repeating cu-
bic spline is the best method for every purpose and every data
series. It is just one possible algorithm which reduces arte-
facts of the non-repeating cubic spline routine as proposed
by Lawson and Hanson (1974) if the data set contains waves
with wavelengths of about double the sampling point dis-
tance, which is mostly not known in advance. Furthermore,
it reduces its dependence on the starting height. However, it
comes with enhanced computational effort which is of spe-
cial importance when analysing large data sets.

5 Summary

It is essential for the analysis of atmospheric wave signatures
like gravity waves that these fluctuations are properly sep-
arated from the background. Therefore, particular attention
must be attributed to this step.

Cubic splines with equidistant sampling points are a com-
mon method in atmospheric science for the approximation of
superimposed, large-scale structures in data series. The sub-
traction of the spline from the original time series allows the
investigation of the residuals by means of different spectral
analysis techniques. However, splines can generate artificial
oscillations in the residuals – especially if the background
is described by a coarse spline or if the data set contains
waves with wavelengths of about double the sampling point
distance – which must not be interpreted in terms of gravity
waves. The ability of a spline to approximate the background
state (and large-scale wave-induced fluctuations) does not
only vary with the number of spline sampling points, but also
with their exact position.

Since knowledge about the wavelengths present in the data
set is normally not available in advance, this directly moti-
vates the use of a repeating spline which is based on changing
starting points. It comes with enhanced computational effort
but can be recommended for the approximation/detrending
of individual profiles and if squared residuals are needed for
further analysis (e.g. for the calculation of the wave potential
energy).

Data availability. The SABER data are available at the SABER
home page http://saber.gats-inc.com/data.php. The CIRA data are
available at http://data.ceda.ac.uk/badc/cira/data/ (Committee on
Space Research, 2016). Both data providers do not offer a DOI.

The test data sets are superimposed sinusoidal oscillations. Their
parameters are given in the manuscript, so they can easily be repro-
duced.

Atmos. Meas. Tech., 10, 3453–3462, 2017 www.atmos-meas-tech.net/10/3453/2017/
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Appendix A

Between two spline sampling points, a spline is equal to a
cubic polynomial of the form

f (z)= az3
+ bz2

+ cz+ d with a, b, c, d ∈ R. (A1)

Its derivatives are

f (1) (z)= 3az2
+ 2bz+ c (A2)

f (2) (z)= 6az+ 2b (A3)

f (3) (z)= 6a. (A4)

Between two spline sampling points, the second derivative
of a spline depends linearly on the height coordinate z. That
means the curvature of the spline can change from negative
to positive or vice versa between two spline sampling points
but it can only increase or decrease linearly or it can stay
constant. At the spline sampling points, all derivatives of the
two adjacent polynomials must agree. For example, a spline
cannot form two parabolas with different signs in two adja-
cent intervals in order to approximate a sine/cosine since the
second derivative (curvature) would be a positive constant in
one interval and a negative constant in the other. If the spline
sampling points are not distributed in a way such that the
curvature of the original function increases or decreases lin-
early between two spline sampling points, the spline cannot
approximate the original function properly.

Therefore, the ability of the spline to reproduce a
sine/cosine does not only depend on the number of spline
sampling points, it also varies with their position.

Appendix B

The optimal spline parameters are determined through a least
squares approach: depending on the spline parameters, the
squared differences between the spline and the original data
set are minimized. The maximum wavelength which a spline
can approximate in principle is equal to two times the dis-
tance between two spline sampling points.

Let us denote the oscillation which has to be approximated
with f1 (z) and the spline with f2 (z).

If those two oscillations which will be subtracted from
each other are characterized by very similar wave numbers
k1 and k2, then a beat with the following wave numbers will
occur.

f1 (z)− f2 (z)= sin k1z− sin k2z

(∗)

=

2cos
(
k1+ k2

2
z

)
sin

(
k1− k2

2
z

)
, (B1)

where k1+k2
2 is the wave number of the beat, which is very

similar to the original wave number, and k1−k2
2 is the wave

number of the envelope. (∗) stands for the application of an
addition theorem.
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