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Abstract. Cirrus clouds play an important role in climate
as they tend to warm the Earth–atmosphere system. Nev-
ertheless their physical properties remain one of the largest
sources of uncertainty in atmospheric research. To better un-
derstand the physical processes of cirrus clouds and their
climate impact, enhanced satellite observations are neces-
sary. In this paper we present a new algorithm, CiPS (Cirrus
Properties from SEVIRI), that detects cirrus clouds and re-
trieves the corresponding cloud top height, ice optical thick-
ness and ice water path using the SEVIRI imager aboard the
geostationary Meteosat Second Generation satellites. CiPS
utilises a set of artificial neural networks trained with SE-
VIRI thermal observations, CALIOP backscatter products,
the ECMWF surface temperature and auxiliary data.

CiPS detects 71 and 95 % of all cirrus clouds with an opti-
cal thickness of 0.1 and 1.0, respectively, that are retrieved by
CALIOP. Among the cirrus-free pixels, CiPS classifies 96 %
correctly. With respect to CALIOP, the cloud top height re-
trieved by CiPS has a mean absolute percentage error of 10 %
or less for cirrus clouds with a top height greater than 8 km.
For the ice optical thickness, CiPS has a mean absolute per-
centage error of 50 % or less for cirrus clouds with an optical
thickness between 0.35 and 1.8 and of 100 % or less for cirrus
clouds with an optical thickness down to 0.07 with respect
to the optical thickness retrieved by CALIOP. The ice wa-
ter path retrieved by CiPS shows a similar performance, with
mean absolute percentage errors of 100 % or less for cirrus
clouds with an ice water path down to 1.7 gm−2. Since the
training reference data from CALIOP only include ice water
path and optical thickness for comparably thin clouds, CiPS
also retrieves an opacity flag, which tells us whether a re-

trieved cirrus is likely to be too thick for CiPS to accurately
derive the ice water path and optical thickness.

By retrieving CALIOP-like cirrus properties with the large
spatial coverage and high temporal resolution of SEVIRI
during both day and night, CiPS is a powerful tool for
analysing the temporal evolution of cirrus clouds including
their optical and physical properties. To demonstrate this, the
life cycle of a thin cirrus cloud is analysed.

1 Introduction

High-level clouds cover 27–37 % of the Earth’s surface
(Stubenrauch et al., 2013; the exact figure depends on the
satellite instrument and its sensitivity to thin and sub-visual
cirrus) and consequently play an important role in the cli-
mate system by reflecting the incoming solar radiation and
absorbing the outgoing thermal radiation. In this study we
focus on cirrus clouds, here defined as all clouds that consist
of ice crystals. In general, the net cirrus radiative forcing is
strongly depending on the position and thickness of the cloud
as well as the microphysical properties like ice crystal shape,
size distribution and ice water content (IWC) (e.g. Fu and
Liou, 1993; Zhang et al., 1999; Liou, 2002; Wendisch et al.,
2007). Because of the tenuous nature of cirrus clouds, the re-
flection of solar radiation can be outweighted by the thermal
effect (Meerkötter et al., 1999), leading to a positive net ra-
diative forcing, as is the case for thin cirrus (Jensen et al.,
1994; Chen et al., 2000). Despite the constant progress in
cirrus research and the continuous development of more ad-
vanced instruments and retrieval algorithms, the understand-
ing of the physical processes that govern the cirrus life cycle
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as well as the temporal evolution of their physical and op-
tical properties is still limited, as is their representation in
weather and climate models (Waliser et al., 2009; Eliasson
et al., 2011).

To capture the temporal evolution throughout the cirrus
life cycle as well as the diurnal cycles of cirrus coverage
and properties like cloud top height (CTH), ice optical thick-
ness (IOT) and ice water path (IWP), it is essential to ac-
curately and consistently detect and monitor cirrus during
both day and night. To this end, imagers like SEVIRI (Spin-
ning Enhanced Visible and Infrared Imager; Schmetz et al.,
2002) aboard the geostationary Meteosat Second Generation
(MSG) satellites are the instruments of choice since they
combine a large field of view with a high temporal resolu-
tion.

Cirrus clouds can be detected from space-borne imagers
(e.g. Saunders and Kriebel, 1988; Derrien et al., 1993; Ack-
erman et al., 1998; Kriebel et al., 2003; Derrien and LeGleau,
2005; Krebs et al., 2007) by applying spectral tests on bright-
ness temperatures and temperature differences (e.g. Inoue,
1985; Ackerman et al., 1990). Krebs et al. (2007) extend
the multispectral threshold test approach by introducing mor-
phological tests that take into account the shape of high-level
clouds in thermal water vapour observations. Near-infrared
water vapour absorption channels can also be used to detect
cirrus clouds (Gao et al., 2002). Passive imagers do, however,
have a limited sensitivity to thin cirrus clouds and algorithms
utilising spectral and morphological threshold tests tend to
miss a large fraction of those thin cirrus (e.g. Ackerman et al.,
2008; Holz et al., 2008; Stubenrauch et al., 2010) and thus
introduce a bias into the climate impact of cirrus clouds. An-
other well-known problem related to cloud detection from
passive imagers is the difficulty to distinguish between cirrus
clouds and cold surfaces in the polar regions (e.g. Holz et al.,
2008).

The CTH is an important variable as it determines the
outgoing longwave radiation. It can be retrieved from pas-
sive satellite imagers during both day and night using e.g.
radiance ratioing (also referred to as CO2 absorption, CO2
slicing and split window technique) (Smith et al., 1970;
Smith and Platt, 1978; Menzel et al., 1983; Eyre and Men-
zel, 1989; Zhang and Menzel, 2002; Menzel et al., 2008),
radiance fitting (e.g. Szejwach, 1982; Nieman et al., 1993;
Schmetz et al., 1993) and optimal estimation (e.g. Heidinger
and Pavolonis, 2009; Sayer et al., 2011; Watts et al., 2011).
An intercomparison of different techniques currently used
for SEVIRI is presented in Hamann et al. (2014).

Nakajima and King (1990) introduced a commonly ap-
plied approach for the retrieval of optical thickness and ef-
fective particle radius of clouds from reflected solar radiation
in two spectral channels (e.g. Platnick et al., 2003; Bugliaro
et al., 2011; Stengel et al., 2014) for both ice clouds and liq-
uid water clouds. From the optical thickness and effective ra-
dius the liquid and ice water paths can be estimated for liquid
and icy pixels respectively. The solar dependence does, how-

ever, limit this approach to daytime and the retrieval becomes
ambiguous for optically thin clouds (Nakajima and King,
1990). The same properties can be retrieved for optically thin
cirrus clouds during night as well using only thermal obser-
vations (e.g. Prabhakara et al., 1988; Ackerman et al., 1990;
Yue and Liou, 2009; Minnis et al., 2011; Heidinger et al.,
2015; Wang et al., 2016), but with a limited accuracy due to
the low sensitivity to large ice crystal sizes and large optical
thicknesses.

The limited amount of vertical information and sensitivity
to thin cirrus clouds is a recurrent drawback of passive im-
agers. The space-borne lidar CALIOP (Cloud-Aerosol Lidar
with Orthogonal Polarization; Winker et al., 2009) measures
profiles of attenuated backscatter with a vertical resolution of
up to 30 m and is currently the most accurate source for the
detection of cirrus clouds and the retrieval of their top height
and optical thickness from space. CALIOP is an active sensor
and can consequently operate during both day and night but
the small spatial scale and the repeat cycle of approx. 16 days
make it inadequate for studying the temporal evolution of cir-
rus clouds.

As an attempt to combine the advantages from a polar or-
biting lidar and a geostationary imager, Kox et al. (2014)
present an approach for the detection and retrieval of op-
tical thickness and top height of cirrus clouds from SE-
VIRI. Their algorithm COCS (Cirrus Optical properties from
CALIOP and SEVIRI) utilises an artificial neural network
(ANN) trained with coincident CALIOP backscatter and SE-
VIRI thermal observations in order to estimate CALIOP-like
cirrus properties from SEVIRI. During the training proce-
dure the ANN learns to generalise, such that it can estimate
a desired output vector for a set of previously unseen in-
put data. This, together with the low computational costs,
makes neural networks an interesting alternative to more
commonly used physically based methods. Minnis et al.
(2016) present a similar approach to estimate the optical
thickness of opaque ice clouds at night using an ANN trained
with coincident CloudSat/CPR (Cloud Profiling Radar) mea-
surements and Aqua/MODIS (Moderate Resolution Imaging
Spectroradiometer) infrared radiances. Holl et al. (2014) use
combined CALIPSO/CALIOP and CloudSat/CPR retrievals
for the retrieval of the IWP from AVHRR (Advanced Very
High Resolution Radiometer) and MHS (Microwave Humid-
ity Sounder) on the NOAA and Metop satellites using neural
networks. Cerdena et al. (2006, 2007) use neural networks
trained with simulated radiances for the retrieval of optical
thickness, effective radius and temperature of liquid water
clouds (day and night) and cirrus clouds (only day) from
NOAA/AVHRR. Taravat et al. (2015) use neural networks
for the daytime cloud detection from SEVIRI.

In this paper we present CiPS (Cirrus Properties from SE-
VIRI), a new algorithm for cirrus remote sensing with SE-
VIRI that exploits the basic idea of COCS: retrieving cirrus
properties using ANNs trained with CALIOP and SEVIRI
data. However, CiPS clearly differs from COCS in the im-
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plementation of this idea and the achieved performance. For
a more accurate cirrus detection and determination of CTH
and IOT, CiPS utilises a different set of input parameters in-
cluding numerical weather model data and information about
nearby pixels. In addition, CiPS classifies each pixel as ei-
ther cirrus-free, transparent cirrus or opaque cirrus by means
of dedicated classification ANNs. As CALIOP gets saturated
for thicker clouds, the opacity information is an important
additional piece of information in order to better characterise
the cirrus and the reliability of the ANN results that was ab-
sent in COCS. Furthermore, CiPS is trained to retrieve the
IWP, resulting in a total of three climate relevant cirrus cloud
properties that can be estimated during both day and night for
the full SEVIRI field of view every 15 min. In particular, the
IWP retrieved by CiPS allows for a direct comparison with
climate, weather and large eddy simulation models. CiPS tar-
gets thin cirrus clouds, as those clouds are most difficult to
retrieve using thermal satellite observations from geostation-
ary orbits. The more thin cirrus clouds that can be detected
and accurately retrieved, the smaller the bias of the derived
radiative forcing and climate impact of cirrus clouds will be.
Thus CiPS helps to fill this gap of observations in cloud re-
mote sensing.

The remainder of this paper is divided into five parts. In
Sect. 2 the instruments, data and tools used for this study are
introduced and described. The new algorithm, CiPS, is de-
scribed in detail in Sect. 3. Section 4 shows the performance
of CiPS for a SEVIRI scene over parts of Europe together
with a detailed validation of all quantities using CALIOP
as reference. To illustrate the capability and performance of
CiPS, a life cycle analysis of a thin cirrus cloud using CiPS
is presented in Sect. 5. Finally the performance of CiPS is
shortly summarised and discussed in the concluding section.
A list of abbreviations is available in the Appendix.

2 Instruments and tools

2.1 SEVIRI

SEVIRI is a passive imager operating aboard the geostation-
ary MSG satellites operational since 2004. SEVIRI is posi-
tioned at 0◦ E (operational service) and has an excellent view
of the Earth from its remote location, with a spatial coverage
from approx. 80◦W to 80◦ E and 80◦ S to 80◦ N. SEVIRI has
a sampling distance of 3 km at nadir (1 km for the broadband
visible channel) and a temporal resolution of 15 min. Limit-
ing the spatial coverage to the upper part of the SEVIRI disc
(north of approx. 15◦ N), the temporal resolution can be in-
creased to 5 min using the rapid scanning service. SEVIRI
measures the up-welling radiation in 12 wavelength intervals
(Schmetz et al., 2002), from which the radiances, reflectances
and equivalent black body brightness temperatures can be de-
rived.

2.2 CALIOP

CALIOP was launched as the main instrument aboard the
CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder
Satellite Observations) satellite in 2006. CALIPSO is flying
in a sun-synchronous orbit as part of the A-Train (Stephens
et al., 2002). CALIOP is an elastic backscatter lidar operat-
ing at two wavelengths: 532 and 1064 nm. By emitting ap-
prox. 20 laser pulses per second, a ∼ 70 m footprint is pro-
duced every 335 m on the Earth’s surface, resulting in cur-
tains of attenuated backscatter profiles along the CALIPSO
track (Winker et al., 2009). A long set of algorithms are ap-
plied to the backscatter profiles in order to detect cloud and
aerosol layers (Vaughan et al., 2009), differentiate between
the two (Liu et al., 2009), determine the cloud phase (Hu
et al., 2009) and finally derive profiles of volume extinction
coefficients (Young and Vaughan, 2009). For the cloudy re-
gions where the cloud phase is determined to be ice, the IWC
is calculated from the retrieved extinction coefficients using
a parametrisation derived by Heymsfield et al. (2005) based
on extensive in situ measurements. The layer IOT and IWP
is obtained by integrating the vertical profiles of extinction
coefficients and IWC.

2.3 Artificial neural networks

An artificial neural network consists of a number of neu-
rons that exchange information with each other, in a sim-
ilar manner as biological nerve cells transmit information
via synapses in the human brain. By assigning each neuron-
neuron connection a numeric tunable weight, the ANN has
the ability to learn patterns and approximate functions. The
goal of an ANN is to derive a vector of unknown output vari-
ables given a vector of known input data. This tool is applied
in Sects. 2.5 and 3 to the remote sensing of cirrus clouds and
is thus introduced in the following.

2.3.1 Multilayer perceptron (MLP)

In this study an MLP, a feed-forward artificial neural net-
work, is used. An MLP consists of three major units; (1) the
input layer, (2) the output layer and (3) the hidden layer(s).
The input layer holds as many neurons as input variables and
the output layer as many neurons as desired output variables.
The hidden layer(s) hold an arbitrary number of additional
neurons distributed over an arbitrary number of hidden lay-
ers. All connections between the neurons within the MLP
are in the forward direction (input layer → hidden layer(s)
→ output layer). Connections backward or within a layer are
forbidden (Rumelhart et al., 1986). The value of a neuron is
calculated by processing the output from the preceding neu-
rons connected to that neuron and the corresponding weights
through an activation function. These non-linear functions al-
low the ANN to solve complex problems with a limited num-
ber of neurons. A generic structure of an MLP is illustrated
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Figure 1. Generic structure of a multilayer perceptron (MLP), a form of a feed-forward artificial neural network used in this study.

in Fig. 1. In addition to the input and hidden neurons, a con-
stant bias neuron is commonly added to the input and hidden
layers in order to give the MLP more flexibility during the
training.

When the MLP is given a vector of input data it uses the
connection weights and possible biases to estimate the vector
of output data. Thus, it is crucial that the weights and bias
neurons are assigned correct values.

2.3.2 Learning through back-propagation

The weights are tuned by training the MLP, which is done
with a teacher–trainer approach, more known as supervised
training. A commonly used training algorithm is the back-
propagation algorithm. The most essential steps in the back-
propagation algorithm are explained below, but for the cu-
rious reader the algorithm as a whole is well explained in
Rumelhart et al. (1986).

Using back-propagation the network is fed with a set of
training examples where the vector of input variables as well
as the vector of expected output variables are known. From
the training input data the MLP estimates its own output data
using the current weights. From the vector of estimated out-
put and the corresponding vector of expected output the total
error E (squared difference) is calculated. The error is then
propagated backwards through the MLP and used to update
each weight using gradient descent in such a way that the
total error is minimised. Each weight is updated using the
following equation:

w∗ij = wij − η
δE

δwij
= wij −1wij , (1)

where wij and w∗ij are the old and new values for a weight
connecting the two neurons i and j . δE

δwij
describes how much

a change in wij affects the total error E. To adjust how ag-
gressive the weight updates should be, a learning rate η is

multiplied with δE
δwij

before the weight update. A larger learn-
ing rate means larger changes in the weights and thus a faster
training. This can, however, lead to an oscillation of the total
error around a minimum solution. With a small learning rate
the total error will not oscillate around a minimum solution,
but the training is slower and the risk of getting stuck in local
minima is higher. By introducing a momentum term α, possi-
ble oscillations in the iterative search for the minimum error
are attenuated, and this allows for a larger learning rate. The
momentum makes use of the previous update of the corre-
sponding weight in order to get a weighted sum of the current
and previous error gradients. The momentum term is added
to the second term on the right-hand side of Eq. (1) such that

1wkij = η
δE

δwij
+α1wk−1

ij , (2)

where k represents the kth update of the weightwij , meaning
that 1wk−1

ij is the previous update of weight wij (Rumelhart
et al., 1986).

To find the minimum total error between the estimated
and expected output vectors for a complex problem and tune
the weights accordingly, a large training dataset is required.
Training an MLP is an iterative process, where each train-
ing example is presented to the ANN multiple times until
a satisfying result has been achieved. With common ANN
terminology the training completes one iteration every time
the weights are updated and one epoch when all training ex-
amples contained in the training dataset have been presented
to the ANN. The amount of iterations required for one epoch
does therefore depend on the amount of training examples
the ANN is given for every update of the weights, i.e. the
batch size. With stochastic gradient descent (sometimes re-
ferred to as momentum stochastic gradient descent, when the
momentum term is used) the weights are updated for each
training example (batch size= 1), whereas for full batch gra-
dient descent the weights are updated using all training ex-
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Table 1. Contingency table for the cirrus detection from CALIOP
and CiPS.

CALIOP

Cirrus No cirrus

CiPS
Cirrus NTP NFP
No cirrus NFN NTN

amples at once (batch size=N , where N is the total number
of training examples). Stochastic gradient descent leads to
a noisy error gradient whereas the full batch gradient descent
requires more computational power to converge. With mini-
batch gradient descent an intermediate number of training ex-
amples is used for each weight update (1< batch size<N ).

While in recent years very potent new learning methods
that are based on back-propagation were developed, stochas-
tic gradient descent is still the most used method due to its
simplicity and robustness (Schmidhuber, 2015).

2.4 Validation metrics

This section introduces the validation metrics used for the
validation later on in this paper.

The probability of detection (POD) is used to measure how
efficiently CiPS detects cirrus clouds and is given by

POD=
NTP

NTP+NFN
, (3)

where the number of true positives, NTP, are all points cor-
rectly classified as cirrus and the number of false negatives,
NFN, all cirrus clouds that remain undetected. The denom-
inator, NTP+NFN, is thus the total number of points with
a reference cirrus cloud. The false alarm rate (FAR) measures
the fraction of cirrus-free points that are falsely classified as
being cirrus clouds:

FAR=
NFP

NFP+NTN
. (4)

The number of false positives,NFP, are all points falsely clas-
sified as cirrus (false alarms) and the number of true nega-
tives, NTN, all points correctly identified as cirrus-free. The
denominator, NFP+NTN, is thus the total number of points
with no reference cirrus cloud. The corresponding CALIOP
data are used as a reference when calculating the POD and
FAR. Table 1 clarifies the quantities used to calculate the
POD and FAR. The POD and FAR are also used to measure
how effectively CiPS can determine the opacity/transparency
of detected cirrus clouds.

The mean percentage error (MPE) and mean absolute per-
centage error (MAPE) are used to measure the accuracy of
the CTH, IOT and IWP retrievals with respect to CALIOP.

The MPE is given by

MPE=
100%
N

N∑
i=1

Ei −Oi

Oi
, (5)

where O is the observed value by CALIOP and E the es-
timated value by CiPS and the sum spans over all samples
i = 1, . . .,N used for the evaluation. The MPE gives informa-
tion about the direction of the deviations, i.e. whether CiPS
tends to overestimate (positive MPE) or underestimate (neg-
ative MPE) the values with respect to CALIOP. When cal-
culating the MPE, over- and underestimations can cancel out
each other, potentially leading to zero MPE (bias) even if the
magnitude of the errors is large. Therefore the MAPE has
been considered as well. The MAPE is given by

MAPE=
100%
N

N∑
i=1

∣∣∣∣Ei −OiOi

∣∣∣∣ (6)

and gives information about the average magnitude of the
errors relative to the expected values observed by CALIOP.
A vanishing MAPE means no deviation from the observed
values and a perfect correlation.

2.5 The COCS algorithm

The COCS algorithm retrieves CTH and IOT of cirrus clouds
from SEVIRI (Kox et al., 2014). It combines V2 CALIOP L2
cloud layer data, SEVIRI thermal observations and auxiliary
data using an ANN to retrieve CALIOP-like cirrus properties
for the full SEVIRI field of view every 15 min and 24 h per
day. The cirrus properties retrieved with COCS are used for
comparison with CiPS in Sect. 4.2 and COCS is thus shortly
introduced here.

COCS is an MLP with 10 input neurons (7 brightness
temperatures and temperature differences, viewing zenith an-
gle, land–sea mask and latitude), 2 output neurons (IOT and
CTH) and 600 neurons in one single hidden layer. COCS
was trained with 3 years of data including SEVIRI obser-
vations from both MSG-1 and MSG-2. The detection of cir-
rus clouds takes place indirectly in COCS: a pixel is cirrus-
covered if its IOT (IOTCOCS)≥ 0.1, meaning that pixels with
IOTCOCS < 0.1 are considered too uncertain and regarded as
cirrus-free. The value of 0.1 was chosen as a trade-off be-
tween high POD and low FAR.

The V2 CALIOP L2 cloud layer products contain no infor-
mation on data quality and the feature classification flag and
feature optical thickness among other variables were released
as beta products (early release). V2 CALIOP layer data used
in Kox et al. (2014) had to fulfil three filtering conditions to
be classified as a cirrus cloud: (1) to exclude inaccurate re-
trievals due to diverging extinction retrievals in opaque cloud
layers, the maximum IOT was limited to 2.5. (2) To ensure
that the cirrus clouds were not falsely classified layers of
aerosols or liquid water clouds, the mid-layer temperature
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had to be 243 K or colder. (3) The layer top height had to ex-
ceed 9.5 km in the tropics and 4.5 km in polar regions, with
a linear decrease between these two values in mid-latitudes.

3 CiPS

CiPS is the new algorithm, based on the heritage from COCS
in the sense that it also utilises artificial neural networks pri-
marily trained with SEVIRI and CALIOP data. Significant
enhancements with regards to the ANN structure, training
input and output data and training methodology have been
implemented in order to improve on retrieval performance
and computational speed. In addition to CTH and IOT, CiPS
is also trained to retrieve cloud opacity information and IWP.

3.1 Multiple artificial neural networks

In contrast to COCS, which uses one single ANN to retrieve
IOT and CTH, CiPS utilises four ANNs, making it possi-
ble to customise the input variables, training data and ANN
structures individually for each task to be solved.

1. The first ANN is a classification network trained to de-
tect cirrus clouds using a binary cirrus cloud flag (CCF).
Due to the continuous activation function used by the
ANN (Sect. 2.3.1), the retrieved value of the CCF neu-
ron is a real number in the interval (0,1) represented by
a 32 bit floating point number. This value can be inter-
preted as a cirrus probability, where high and low values
indicate a high and low probability of cirrus presence
respectively. This provides at least three major advan-
tages over an IOT threshold-based detection. (1) The
CCF detection threshold (0–1) can be determined de-
pending on the application. A higher threshold means
a lower FAR (Eq. 4), whereas a lower threshold means
a higher POD (Eq. 3). (2) The cirrus detection is inde-
pendent of the IOT and not limited to cirrus clouds with
an estimated optical thickness greater than 0.1, as is the
case for COCS. (3) Since no additional information is
needed for the pixels classified as cirrus-free by the cir-
rus detection ANN, the ANNs for CTH, IOT, IWP and
opacity information retrieval can be trained only with
cases where cirrus clouds are present. This excludes
a large number of largely different input data combina-
tions representing the same “cirrus” properties, i.e. the
situations where IOT= IWP= 0.

2. The second ANN is used for the CTH retrieval.

3. The third ANN is used for the IOT/IWP retrieval. These
two variables are provided by the same network since
they are physically closely related (Heymsfield et al.,
2005).

4. CALIOP cannot provide accurate IOT/IWP retrievals
for thicker cirrus clouds where the laser beam is com-
pletely attenuated. Hence the estimated IOT and IWP

by CiPS for such situations should not be trusted.
Therefore a second classification network is introduced
with CiPS, trained to identify the cirrus clouds where
CALIOP is saturated. Similarly to the cirrus detec-
tion ANN, the opacity classification ANN retrieves real
numbers in the interval (0,1), which can be regarded as
an opacity probability information. From here a binary
opacity flag (OPF) is obtained using a suitable opacity
classification threshold (Sect. 3.6).

3.2 Input data

The following subsections introduce all input data used to
train CiPS. An overview is provided in Table 2.

3.2.1 Brightness temperatures from SEVIRI

Brightness temperatures from all thermal channels of SE-
VIRI except for the ozone channel at 9.7 µm are used. The
brightness temperatures are calculated according to EUMET-
SAT (2012). The ozone channel is excluded because its sen-
sitivity peaks in the stratosphere, where no cirrus clouds
are present, and because of its strong annual cycle due to
the ozone variability (Ewald et al., 2013). Channels with
significant solar contribution are excluded in order to have
the same conditions and similar performance during both
day and night. Alongside the single brightness temperatures,
CiPS works pixel by pixel and takes advantage of the infor-
mation from nearby pixels by utilising the regional maximum
brightness temperatures for the three window channels cen-
tred at 8.7, 10.8 and 12.0 µm. The regional maximum temper-
ature is identified for each pixel as the maximum temperature
within a 19× 19 pixels (≈ 57× 57 km2 at nadir) large box
centred at the pixel under consideration. The idea with the
regional maximum brightness temperature is to estimate the
temperature that SEVIRI would observe for a cirrus-covered
pixel if the pixel was cirrus-free. This is done by assuming
that at least one of the 361 pixels within the box is not cov-
ered by a cirrus cloud (Krebs et al., 2007). The correspond-
ing cirrus-free temperature is useful for both the detection of
cirrus clouds and the retrieval of the cirrus properties since it
provides information about the up-welling radiation from the
surface or lower water clouds. The box size of 19× 19 pix-
els is chosen such that the region is small enough to reduce
the risk of unrepresentative maximum temperatures over in-
homogeneous surfaces (e.g. coast lines) but large enough to
increase the chance of capturing a representative cirrus-free
pixel.

For the classification ANNs (CCF and OPF) the regional
average brightness temperatures for the two water vapour
channels centred at 6.2 and 7.3 µm are used as well. The re-
gional averaged brightness temperatures are calculated for
each pixel as the boxcar average temperature within a 19×
19 pixels large box centred at the pixel under consideration.
A homogeneous area with cold temperatures indicates the
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Table 2. Input data used to train the four ANNs contained in CiPS.
BT is brightness temperature, regavg is regional average, regmax is
regional maximum and VZA is the viewing zenith angle.

CCF OPF CTH IOT/IWP

BT6.2 µm X X X X
BT7.3 µm X X X X
BT8.7 µm X X X X
BT10.8 µm X X X X
BT12.0 µm X X X X
BT13.4 µm X X X X
BT6.2 µm, regavg X X
BT7.3 µm, regavg X X
BT8.7 µm, regmax X X X X
BT10.8 µm, regmax X X X X
BT12.0 µm, regmax X X X X
Tsurf X X X X
Latitude X X X X
VZA X X X X
Water flag X X X X
Snow/ice flag X X X X
sin(2π DOY

365 ) X X X X

cos(2π DOY
365 ) X X X X

presence of a thick cirrus cloud. The combination of a single
temperature and the corresponding regional average for the
water vapour channels provides information about high cloud
structures useful for the detection of cirrus clouds (Krebs
et al., 2007).

3.2.2 Surface temperature from ECMWF

With CiPS we introduce modelled data from the ECMWF
ERA-Interim re-analysis dataset (Dee et al., 2011) to the
list of input variables. The surface skin temperature Tsurf is
strongly related to the thermal radiation emitted by the Earth
and thus related to the brightness temperatures observed by
SEVIRI. This information helps to account for the radia-
tion emitted by the surface which is partly transmitted in the
satellite direction through thin cirrus. It also helps the ANNs
to distinguish between cirrus clouds and cold surfaces like
Greenland and Antarctica. The temporal resolution of 6 h and
spatial resolution of 0.125◦ is used.

3.2.3 Auxiliary data

Along with the data provided by SEVIRI and ECMWF, addi-
tional auxiliary datasets are used. The latitude provides valu-
able information about the geographical location with re-
spect to the global circulation convergence and divergence
zones (e.g. the ITCZ, subsidence regions and the polar front)
which strongly affect the presence and properties of cirrus
clouds. Considering the SEVIRI viewing zenith angle, the
SEVIRI pixel size and slant path length are implicitly ac-
counted for. Two flags indicating the presence of surface

water and permanent ice/snow are included to gain addi-
tional information about the observed surface type. Due to
the seasonal variations in the global circulation and the pres-
ence of cirrus clouds (Stubenrauch et al., 2013) the day of
the year (DOY) is used. The DOY is converted to two vari-
ables, sin(2π DOY/365) and cos(2π DOY/365), in order to
remove the hard transition from 31 December to 1 January.
Two variables are used to avoid the repeating pattern of sine
or cosine alone.

3.3 Output data: cirrus properties from CALIOP

The cirrus presence and properties, including a CCF and an
OPF as well as the CTH, IOT and IWP, are derived from
the V3 CALIOP L2 5 km cloud and aerosol layer products
(CAL_LID_L2_05kmC|ALay-Prov-V3-0X CALIPSO Sci-
ence Team, 2015a, b, c, d). Major improvements with respect
to V2 data include enhanced cloud–aerosol discrimination,
improved cloud thermodynamic phase determination, more
accurate estimates of layer spatial and optical properties as
well as an improved estimate of the low cloud fraction. Fur-
thermore, new products like the IWP and retrieval uncertain-
ties are included. Most importantly, the maturity level of all
products used to develop CiPS has been upgraded from beta
status to provisional or higher, meaning that the data have
at least been compared to independent sources in order to
correct obvious artefacts (NASA Atmospheric Science Data
Center, 2010).

Even though the cloud and aerosol layer products are
reported with a spatial resolution of 5 km, two additional
coarser resolutions of 20 and 80 km are used to detect
the cloud and aerosol layers reported in the 5 km products
(Vaughan et al., 2009). At a spatial resolution of 5 km, the
signal-to-noise ratio (SNR) of a faint cirrus or aerosol layer
is usually too weak to be distinguished from the clear-sky
atmospheric signal. By averaging 4 or 16 consecutive 5 km
profiles the SNR is increased, which allows for detection of
very thin cirrus and aerosol layers. For example if a thin cir-
rus cloud with an optical thickness of 0.1 and a top altitude
of 10 km is identified only when 16 consecutive 5 km profiles
are averaged (80 km spatial resolution), 16 consecutive bins
in the L2 5 km cloud layer data will report an optical thick-
ness of 0.1 and a top altitude of 10 km. This can result in
a vertical overlap between layers detected at different spatial
resolutions. This is accounted for by identifying the part of an
icy layer vertically overlapped by another layer (water cloud
or aerosol) detected at a higher spatial resolution and cor-
recting the corresponding extinction coefficients, IWC and
CTH accordingly. The column IOT and IWP are then derived
by combining the properties of all icy layers in each pro-
file. Finally, the OPF is extracted from the “Opacity_Flag”
product. The Opacity_Flag gives the information whether
the CALIOP backscatter signal was completely attenuated
within a detected layer. During the CALIOP retrieval, a cirrus
cloud layer is classified as opaque if it is the lowermost layer
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and not identified as a surface return (Vaughan et al., 2005).
A digital elevation model is partly used to identify surface
returns, meaning that high cirrus clouds should not be falsely
classified with respect to transparency. Cirrus cloud layers
detected at the coarser 20 or 80 km resolutions are classified
as transparent if the corresponding base altitude is higher
than the lowermost detected feature in at least 50 % of the
4 or 16 consecutive 5 km profiles that constitute the 20 and
80 km averages.

The minimum detectable backscatter of CALIOP depends
on the scattering target (the cirrus cloud in this case), the
altitude as well as the vertical and horizontal averaging of
the data (McGill et al., 2007). Davis et al. (2010) show that
CALIOP can detect approx. one-third of the sub-visual cirrus
clouds with an optical thickness below 0.01.

The improved quality of the V3 CALIOP products al-
lows us to omit the filtering processes applied to the V2
data used for COCS (see Sect. 2.5). To assure a high-quality
dataset, the extinction quality control flag, retrieval uncer-
tainties and the feature classification flag including the qual-
ity assessments have been considered. All columns contain-
ing at least one layer with unknown feature type, unknown
cloud phase or a feature/phase quality assessment flag less
than 3 (high confidence) are excluded. Additionally, only
those columns with solely constrained or unconstrained cir-
rus/ice cloud retrievals where the initial lidar ratio remained
unchanged during the solution process are included. Further-
more, the columns containing stratospheric features are ex-
cluded due to lack of information about whether the features
are stratospheric clouds or aerosol layers.

In the following, all quantities referring to CALIOP will
be denoted as IOTCALIOP, IWPCALIOP and CTHCALIOP.

The CALIOP products are chosen as training reference
data for CiPS as they should provide the most accurate es-
timates of especially CTH but also IOT for thin cirrus clouds
from space. It is important to note that an ANN can never be
better than its training reference and all deficiencies and/or
biases in the training reference data will be inherited by the
ANN. Since possibly inherited artefacts of the ANN will
not show when validated against independent CALIOP re-
trievals, one must be aware of the accuracy and limitations
of the training data.

Yorks et al. (2011) and Hlavka et al. (2012) validate the
spatial and optical properties of cirrus clouds from the V3
CALIOP products using the airborne Cloud Physics Lidar
(CPL; McGill et al., 2002) during the CALIPSO-CloudSat
Validation Experiment (CC-VEX). CPL has a higher SNR,
higher vertical and horizontal resolution and lower multiple
scattering compared to CALIOP, making it the most com-
prehensive tool for validating the CALIOP retrieved cirrus
properties. Ten underpass flights with CALIOP were per-
formed and over 9500 bins of collocated extinction coeffi-
cients were obtained. During the 10 flights, extinction coef-
ficients ranging from approx. 0.001 to 10 km−1 and column
optical thickness up to approx. 3 were retrieved. CALIOP

and CPL agree on 90 % of the scene classifications (cirrus or
no cirrus) on average. For all bins classified as cirrus by CPL,
CALIOP agrees on 82 % and for the bins classified as cirrus-
free by CPL, CALIOP agrees on 91 %. For cases where both
CALIOP and CPR detect cirrus, the agreement in cirrus top
height is excellent (Yorks et al., 2011).

For transparent cirrus layers the agreement in IOT between
CALIOP and CPL is good with on average 15 % higher ex-
tinction for CALIOP (0.65 in correlation between CALIOP
and CPL). For the unconstrained retrievals where the initial
lidar ratio remains unchanged the average difference in ex-
tinction is only 7 % (0.80 in correlation between CALIOP
and CPL; Hlavka et al., 2012). The latter are the ones used to
train CiPS (see above), along with the constrained retrievals.
At the time of the CC-VEX campaign (between 26 July and
14 August 2006) the laser of CALIOP was pointing just 0.3◦

from nadir leading to a strong specular reflection by layers
of horizontally orientated ice (HOI) (Winker et al., 2009).
This lead to disagreements in the extinction retrieval with
CPL, whose laser pointed 2◦ from nadir and therefore only
received a very small fraction of specular reflections from
the HOI (Hlavka et al., 2012). Since November 2007 the
CALIOP lidar points 3◦ from nadir in order to overcome this
issue for layers with HOI. When the column optical thick-
ness is derived for all cirrus-covered bins, the relative differ-
ence between CALIOP and CPL is only 2.2 % due to can-
cellation of opposing CALIOP effects. Holz et al. (2016)
recently showed that the single-layer IOT derived from un-
constrained CALIOP retrievals is low biased with respect
to a single-channel thermal/infrared IOT retrieval combining
CALIOP/MODIS observations and forward radiative trans-
fer modelling. The bias is shown to increase with increasing
IOT.

The accuracy of the CALIOP IWC/IWP is directly related
to the accuracy of the extinction retrievals as well as the IWC
parameterisation from Heymsfield et al. (2005). A proper in-
dependent validation of the CALIOP IWC/IWP is a difficult
task due to the lack of reference data at a comparable spatial
and temporal resolution. Protat et al. (2010) evaluate the IWC
parameterisation used for CALIOP for tropical cirrus using
ground-based radar–lidar retrievals. The results suggest that
the parameterisation is quite robust and is shown to work
well at most altitudes. Above ∼ 12 km the IWC is clearly
underestimated with respect to the ground-based radar–lidar
retrieval. Avery et al. (2012) evaluate the CALIOP IWC us-
ing coincident data from CloudSat and in situ measurements
inside a tropical convective cloud. At the lower altitudes (8–
12 km), the CALIOP IWC is underestimated with respect
to the in situ measurements, which could be attributed to
a lower penetration depth of CALIOP and the removal of
CALIOP layers containing HOI. Between 12 and 14 km the
agreement between the CALIOP IWC and the in situ mea-
surements is good. At all altitudes CALIOP seems to under-
estimate the IWC with respect to CloudSat. Wu et al. (2014)
show that the V3 CALIOP IWC agrees well with airborne
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in situ measurements up to approx. 20 mgm−3 at an altitude
of 12 km. The CALIOP IWC agrees well with the CloudSat
IWC within the regions where their sensitivities overlap. This
occurs between 5 and 20 mgm−3 at an altitude of 12 km and
between 30 and 200 mgm−3 at 15 km.

3.4 Data preparation

To learn the relationship between the SEVIRI, ECMWF, aux-
iliary data and the cirrus properties from CALIOP, an exten-
sive dataset is created containing spatial and temporal collo-
cations of all variables. The training dataset covers the time
period from April 2007 to January 2013, which is the time
when MSG-2 was the operational satellite at 0.0◦ E. CiPS is
restricted to MSG-2 alone, since we did not want to mix data
from multiple SEVIRI instruments since their characteristics
are slightly different.

3.4.1 Data collocation

For this time period all quality-controlled CALIOP data
within the SEVIRI field of view are identified and collocated
with single SEVIRI pixels in time and space. Due to the dif-
ferent viewing geometries of SEVIRI and CALIOP, the same
cloud seen by SEVIRI and CALIOP at the same time appears
to be located at two different positions. The magnitude of this
displacement depends on the viewing angle and the altitude
of the cloud layer. This effect has been corrected for using
the latitude, longitude and cloud top altitude from CALIOP
(parallax correction) to project ice clouds to the SEVIRI grid.
The cirrus properties from CALIOP are spatially collocated
with SEVIRI observations from the pixel having the largest
overlap with the 5 km CALIOP orbit segment. The data are
temporally collocated by identifying the SEVIRI observation
that has the smallest difference in acquisition time compared
to CALIOP. With a temporal resolution of 15 min for SE-
VIRI, the maximum difference in acquisition time between
SEVIRI and CALIOP is 7.5 min.

When collocating SEVIRI and CALIOP observations with
the purpose of training an ANN one must consider two as-
pects. (1) Even though the 5 km average of CALIOP point
measurements fits the spatial resolution of SEVIRI (3×3 km2

at nadir and approx. 4×5 km2 in mid-latitudes) quite well in
the along-track direction, the two observations differ largely
in scale in the across-track direction as the footprint of
CALIOP is approx. 70 m wide at the Earth’s surface. Con-
sequently the 5 km CALIOP orbit segment is representative
only for a relatively small fraction of a SEVIRI pixel. This
will induce inevitable errors and lead to imperfect informa-
tion used to train the ANN. This is especially relevant for
partial cloud cover, where CALIOP may observe a cloud-
free area in an otherwise cloud-covered SEVIRI pixel. If
the error from imperfect collocations is random, this will
have a limited effect on the ANN. Only if there is a recur-
rent systematic difference as a result of the different spatial

scales this will lead to biased retrievals (Holl et al., 2014).
(2) Although cirrus clouds leave their mark on both SEVIRI
and CALIOP measurements in a similar way, SEVIRI does
not share CALIOP’s possibility of discerning vertically sep-
arated ice clouds, liquid water clouds and aerosols. Conse-
quently SEVIRI should not be expected to discern the signal
from liquid water clouds and aerosols when retrieving the
IOT as effectively as CALIOP.

The ECMWF surface temperatures are spatially collocated
with the satellite observations using nearest neighbour. For
the temporal collocation, the ECMWF re-analysis data are
linearly interpolated between the ECMWF 6 h time steps and
the satellite acquisition time.

3.4.2 Training and validation data

The full collocated dataset, covering the entire SEVIRI disc
and a time period of almost 6 years, contains close to 50
million collocations. Of those collocations, 80 % are used to
create the four datasets required for the training of the four
ANNs contained in CiPS. For the CCF ANN, both cirrus-free
collocations and collocations with transparent and opaque
cirrus clouds are included in the training dataset. Colloca-
tions with no cirrus cloud present are excluded from the
training datasets used to train the OPF ANN as well as the
CTH and IOT/IWP retrieval ANNs, since those networks
will be applied only on pixels identified as cirrus-covered by
the CCF ANN. Furthermore, the IOT/IWP ANN is trained
only with collocations containing transparent cirrus clouds,
where the CALIOP signal was not saturated such that the
true, rather than the apparent, IOT and IWP could be re-
trieved. Figure 2 shows the relative number distributions of
the IOT, IWP and CTH retrieved by CALIOP. It is clear that
the collocation dataset is unbalanced in several aspects. The
IOT and IWP have exponential distributions with very few
thicker cirrus clouds. Similarly there are comparably few
low and high cirrus clouds available and the CTH distribu-
tion has two peaks, corresponding to mid-latitudes and trop-
ics. To improve the end performance for those rare points
the unbalance of the training datasets is reduced “by hand”.
For the cirrus detection and IOT/IWP ANNs, four duplicates
of all cirrus clouds with IOTCALIOP ≥ 1.0 have been added
to the training datasets. Similarly four duplicates of all cir-
rus clouds with CTHCALIOP > 17 km or CTH CALIOP < 5 km
have been added to the CTH training dataset. For the opac-
ity classification ANN, four duplicates of all opaque cirrus
clouds have been added to the training dataset. This approach
does not introduce any new information that the ANNs can
learn from but does increase the weight of the added points
during the training. Adding too few duplicates has a negligi-
ble effect whereas too many duplicates give the added points
too strong an impact during the training. By testing differ-
ent numbers, four duplicates are seen to yield the best re-
sults for all ANNs. Furthermore, the IOT and IWP are trans-
formed to their logarithmic counterparts before the training
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Figure 2. The relative number distribution of the cirrus IOT (bin size= 0.2), IWP (bin size= 5 gm−2) and CTH (bin size= 1 km), from
almost 6 years of V3 CALIOP L2 layer data over the SEVIRI disc.

(IOT∗ = log10(IOT), IWP∗ = log10(IWP/1gm−2)). Finally,
the single input variables are normalised to have zero mean
and unit variance (LeCun et al., 1998) and the output data are
scaled to fit the ranges of the activation functions (Sect. 3.5)
used by the ANNs.

The remaining 20 % of the collocation dataset is used for
validation. Half of these data are used to create internal vali-
dation datasets that are used to monitor the error against inde-
pendent data during the training in order to avoid overfitting
(see Sect. 3.5) and to determine training meta-parameters,
ANN structures (see Sect. 3.7) and classification thresholds
(see Sect. 3.6). The internal validation datasets have been fil-
tered in the same manner as the training datasets but have
not been balanced by adding duplicates of selected points.
The second half of the validation data are used for the final
validation of CiPS (and COCS) presented in Sect. 4.2. These
final validation data are not used for any purpose during the
development and training of CiPS. With common ANN ter-
minology the internal and final validation data are usually
referred to as validation and test data respectively.

3.5 Training

To train and apply CiPS the Fast Artificial Neural Net-
work library (FANN; Nissen, 2003) is used. The four ANNs
contained in CiPS are trained using the standard back-
propagation algorithm and mini-batch gradient descent de-
scribed in Sect. 2.3.2.

Three hidden layers are used for the cirrus cloud detec-
tion, two for the CTH and IOT and IWP retrievals and a sin-
gle hidden layer for the opacity classification. All ANNs use
16 hidden neurons per hidden layer (see Sect. 3.7 for details
on the MLP structures). For the classification ANNs (CCF,
OPF) the sigmoid activation function is used for both hid-
den and output layers, whereas the tanh activation function
is used for hidden and output layers for the regression ANNs

(CTH, IOT and IWP). A batch size of 1024 is used, meaning
that the ANNs look at 1024 input and output data combi-
nations before each weight update. The value of 1024 was
chosen as a trade-off between the noise in the error gradi-
ent that increases with smaller batch sizes and the required
computational power that increases with larger batch sizes.
The learning rate and momentum are sensitive to the prob-
lem that should be solved, the corresponding training data
as well as the number of input and output variables (Schaul
et al., 2013). To find the optimal values an extensive iterative
test approach is performed. For this test a large GPU cluster
(120 teraFLOPS – 20 NVIDIA GTX Titan GPUs) is used to
train numerous ANNs with different numbers of hidden lay-
ers and hidden neurons and a wide range of learning rates
and momentum values. To find the optimal values for each
meta-parameter, a random search according to Bergstra and
Bengio (2012) is performed within intervals chosen based
on expert knowledge. Sets of meta-parameters are randomly
drawn from the pre-defined intervals and used to train cor-
responding sets of ANNs. Assuming an infinite number of
samples, this procedure can be regarded as a global optimi-
sation technique. The optimal set of meta-parameters is de-
fined as the one that minimises the mean squared error (MSE)
between the ANN and the internal validation data. All result-
ing optima are well within these chosen intervals, so it is as-
sumed that the choice of the intervals does not introduce any
distortion or bias. For both the classification and regression
tasks a learning rate around 0.05 and momentum around 0.99
are found to provide ANNs with the lowest MSE against the
independent internal validation data.

The ANNs are initially trained using 25 % of the train-
ing data. This is done in order to speed up the training. This
first phase continues until the accuracy of the ANNs does no
longer improve with respect to the internal validation data.
During this first phase of the training a rough estimate of the
error gradient is sufficient as we are interested in the gen-
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eral direction towards a minimum solution. Thus a larger
learning rate and smaller mini-batches are preferred. When
the ANN approaches the region of an optimal solution, those
large step-sizes and small mini-batches are too blunt to find
the finer structures needed to solve the problem better. Thus
the learning rate and batch size should be adjusted accord-
ingly in order to make smaller and more informed steps in
the search space. During this iterative tuning phase, the learn-
ing rate is reduced by a factor of 4 and the batch size is
increased by a factor of 2. In order to not impede the ef-
fect of the finer learning rate and batch size, the momentum
is reduced accordingly. Furthermore the size of the training
dataset, which started at 25 % during the first phase, is in-
creased by a factor of 2. This is a schedule procedure that
is commonly used in the machine learning/ANN community.
As the tuning phase continues the meta-parameters are re-
fined according to the schedule above as soon as the total
error stops to decrease with respect to the internal validation
dataset. The tuning phase and thereby the training stops when
the respective ANNs have reached a point where additional
epochs do not reduce the error, using 100 % of the respective
training datasets.

To avoid overfitting, the error against the independent in-
ternal validation datasets (Sect. 3.4.2) is always monitored.
Overfitting occurs when an ANN learns the training dataset
itself rather than the relationship between the input and out-
put variables and thus loses its ability to generalise. To make
sure that the ANNs are not overfitting, the updated weights
are only saved if the error against the internal validation
dataset decreases; otherwise the training continues but the
set of weights having the current minimum error against the
internal validation dataset is kept.

For each task/ANN the training is repeated twice in order
to reduce the risk of having a bad end performance as a result
of a bad set of initial weights (from Widrow and Nguyen’s
algorithm; Nguyen and Widrow, 1990). In the end, only the
best performing network is used. The differences between the
two networks trained for each task/ANN are, however, very
small (ca. 3 ‰ relative difference in MSE).

Using a common standard desktop PC (using 1 core
@ 3.40 GHz, Intel Core i5-3570), the final set of ANNs,
which we call CiPS, takes approx. 60 s to process a com-
plete SEVIRI image (3712× 3712 pixels) including I/O. Ap-
proximately 40 s are needed for the cirrus cloud detection
and another 20–30 s for the opacity classification as well as
the retrieval of CTH, IOT and IWP. The cirrus cloud detec-
tion takes longer as this ANN is applied to all SEVIRI pix-
els, whereas the other ANNs are only applied to those pix-
els classified as icy by CiPS. This is ca. 10 times faster than
the combined CTH and IOT retrieval by COCS (Kox et al.,
2014). ANN computations are highly parallelisable, mean-
ing that the computation time can be reduced significantly
by distributing the computations across multiple cores.

Figure 3. The POD and FAR of the CiPS cirrus cloud detection and
opacity classification ANNs as a function of classification thresh-
old. The red circles indicate the final thresholds selected for the two
ANNs.

3.6 Cirrus detection and opacity classification
thresholds

As described in Sect. 3.1 the thresholds for the CiPS CCF
and OPF ANNs can be selected between 0 and 1 depending
on the application. These two thresholds are chosen based on
a trade-off between the POD (Eq. 3) and FAR (Eq. 4) using
the internal validation dataset. Figure 3 shows the FAR and
POD of the CiPS classification ANNs as a function of classi-
fication threshold (also known as the receiver operating char-
acteristic curve). It is clear that the two quantities are anti-
correlated where a lower threshold yields a higher POD, but
this comes at the expense of an increased FAR and vice versa.
For the application and validation presented in Sects. 4 and 5
as well as for the standard usage of CiPS, a CCF threshold of
0.62 is chosen, resulting in a total POD of 71 % and a FAR
of 3.9 %. The low POD is a direct effect of the large amount
of very thin to sub-visual cirrus (IOT< 0.03) that CiPS does
not detect (see Figs. 2 and 7). For the OPF a threshold of 0.86
is chosen, resulting in a POD of 71 % and a FAR of 4.0 %
for the cirrus clouds that CiPS successfully detects. The two
thresholds chosen for CiPS are indicated in Fig. 3 with red
circles.
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Figure 4. The difference in accuracy between each MLP structure and the least complex MLP structure having one hidden layer with 16
hidden neurons (1–16). (a) The difference in POD for the cirrus cloud detection, (b) the difference in MAPE for the CTH retrieval and (c) the
difference in MAPE for the IOT retrieval. The number to the left of the hyphen is the number of hidden layers and the number to the right
the number of hidden neurons per hidden layer.

3.7 Evaluation of different MLP structures

When developing CiPS, several ANNs with different MLP
structures were trained in order to investigate the effect of
the MLP structure on the end performance and to determine
the respective structures that offer the best trade-off between
accuracy and application time. For each ANN contained in
CiPS several networks with different structures were trained
using one, two and three hidden layers with either 16 or 64
hidden neurons per hidden layer. For the single hidden layer
structures we also train with 128 hidden neurons. Also here
the training was repeated twice for each network in order to
reduce the risk of having a bad end performance as a result of
a bad set of initial weights. Again, only the best performing
network among the two is further evaluated after the train-
ing. All different structures were trained according to the first
phase as explained above (Sect. 3.5), i.e. using 25 % of the
respective datasets. After this stage the accuracy of the dif-
ferent MLP structures was evaluated and compared using the
internal validation datasets. This investigation was used to
determine the MLP structures used for CiPS (see Sect. 3.5).

Figure 4a shows the difference in POD (Eq. 3) between
each structure and the least complex structure, which has one
hidden layer and 16 hidden neurons (denoted as 1–16) for the
cirrus cloud detection ANN with respect to CALIOP for the
seven different structures that were investigated. Similarly,
Fig. 4b and c show the difference in MAPE (Eq. 6) between
each structure and the least complex one for the CTH and
IOT retrieval ANNs respectively. The MAPE behaviour of
the IWP is very similar to the MAPE of the IOT and is there-
fore not presented here. For the OPF, the structure of the net-
work does not seem to have any significant influence on the
performance and is thus not presented here. For the cirrus de-
tection and IOT retrieval, only the transparent cirrus clouds
are considered. Please note that for a better visualisation for
the lower IOT values, the horizontal axes in Fig. 4a and c are
divided into one logarithmic range (IOTCALIOP < 1.0) and
one linear range (IOTCALIOP ≥ 1.0).

Furthermore, Table 3 lists the approximate amount of time
required to process 1 million data points/pixels (including
I/O) using the above specified desktop PC with the different
structures.

In all cases, already small networks produce reasonable
results. In many cases differences between structures are not
very large. Nevertheless, we also see that larger ANNs can
always solve the problems in a more accurate way and espe-
cially for the cirrus cloud detection it is beneficial to either
use more hidden neurons or add more hidden layers rather
than using a simple structure with one hidden layer and 16
hidden neurons (1–16). Using two or three hidden layers with
64 hidden neurons each (2–64, 3–64) yields a POD that is
up to 8 percentage points higher compared to one hidden
layer with 16 hidden neurons (1–16). Similarly, a structure
with three hidden layers and 16 hidden neurons (3–16) yields
a POD that is up to 5.5 percentage points higher compared
to the structure with one hidden layer and 16 hidden neu-
rons (1–16). Although three hidden layers with 64 neurons
each (3–64) offer the highest accuracy for all cases, such
a complex structure processes the data significantly slower
by a factor of 8 or 6 compared to the smaller structures with
2 or 3 hidden layers and 16 neurons per layer. For the IOT
retrieval, a larger ANN is mostly beneficial for the thinner
cirrus and the MAPE with respect to CALIOP seems to be
saturated and hardly improvable for IOTCALIOP > 0.1 using
this approach and training data. For the sub-visual cirrus, the
MAPE with respect to the CALIOP reference IOT is up to
13 percentage points lower using two hidden layers instead
of one hidden layer with 16 hidden neurons each. For the
CTH retrieval, only marginal improvements in the MAPE
with respect to CALIOP (≈ 0.1–0.5 percentage points) are
observed using the more complex structures in comparison to
the least complex one (1–16). Only for the lowermost clouds
(CTHCALIOP < 6.0 km) is the advantage of using more hid-
den layers and neurons more evident.
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Table 3. Approximate time required to process 1 million data points using the different ANN structures investigated in this study. The number
to the left of the hyphen is the number of hidden layers and the number to the right the number of hidden neurons per hidden layer.

Structure 1–16 2–16 3–16 1–64 1–128 2–64 3–64

Time (s) 2.1 3.1 4.0 5.2 9.5 14.4 23.6

Figure 5. (a) MSG-3/SEVIRI false colour RGB composite over parts of Europe on 1 June 2015 at 12:30 UTC, the corresponding (b) bright-
ness temperature difference BT8.7 µm−BT10.8 µm and the (c) cirrus cloud mask with opacity information, (d) CTH, (e) IOT and (f) IWP
retrieved by CiPS.

4 CiPS application and validation

4.1 Application

In this section CiPS is applied to the 1 June 2015 12:30 UTC
MSG-3/SEVIRI image subset consisting of 350× 350 pix-
els comprising western and central Europe. Figure 5a shows
a false colour RGB composite that uses three SEVIRI chan-
nels centred at 0.6, 0.8 and 10.8 µm. With this channel combi-
nation the thick and thin cirrus clouds are identified as white
and blueish, respectively, whereas the liquid water clouds are

recognised as yellow. Quite intuitively surface water and land
appear as dark blue and green respectively. Two large cirrus
clouds can be seen ranging from the south-western parts of
France towards the Alps and southern parts of Scandinavia.
Also over England and Norway, cirrus clouds are present and
clearly visible in the RGB. Liquid water clouds are mainly
present over the central parts of France, Switzerland and
Germany as well as over the North Sea, Mediterranean Sea
and southern parts of Scandinavia. For an enhanced view of
thin cirrus clouds Fig. 5b shows the brightness temperatures
difference between the SEVIRI channels centred at 8.7 and
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10.8 µm. In this picture, cirrus clouds are characterised by
positive or slightly negative values.

Figure 5c shows the cirrus cloud mask retrieved by CiPS
for the same scene. The blue and grey areas show all pixels
that CiPS classifies as cirrus, of which the grey pixels are
classified as opaque. This means that for the grey pixels the
retrieved IOT and IWP is more likely to be underestimated.
CiPS clearly detects all cirrus clouds that can be identified
in the false colour RGB composite (Fig. 5a) and from the
brightness temperature differences (Fig. 5b). The OPF corre-
lates well with the cirrus brightness in the RGB. The bright-
est parts of the cirrus clouds, which represent the thickest
parts, are classified as opaque by CiPS.

Figure 5d–f show the corresponding CTH, IOT and IWP
retrieved by CiPS. CiPS captures the latitude dependency
of the CTH, with generally lower values at higher latitudes.
We also see elevated heights for the thicker cirrus cloud ar-
eas. The cloud edges are generally seen to have lower alti-
tudes, which could indicate ice crystal sedimentation or par-
tial cloud cover inside the SEVIRI pixels. As expected, the
IOT and IWP are well correlated and qualitatively the values
correspond well to the level of transparency of the different
cirrus clouds seen in Fig. 5a. For a quantitative evaluation of
the IOT and IWP as well as the other quantities, readers are
referred to Sect. 4.2.

4.2 Validation against CALIOP

In this section the performance of CiPS is validated against
V3 CALIOP products using the 10 % subset (approx. 4.9 mil-
lions collocations) of the full collocation dataset excluded
from the training of CiPS (Sect. 3.4.2). The results are pre-
sented for the full SEVIRI field of view. Since CiPS and
COCS share the concept of using ANNs trained with pri-
marily SEVIRI and CALIOP data, we also present the cor-
responding validation results of COCS. This clarifies the im-
provements of CiPS compared to COCS.

An in-depth characterisation of CiPS with respect to
(1) the relative importance of the different input variables,
(2) the effect of the underlying surface type as well as un-
derlying liquid water clouds and aerosol layers on the cir-
rus cloud retrieval, (3) the retrieval errors as a function of
IOT and CTH combined and (4) the sensitivity to radiomet-
ric noise in the SEVIRI input data is presented in Strandgren
et al. (2017).

4.2.1 Cirrus classification

The CCF of CiPS and COCS and the OPF of CiPS are eval-
uated as a function of the geographic position. This aspect
is interesting due to the very different meteorological condi-
tions present on the SEVIRI disc. Figure 6a and b show the
gridded FAR (Eq. 4) for the CCF of CiPS and COCS, respec-
tively, over 5◦×5◦ boxes, using the V3 CALIOP products as
reference.

As mentioned in Sect. 3.6 the average FAR for the CiPS
cirrus detection is 3.9 %. The FAR is sensitive to the fre-
quency of the events, meaning that over regions where the
natural probability of cirrus presence is high, a single false
alarm will have a larger impact on the total FAR than over
regions where the natural probability of cirrus presence is
low. Although the FAR of CiPS is relatively homogeneous
across the SEVIRI disc, this effect can be observed with
higher FARs along the ITCZ and lower FARs over the Sa-
hara, for example.

COCS has an equally low FAR over arid regions but has
a clearly higher FAR in general. In particular over icy sur-
faces like Greenland and Antarctica, COCS overestimates
the cirrus presence, with FARs up to approx. 90 %. But
for high latitudes in general, the FAR of COCS remains
higher than CiPS. In the polar regions (latitude≥ 65◦ N/S)
the average FAR is 33 % for COCS and 5.3 % for CiPS.
Also over Europe the FAR of CiPS is clearly lower. Fur-
thermore, COCS strongly overestimates the cirrus presence
around the sub-satellite point of SEVIRI. For viewing zenith
angles smaller than 15◦, COCS has an average FAR of 23 %.
This deficiency is not shown by CiPS, which has an average
FAR of 8.5 % for the same area. Furthermore, a false alarm
of COCS has IOTCOCS ≥ 0.1, whereas a false alarm of CiPS
can have an IOTCiPS down to 0.0, i.e. IOTCiPS > 0.0.

Due to the high probability of cirrus cloud presence along
the ITCZ, the effect of the higher FAR of CiPS over this re-
gion is small, since a high cirrus probability prevents false
alarms from occurring. Figure 6c and d show the total num-
ber of false alarms/positivesNFP by CiPS and COCS, respec-
tively, i.e. the total number of cirrus-free points in the vali-
dation dataset (approx. 3.3 millions) that are falsely classi-
fied as cirrus. Again the numbers are calculated over 5◦×
5◦ boxes. Even if the probability of having a false alarm
by CiPS is higher than the average FAR along the ITCZ
(Fig. 6a), the absolute number of false alarms is just as high
as for most regions across the SEVIRI disc (Fig. 6c). Looking
at NFP by COCS (Fig. 6d), more false alarms are observed at
high latitudes (especially over icy surfaces), over Europe and
around the sub-satellite point.

The FAR can easily be optimised by reducing the number
of detected cirrus clouds (see Fig. 3). Thus it is necessary
to simultaneously look at the performance in cirrus detection
alongside the false alarm analysis. A reduced POD would
be a natural effect if the FAR is reduced, but despite the low
FAR of CiPS the POD remains high. Figure 7 shows the POD
of CiPS, again in comparison to COCS. The POD is a func-
tion of IOTCALIOP and within each IOTCALIOP interval the
POD given by Eq. (3) is calculated, using the V3 CALIOP
products as reference. For a better visualisation the POD is
presented with a logarithmic scale for IOTCALIOP < 1.0 and
with a linear scale for IOTCALIOP ≥ 1.0. For cirrus clouds
with IOTCALIOP > 1.0, CiPS and COCS perform similarly.
A strong difference is instead seen for the thin cirrus clouds,
where CiPS detects more cirrus clouds compared to COCS.
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Figure 6. Top: the FAR of the CCF retrieved by CiPS (a) and COCS (b). Bottom: the absolute number of false alarms by CiPS (c) and
COCS (d). Approx. 3.3 millions cirrus-free points are included in the validation dataset.
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Figure 7. The POD of CiPS and COCS as a function of the IOT
retrieved by CALIOP.

For example at IOTCALIOP = 0.1, CiPS detects 71 % of the
cirrus clouds and COCS 43 %. A higher POD for thin cir-
rus clouds is an important improvement when studying con-

trail cirrus or the cirrus life cycle for example. Figure 7
only presents the results for the transparent cirrus clouds
where the CALIOP laser was not saturated. For the opaque
cirrus clouds the average POD is 98 % for both CiPS and
COCS. The geographical dependency of POD is clearly anti-
correlated with the geographical dependency of the FAR,
meaning that CiPS has its highest and lowest POD over re-
gions where the natural probability of cirrus presence is high
and low respectively. Apart from that, the POD of CiPS is
homogeneous across the SEVIRI disc.

Figure 8 shows the FAR of the CiPS OPF, again over
5◦× 5◦ boxes, using the V3 CALIOP products as refer-
ence. Since the OPF is a new variable introduced with CiPS,
the results cannot be compared to COCS. As mentioned in
Sect. 3.6 the average POD and FAR is 71 and 4.0 % respec-
tively. Both quantities are relatively homogeneous across the
SEVIRI disc, but the risk of falsely classifying a transparent
cirrus cloud as opaque is slightly lower in the tropical regions
(latitude< 30◦ N/S).
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Figure 8. FAR of the CiPS OPF (opacity flag).

4.2.2 Cirrus properties

Figure 9 shows two density scatter plots, with CTHCALIOP
on the horizontal axes and CTHCiPS (Fig. 9a) and CTHCOCS
(Fig. 9b) on the vertical axes. The colour shows the nor-
malised relative frequency, which is the relative frequency
normalised to the interval 0–1. Along with the scatter plots
the MPE and MAPE (Eqs. 5 and 6) of CiPS and COCS with
respect to CALIOP as a function of CTHCALIOP are shown
(Fig. 9c). CiPS and COCS are validated using their own
respective cirrus flags, meaning that CTHCiPS is validated
using the cirrus-covered points that CiPS detects, whereas
CTHCOCS is validated using those cirrus-covered points that
COCS detects. Using a common cirrus flag (i.e. those cirrus-
covered points that both CiPS and COCS detect) shows
marginal differences, with slightly reduced errors for CiPS,
as a result of the reduced amount of very thin cirrus that only
CiPS detect, for which the CTH is more difficult to accurately
estimate.

With CiPS the CTH is retrieved with a higher accu-
racy compared to COCS, especially for high and low cirrus
clouds. The correlation between CALIOP and CiPS is 0.90.
For CALIOP and COCS, the correlation coefficient is 0.82.

The MPE shows that CiPS overestimates and underesti-
mates the CTH of the lowest and highest cirrus clouds, re-
spectively, even if the errors are smaller than for COCS.
From 8 to 15 km the MPE is close to zero, meaning that
the CTH retrieval by CiPS is unbiased in this CTHCALIOP
range. The MAPE shows that the average magnitude of the
CiPS error is 10 % or less for cirrus clouds having a CTH
above 8 km. Furthermore, the MAPE clearly shows the bet-
ter accuracy of CiPS. For example, for cirrus clouds with
a CTHCALIOP between 4 and 5 km, representing mid-level
clouds with icy tops, the MAPE is 38 % for CiPS. For COCS
the corresponding number is 107 % with solely overesti-
mated values (MAPE=MPE). This is mainly an effect of
the CTH filtering used for COCS (Sect. 2.5), which excluded

cirrus clouds with a CTHCALIOP < 4.5 km from the training
dataset, leading to strong overestimations of lower values.
Furthermore, this type of low cirrus/icy clouds are found in
the polar regions (see Fig. 10b), where the retrieval condi-
tions for SEVIRI are more challenging with larger viewing
zenith angles and pixel sizes.

The CTH has a strong latitude dependency and the CiPS
results shown in Fig. 9 are not representative for all latitudes.
Figure 10a shows the MPE of the CTHCiPS retrievals with
respect to CALIOP as a function of CTHCALIOP and the lati-
tude. Figure 10b shows the corresponding occurrences of the
points that make up the statistics shown in Fig. 10a. Please
remember that the validation dataset is a random subset of
CALIOP data collected over a time period of almost 6 years
and hence represents the natural latitudinal distribution of
cloud top heights.

The MPE shows a clear latitude dependency and in con-
trast to Fig. 9c, where CiPS is shown to have no bias
(MPE≈ 0) between 8 and 15 km, we see that the CTHCALIOP
limit when CiPS starts to over- and underestimate the CTH
increases towards the Equator. At higher latitudes (e.g. over
Europe), we see that CiPS is more likely to underestimate
the CTH also for lower CTHCALIOP around 11–14 km, with
an increasing bias towards higher latitudes. Similarly the
CTHCiPS for cirrus clouds with CTHCALIOP < 13 km is more
likely to be overestimated along the ITCZ, with increas-
ing errors towards the Equator. From Fig. 10b it is clear
that the situations with higher errors and stronger biases
(|MPE|&20 %) are comparably rare and that CTHCiPS is un-
biased for the more frequent combinations of CTHCALIOP
and latitude.

Note the difference between the CiPS CTH retrieval and
standard ones (e.g. Menzel et al., 2008), where the deter-
mination of cloud top height requires the knowledge of the
appropriate vertical temperature profile from NWP (numeri-
cal weather prediction) models, while CiPS only requires the
surface skin temperature from a NWP along with the SEVIRI
brightness temperatures and auxiliary data.

Figure 11 shows again two density scatter plots, now with
IOTCALIOP on the horizontal axes and IOTCiPS (Fig. 11a) and
IOTCOCS (Fig. 11b) on the vertical axes. As before the colour
shows the normalised relative frequency. Again the MPE and
MAPE (Eqs. 5 and 6) of CiPS and COCS with respect to
CALIOP as a function of IOTCALIOP is shown in the right
panel. Only transparent cirrus clouds, where CALIOP was
not saturated, are included here. The two algorithms are val-
idated using their respective cirrus cloud flags (as explained
above for the CTH). This is not 100 % true for the IOTCOCS
scatter plot, however, where all points with a retrieved
IOTCOCS > 0.0 are included. Instead the black grid on top
of the scatter plot illustrates the area where COCS does not
detect any cirrus clouds as a result of the COCS cirrus de-
tection threshold at IOTCOCS = 0.1 (Sect. 2.5). A relatively
large scatter is observed for both algorithms. CiPS shows
a better correlation with the CALIOP retrievals though. The
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Figure 9. Density scatter plots with the CTH retrieved by (a) CiPS and (b) COCS on the vertical axes and the corresponding V3 CALIOP
data on the horizontal axes. The grey lines represent the 1–1 line. (c) The MAPE (solid) and MPE (dash) of the CTH retrieved by CiPS and
COCS with respect to the CTH measured by CALIOP.

Figure 10. (a) Two-dimensional histogram showing the MPE of the
CTHCiPS retrieval as a function of the reference CTH retrieval by
CALIOP and the latitude. (b) The corresponding occurrences of the
points that make up the statistics shown in (a).

correlation between CiPS and CALIOP is 0.65, whereas the
correlation between COCS and CALIOP is 0.61. Further-
more, CiPS shows higher frequencies along the 1–1 line
down to IOTCALIOP ≈ 0.09, but also below this value the cor-

relation between CALIOP and CiPS is evident. Only below
IOTCALIOP = 0.04 does the correlation get lost.

For a better visualisation of the lower IOT range, where
most points are located, the density scatter plots have loga-
rithmic axes. This does, however, visually reduce the errors,
so for a quantitative evaluation attention should be paid to
Fig. 11c showing the MPE and MAPE of CiPS and COCS
with respect to CALIOP. The MPE and MAPE are func-
tions of IOTCALIOP and again the results are presented using
a logarithmic scale for IOTCALIOP < 1.0 and a linear scale
for IOTCALIOP ≥ 1.0. From the MAPE the low accuracy
of CiPS for sub-visual cirrus clouds becomes evident. For
IOTCALIOP < 0.03, we also see that MAPE=MPE, meaning
that CiPS entirely overestimates the IOT in this region. For
COCS, the same is observed for IOTCALIOP < 0.1 as a direct
effect of the inability of COCS to detect cirrus clouds with an
IOTCOCS < 0.1. The opposite is observed for thicker cirrus
clouds (IOTCALIOP &2.0), where both CiPS and COCS en-
tirely underestimate the IOT (MAPE=−MPE). With CiPS
the IOT can be retrieved with a MAPE of 50 % or less
for cirrus clouds with 0.35. IOTCALIOP .1.8. Similarly the
MAPE of the retrieved IOTCiPS is 100 % or less for cir-
rus clouds with IOTCALIOP > 0.07 and 230 % or less down
to sub-visual cirrus clouds (IOTCALIOP > 0.03). The corre-
sponding MAPEs for the IOT retrieved by COCS within the
same IOTCALIOP intervals are 59, 290 and 720 %. A MAPE
of 100 % might seem high, but one should keep in mind that
this translates into small absolute errors for such thin cir-
rus clouds. For the lower IOTCALIOP range, a similar scat-
ter is observed between IOTCALIOP and modelled IOT from
infrared radiances for thin cirrus clouds in Holz et al. (2016).

Figure 12 shows the density scatter plot with IWPCALIOP
on the horizontal axis and IWPCiPS on the vertical axis
(Fig. 12a) together with the MPE and MAPE (Eqs. 5
and 6) of CiPS with respect to CALIOP as a function of
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Figure 11. Density scatter plots with the IOT retrieved by (a) CiPS and (b) COCS on the vertical axes and the corresponding V3 CALIOP
data on the horizontal axes. The grey lines represent the 1–1 line. (c) The MAPE (solid) and MPE (dash) of the IOT retrieved by CiPS and
COCS with respect to the IOT retrieved by CALIOP. The black grid on top of the right scatter plot illustrates the area where COCS does not
detect any cirrus clouds as a results of the COCS cirrus detection threshold at IOTCOCS = 0.1 (Sect. 2.5).

Figure 12. (a) Density scatter plot with the IWP retrieved by CiPS on the vertical axis and the corresponding V3 CALIOP data on the
horizontal axis. The grey line represents the 1–1 line. (b) The MAPE (solid) and MPE (dash) of the IWP retrieved by CiPS with respect to
the IWP retrieved by CALIOP.

IWPCALIOP (Fig. 12b). Please note that again the density
scatter plots have logarithmic axes and the errors are pre-
sented using logarithmic scale for the thinner cirrus clouds
(IWPCALIOP < 10.0 gm−2) and with linear scale for the
thicker ones (IWPCALIOP ≥ 10.0 gm−2). Since the IWP is
not retrieved by COCS, no additional results are shown here
for comparison. Again only transparent cirrus clouds are in-
cluded.

The scatter between IWPCiPS and IWPCALIOP is very sim-
ilar to that between IOTCiPS and IOTCALIOP. This is not sur-
prising since the IWC from CALIOP is retrieved from the
measured extinction coefficients using a parametrisation. The
correlation between CiPS and CALIOP is, however, slightly
lower for the IWP retrieval (0.59) compared to the IOT re-
trieval. This is also expected since possible deficiencies in
the CALIOP IWC parameterisation will make it more diffi-
cult for the ANN to learn the relationship between the input

data and the IWP. Nevertheless, these results show that the
ANN is capable of reproducing this relationship in a good
way. With CiPS the IWP can be retrieved with a MAPE of
100 % or less for cirrus clouds with IWPCALIOP > 1.7gm−2

and 200 % or less down to IWPCALIOP ≈ 0.7gm−2. Please
note that deviations of 100 % are common even when mi-
crowave information is considered (e.g. Holl et al., 2014,
even if their error measure is different from ours).

In contrast to the CTHCiPS retrieval, CiPS shows a stable
performance for the IOT and IWP retrievals across all lat-
itudes (not shown here). The only anomaly observed is that
the CiPS retrieval errors for thin to sub-visual cirrus are lower
over convergence zones like the ITCZ, where they are mostly
found (Sassen et al., 2009; Martins et al., 2011).

As expected and as seen in Figs. 9, 11 and 12, CiPS is
not able to perfectly model the CALIOP cirrus properties
using the SEVIRI, ECMWF and auxiliary data. There are
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several sources of error that add to the final performance
of CiPS. Most importantly CALIOP and SEVIRI have dif-
ferent sensitivities to cirrus clouds. This is especially clear
for thin to sub-visual cirrus clouds where CALIOP is able
to accurately retrieve the top height and optical properties.
Such faint cirrus leave a considerably weaker or no mark on
the SEVIRI observations though, making it difficult to in-
versely determine the cirrus properties. Similarly the CTH is
not necessarily defined equally by CALIOP and SEVIRI, as
CALIOP is able to discern thinner icy layers at the cloud top
that may appear as “invisible” to SEVIRI. Also for thicker
cirrus clouds where both CALIOP and SEVIRI (thermal ob-
servations) approaches the point of saturation, the different
sensitivities lead to ambiguous collocations. When an ANN
is trained with a set of different output values that correspond
to approximately the same input data as a result of the lower
sensitivity, the ANN will not be able to model an accurate
relationship. The reason for this is that the input vector con-
tains no information on how the difference in sensitivity af-
fects the target values. This can be regarded as an unknown
hidden variable. This weakness is not specific to ANNs but
applies to all regression models minimising the squared er-
ror. When such a set of incomplete input data (in the sense
that there is a strong hidden variable) is given to the final
ANN, it will output a conservative mean value that can be
understood as an average over the distribution of the most
likely solutions weighted by their probability. The larger the
difference in sensitivity is, the higher the variance within the
distribution of the most likely solutions will be, leading to
larger retrieval errors. Throughout most of the output data
range this error will be random. But, obviously, the distri-
bution of the most likely solutions cannot be centred around
the extreme values leading to systematic over- and underes-
timations of low and high output values when a conservative
mean value is calculated. This effect increases towards the
extreme values as the desired output value is skewed towards
the edge of the distribution of the most likely solutions. This
effect is clearly seen in Figs. 11c and 12c where low and
high IOTCALIOP/IWPCALIOP are over- and underestimated
respectively. This is to some extent also seen for the CTHCiPS
retrieval in Fig. 9c, especially for low CTHCALIOP. Due to
the randomness of the effects a lower sensitivity introduces,
adding information about the magnitude of the sensitivity to
the input vector is not likely to improve this situation. The
larger CTHCiPS retrieval errors observed for low clouds can
also be attributed to the smaller temperature contrast with
respect to the surface temperature and thus the weaker radia-
tive signal that those clouds have compared to higher cirrus
clouds. Another source of error that amplifies the effect dis-
cussed above is the risk that there are additional variables
relevant for finding an accurate relationship that are not rep-
resented by the vector of input data.

As discussed in Sect. 3.4.1, imperfect collocations as a re-
sult of the different spatial scales of CALIOP and SEVIRI
together with partial cloud cover or spatially inhomogeneous

clouds will further add to the retrieval errors. In a situation
where CALIOP observed a small optically thin area of an
otherwise optically thick cirrus inside a SEVIRI pixel, CiPS
is likely to overestimate IOTCALIOP and IWPCALIOP. Simi-
larly if CALIOP observed a small optically thick area of an
otherwise optically thin cirrus inside a SEVIRI pixel, CiPS
is likely to underestimate IOTCALIOP and IWPCALIOP.

5 The cirrus life cycle with CiPS

In this section the potential of CiPS is illustrated by analysing
the temporal evolution of a thin cirrus cloud throughout its
life cycle. The life cycle of natural cirrus and contrails is
an important aspect to study (Szantai et al., 2001; Luo and
Rossow, 2004; Vazquez-Navarro et al., 2015), since knowl-
edge about the physical processes that govern their life cycle
is essential for an accurate representation in weather and cli-
mate models.

Here we analyse the life cycle of an outflowing cirrus
originating from an orographic cirrus. The cirrus cloud was
identified south of the Pyrenees on 26 September 2014 at
10:00 UTC from SEVIRI. A false colour RGB for this scene
including the contour of the CiPS cirrus mask is shown in
Fig. 13a. Using the binary cirrus cloud masks obtained with
CiPS and 2-D image correlation the detected cirrus cloud is
tracked backward and forward in time using the rapid scan-
ning service of SEVIRI with a temporal resolution of 5 min.
A similar method is used to track cloud patterns in Bolliger
et al. (2003). The minimum bounding box enclosing the se-
lected cirrus cloud is cross correlated with the previous/next
cirrus cloud mask in order to find the position of the cirrus
cloud 5 min earlier/later. The scene with the highest correla-
tion with this bounding box is identified. A cirrus cloud patch
within this scene is considered part of the tracked cirrus if it
is completely or partly covered by the tracked cirrus from
the previous scene. This allows for a simultaneous tracking
of multiple cirrus clouds in the likely event of the tracked
cirrus cloud breaking up into multiple smaller cloud patches
(Fig. 13b). All cirrus clouds smaller than 5 SEVIRI pixels are
filtered out. Using the CiPS opacity flag, it was concluded
that the tracked cirrus cloud was transparent throughout the
life cycle, indicating that the true, rather than apparent, IOT
and IWP can be derived by CiPS.

The path and temporal evolution of the cirrus cloud with
a temporal resolution of 120 min (2 h, apart from the first and
the last step) is visualised in Fig 13b. The starting time is
05:25 UTC on 26 September 2014, while the plot ends at
00:55 UTC on 27 September 2014. Notice that the time axis
runs from the right to the left in order to follow the cirrus
cloud that moves from the east to the west. We see that the
cirrus cloud formed from several small cirrus patches origi-
nating from the outflow of the orographic cirrus south of the
Alps and moved westwards over the Mediterranean Sea and
Spain before it attached to another larger cirrus cloud over the
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Figure 13. (a) False colour RGB composite on 26 September 2014 at 10:00 UTC. The red contour of the CiPS cirrus cloud mask shows the
outline of the cirrus cloud, whose life cycle is analysed. The orographic cirrus, from which the tracked cirrus originates, is clearly seen south
of the Alps. (b) The path and temporal evolution of the cirrus cloud as it is tracked backward and forward in time with a temporal resolution
of 120 min. The light grey colour shows all cirrus clouds present at 05:25 UTC that were not tracked in order to understand the origin of the
analysed cirrus cloud.

Atlantic Ocean. By tracking multiple cloud patches simulta-
neously the cirrus cloud can be monitored as a whole, even
when it splits into several parts. Throughout the life cycle,
a maximum number of 24 cirrus cloud patches were tracked
and analysed simultaneously as one cirrus cloud. Trigger-
ing the tracking 2 h before and after the starting time pre-
sented here (10:00 UTC) results in only marginal differences
(< 5.0 % in horizontal area, not shown here), as some small
cirrus patches that in the end form the tracked cirrus might
be temporarily missed. This validates the robustness of the
tracking method.

The temporal evolution of the cloud horizontal area can be
seen at full temporal resolution (5 min) in Fig. 14a. The same
figure also presents the temporal evolution of the CTH, IOT
and IWP retrieved by CiPS.

The cirrus cloud detaches from the orographic cirrus at
05:25 UTC and starts to grow in size immediately. The IOT
and IWP decrease for the first 30 min but start to grow along
with the horizontal area at around 06:00 UTC. The lower
IOT and IWP quartiles grow comparably slow and the in-
creased mean values are a result of an increased fraction of
thicker pixels, which is indicated by steeper curves of the
medians and upper quartiles. The cirrus grows in size, IOT
and IWP for 4 h, before it reaches its maximum horizontal
area of nearly 60 000 km2 at around 10:00 UTC. During this

time period the CTH increases slightly but remains compa-
rably stable, i.e. the effect of the Pyrenees, that are reached
by the cloud at ca. 07:00 UTC, on CTH is small. At around
09:15 UTC the cloud starts to sink and ca. 1 h later the cloud
starts to decrease in size, indicating that sufficiently warm
temperatures have been reached, forcing the cloud to dissi-
pate. Despite the dissipation, the average IOT and IWP con-
tinue to grow for another hour, reaching an average IOTCiPS
and IWPCiPS of 0.23 and 4.2 gm−2. This is observed because
the comparably large areas of thin cirrus with low IOTs and
IWPs are the first to dissipate, leading to smaller fraction of
low IOTs and IWPs and thus higher mean values. This is
confirmed by the lower quartiles that start to increase more
strongly when the horizontal area turns downward at around
10:30 UTC.

The IOT and IWP start to decrease at around 11:30 UTC
and continue to do so until 19:00 UTC, when just a few small
and thin cirrus cloud patches remain with average IOTCiPS of
0.07 and average IWPCiPS of 1.0 gm−2. For the same period
we see that the cloud slowly starts to gain altitude and around
19:00 UTC the altitude is high enough for the cloud to once
again start to grow in size, IOT and IWP. The IOT and IWP
grows marginally, again as a results of an increasing frac-
tion of thicker pixels (stable lower quartiles). The growth in
size is more evident and the horizontal area increases from
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Figure 14. Temporal evolution of the cloud properties for the cirrus described in Fig. 13 with a temporal resolution of 5 min: (a) the horizontal
cirrus cloud area, (b) IOT, (c) IWP and (d) CTH. For the IOT, IWP and CTH the mean, median, upper and lower quartile values are presented.

2800 to 19 200 km2 during the 3 h period of growth. Finally
the horizontal area, IOT and IWP are slightly reduced before
the tracked cirrus cloud connects to another cirrus cloud at
00:55 UTC. This is seen in Fig. 13b and by the rapid growth
in size, IOT and IWP. The CTH remains constant, which tells
us that the other cirrus cloud in fact is located at a similar al-
titude.

6 Conclusions

The CiPS algorithm presented in this paper detects cirrus
clouds and retrieves their CTH, IOT and IWP along with
an OPF using SEVIRI, ECMWF and auxiliary data. CiPS
utilises a set of four artificial neural networks, trained with
V3 CALIOP L2 layer data as a reference. CiPS does not take
advantage of the SEVIRI channels with significant solar con-

tribution and can thus be used during both day and night. By
using ANNs, the idea is to combine the high sensitivity and
vertical resolution of CALIOP with the large spatial coverage
and high temporal resolution of SEVIRI. Thus, the ultimate
goal of CiPS is to retrieve CALIOP-like cirrus properties for
the full SEVIRI disc (approx. one-third of the Earth) every
15 min.

CiPS shows a good performance when validated against
independent CALIOP data. CiPS detects 95 % of all cirrus
clouds with an optical thickness of 1.0 and 71 % of all cirrus
clouds with an optical thickness of 0.1. On average, CiPS
correctly classifies 96 % of the cirrus-free pixels. For cir-
rus clouds with 0.35. IOTCALIOP .1.7, the IOT can be re-
trieved with a MAPE of 50 % or less, relative to CALIOP. For
cirrus clouds with IOTCALIOP &0.07, CiPS retrieves the IOT
with a MAPE of 100 % or less. For thinner clouds, where the
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cirrus signal in the SEVIRI channels is weak, the error in-
creases but is still 230 % or less for IOTCALIOP &0.03 (sub-
visual cirrus). The IWP retrieved by CiPS has a similar per-
formance but a larger MAPE for the thinner clouds. This is
expected since the IWP is parameterised from the CALIOP
extinction coefficients, which means that deficiencies in the
parameterisation will make it more difficult for CiPS to
learn the relationship between the input and output variables
during training. The CTH, which is directly measured by
CALIOP, is also the variable that CiPS retrieves with the
highest accuracy. For cirrus clouds with CTHCALIOP ≥ 8 km,
the MAPE is 10 % or lower. Since CALIOP is unable to pen-
etrate thicker cirrus clouds, an additional ANN is trained to
determine whether a cirrus cloud is opaque or not (as seen
from CALIOP). Of the transparent cirrus clouds that CiPS
detects, 96 % are correctly classified as transparent. Simi-
larly, 71 % of the opaque cirrus clouds that CiPS detects are
correctly classified as being opaque. This information is very
important to discern thin cirrus, for which CiPS works very
well, from thicker clouds where neither CiPS nor CALIOP
can capture the complete IOT and IWP. The reported errors
of CiPS are only with respect to CALIOP. Additionally CiPS,
as an ANN, will have inherited any error that the CALIOP
products have with respect to the true cirrus properties.

CiPS has a better performance in all aspects with respect
to COCS, another algorithm that uses ANNs for retrieving
the CTH and IOT from SEVIRI using CALIOP as reference
(Kox et al., 2014). Significant improvements have been made
for the detection of the thinner cirrus clouds and the retrieval
of the corresponding IOT. Also for the higher and lower cir-
rus clouds, the CTH retrieval has been clearly improved. Fur-
thermore, IWP and an OPF have been added. Improvements
with respects to COCS can be attributed to several factors.
(1) We use new input data including the modelled surface
skin temperature and the regional maximum and average
brightness temperatures. (2) The training meta-parameters
and ANN structures have been thoroughly investigated and
optimised for CiPS. (3) The training of CiPS was more rigor-
ous, with mini-batch learning rather than stochastic learning
as well as a tuning phase with gradually increasing batch size
and gradually decreasing learning rate and momentum. Fur-
thermore an internal validation dataset was used during the
training of CiPS in order to monitor the accuracy and avoid
overfitting. (4) The use of the more accurate V3 CALIOP
data allowed us to omit the CTH filtering used for COCS,
leading to a more accurate CTH retrieval by CiPS. (5) CiPS
utilises multiple ANNs. COCS uses one single ANN trained
with cirrus-covered as well as cirrus-free pixels. On the con-
trary, the CiPS ANNs that retrieve the CTH, IOT, IWP and
OPF were trained exclusively with cirrus-covered pixels, re-
sulting in lower retrieval errors of CiPS. The larger retrieval
errors of COCS for thin cirrus clouds also affect the IOT de-
pendent cirrus cloud detection of COCS, with both a lower
POD and a higher FAR compared to CiPS.

As an application example, the life cycle of a thin cirrus
cloud and the temporal evolution of its properties is investi-
gated. The cirrus cloud lives for nearly 20 h and is shown to
originate from outflowing cirrus cloud patches from an oro-
graphic cirrus cloud. By analysing the cirrus properties re-
trieved by CiPS, the physical processes throughout the cirrus
life cycle can be better understood.

The approach of using ANNs is very fast and requires
little computational power compared to standard physical
methods that require extensive radiative transfer calcula-
tions and/or interpolation in a multidimensional space. On
a common standard PC, one complete SEVIRI image with
3712×3712 pixels is processed in approx. 60 s, including the
cirrus detection and the CTH, IOT, IWP and OPF retrieval.
By training multiple ANNs with different numbers of hidden
layers and hidden neurons, we see that a larger network with
more hidden layers and hidden neurons does generally pro-
vide a higher POD and lower errors. A larger network does,
however, come at the expense of more computational power,
especially for the training but also for the application.

With CiPS we are now able to study the temporal evolu-
tion, life cycles and diurnal cycles of thin cirrus clouds, nat-
ural and anthropogenic (contrails), including their coverage,
CTH, IOT and IWP with a higher degree of accuracy. The in-
clusion of a physical variable like the IWP further allows for
direct comparison with weather, climate or large eddy simu-
lation models.

As a next step, the CiPS retrievals will be further char-
acterised, for example with respect to the underlying sur-
face type and the presence of aerosol layers and liquid water
clouds below the cirrus (see Strandgren et al., 2017). Con-
stant developments and improvements of the CALIOP cirrus
cloud retrievals also open the door for further improvements
of CiPS. Another aspect of improvement would be to intro-
duce new input data, such as temperature and humidity pro-
files and surface emissivity. Although this paper is limited
to CALIOP retrievals, one could investigate the usefulness
of synergistic CALIOP/CloudSat retrievals as training refer-
ence data. One could also investigate the usefulness of a more
rigorous balancing of the training dataset in order to reduce
the number of training points without losing any unique in-
formation.

Data availability. MSG/SEVIRI L1.5 data are available at
https://www.eumetsat.int/website/home/Data/DataDelivery/
OnlineDataAccess/index.html. CALIOP data products are available
at CALIPSO Science Team (2015a, b, c, d). The surface skin
temperature product from the ECMWF ERA Interim reanal-
ysis dataset is available at http://apps.ecmwf.int/datasets/data/
interim-full-daily/levtype=sfc/. The MCD12C1 data product is
available at https://lpdaac.usgs.gov/data_access/data_pool.
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Appendix A

List of abbreviations
ANN Artificial neural network
BT Brightness temperature
CCF Cirrus cloud flag
CTH Cloud top height
DOY Day of year
FAR False alarm rate
HOI Horizontally aligned ice
IOT Ice optical thickness
IWC Ice water content
ITCZ Intertropical Convergence Zone
IWP Ice water path
MAPE Mean absolute percentage error
MPE Mean percentage error
MLP Multilayer perceptron
MSE Mean squared error
OPF Opacity flag
POD Probability of detection
SNR Signal-to-noise ratio
VZA Viewing zenith angle

www.atmos-meas-tech.net/10/3547/2017/ Atmos. Meas. Tech., 10, 3547–3573, 2017



3570 J. Strandgren et al.: Geostationary cirrus retrieval using artificial neural networks

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. This research was supported by the DLR
(Deutsches Zentrum für Luft- und Raumfahrt)/DAAD (Deutscher
Akademischer Austauschdienst) Research Fellowship Programme
für Doktoranden, 14.

We thank the NASA Atmospheric Science Data Center for their
kind support and for providing the V3 CALIOP layer data in a sub-
setted form. We also thank Mark Vaughan for his guidance on how
to properly account for the vertical overlap of cloud and aerosol
features in the CALIOP layer products. We want to express our
gratitude to Diego Loyola for an interesting and helpful discussion
about the application of ANNs in satellite remote sensing. We also
thank Stephan Kox for the discussion on COCS and the relevant
routines that were provided. We gratefully acknowledge the con-
structive comments of three anonymous reviewers, Florian Ewald,
André Butz and Ulrich Schumann that greatly improved the quality
and clarity of this paper.

The SEVIRI data were provided by EUMETSAT (European
Organisation for the Exploitation of Meteorological Satellites) and
the modelled surface temperature was obtained from ECMWF
(European Centre For Medium-Range Weather Forecasts). The
MODIS MCD12C1 data product used to derive the land surface
type flags was retrieved from the online Data Pool, courtesy of
the NASA Land Processes Distributed Active Archive Center (LP
DAAC), USGS/Earth Resources Observation and Science (EROS)
Center, Sioux Falls, South Dakota.

The article processing charges for this open-access
publication were covered by a Research
Centre of the Helmholtz Association.

Edited by: Alexander Kokhanovsky
Reviewed by: three anonymous referees

References

Ackerman, S. A., Smith, W. L., Revercomb, H. E.,
and Spinhirne, J. D.: The 27–28 October 1986 FIRE
IFO Cirrus Case Study: Spectral Properties of Cir-
rus Clouds in the 8–12 µm Window, Mon. Weather
Rev., 118, 2377–2388, https://doi.org/10.1175/1520-
0493(1990)118<2377:TOFICC>2.0.CO;2, 1990.

Ackerman, S., Holz, R., Frey, R., Eloranta, E., Maddux, B., and
McGill, M.: Cloud detection with MODI S. Part II: validation, J.
Atmos. Ocean. Tech., 25, 1073–1086, 2008.

Ackerman, S. A., Strabala, K. I., Menzel, W. P., Frey, R. A.,
Moeller, C. C., and Gumley, L. E.: Discriminating clear sky from
clouds with MODIS, J. Geophys. Res., 103, 32141–32157, 1998.

Avery, M., Winker, D., Heymsfield, A., Vaughan, M., Young, S.,
Hu, Y., and Trepte, C.: Cloud ice water content retrieved from
the CALIOP space-based lidar, Geophys. Res. Lett., 39, L05808,
https://doi.org/10.1029/2011GL050545, 2012.

Bergstra, J. and Bengio, Y.: Random search for hyper-parameter op-
timization, J. Mach. Learn. Res., 13, 281–305, 2012.

Bolliger, M., Binder, P., and Rossa, A.: Tracking cloud patterns by
METEOSAT rapid scan imagery in complex terrain, Meteorol.
Z., 12, 73–80, 2003.

Bugliaro, L., Zinner, T., Keil, C., Mayer, B., Hollmann, R., Reuter,
M., and Thomas, W.: Validation of cloud property retrievals
with simulated satellite radiances: a case study for SEVIRI, At-
mos. Chem. Phys., 11, 5603–5624, https://doi.org/10.5194/acp-
11-5603-2011, 2011.

CALIPSO Science Team: CALIPSO/CALIOP Level 2, Li-
dar Cloud Layer Data, version 3.01, Hampton, VA,
USA: NASA Atmospheric Science Data Center (ASDC),
https://doi.org/10.5067/CALIOP/CALIPSO/CAL_LID_L2_05
kmCLay-Prov-V3-01_L2-003.01, 2015a.

CALIPSO Science Team: CALIPSO/CALIOP Level 2, Li-
dar Cloud Layer Data, version 3.02, Hampton, VA,
USA: NASA Atmospheric Science Data Center (ASDC),
https://doi.org/10.5067/CALIOP/CALIPSO/CAL_LID_L2_05
kmCLay-Prov-V3-02_L2-003.02, 2015b.

CALIPSO Science Team: CALIPSO/CALIOP Level 2, Li-
dar Aerosol Layer Data, version 3.01, Hampton, VA,
USA: NASA Atmospheric Science Data Center (ASDC),
https://doi.org/10.5067/CALIOP/CALIPSO/CAL_LID_L2_05
kmALay-Prov-V3-01_L2-003.01, 2015c.

CALIPSO Science Team: CALIPSO/CALIOP Level 2, Li-
dar Aerosol Layer Data, version 3.02, Hampton, VA,
USA: NASA Atmospheric Science Data Center (ASDC),
https://doi.org/10.5067/CALIOP/CALIPSO/CAL_LID_L2_05
kmALay-Prov-V3-02_L2-003.02, 2015d.

Cerdena, A., Gonzalez, A., and Perez, J.: Neural Network based
Retrieval of Cirrus Properties, in: 2006 IEEE International
Symposium on Geoscience and Remote Sensing, 589–592,
https://doi.org/10.1109/IGARSS.2006.155, 2006.

Cerdena, A., Gonzalez, A., and Perez, J.: Remote Sensing of Wa-
ter Cloud Parameters Using Neural Networks, J. Atmos. Ocean.
Tech., 24, 52–63, https://doi.org/10.1175/JTECH1943.1, 2007.

Chen, T., Rossow, W. B., and Zhang, Y.: Radiative effects of cloud-
type variations, J. Climate, 13, 264–286, 2000.

Davis, S., Hlavka, D., Jensen, E., Rosenlof, K., Yang, Q., Schmidt,
S., Borrmann, S., Frey, W., Lawson, P., Voemel, H., and Bui, T.
P.: In situ and lidar observations of tropopause subvisible cir-
rus clouds during TC4, J. Geophys. Res.-Atmos., 115, D00J17,
https://doi.org/10.1029/2009JD013093, 2010.

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G.,
Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L.,
Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M.,
Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H.,
Holm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M.,
McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-
K., Peubey, C., de Rosnay, P., Tavolato, C., Thepaut, J.-N., and
Vitart, F.: The ERA-Interim reanalysis: configuration and perfor-
mance of the data assimilation system, Q. J. Roy. Meteor. Soc.,
137, 553–597, https://doi.org/10.1002/qj.828, 2011.

Derrien, M. and LeGleau, H.: MSG/SEVIRI cloud mask and type
from SAFNWC, Int. J. Remote Sens., 26, 4707–4732, 2005.

Derrien, M., Farki, B., Harang, L., LeGleau, H., Noyalet, A.,
Pochic, D., and Sairouni, A.: Automatic cloud detection applied
to NOAA-11/AVHRR imagery, Remote Sens. Environ., 46, 246–
267, 1993.

Atmos. Meas. Tech., 10, 3547–3573, 2017 www.atmos-meas-tech.net/10/3547/2017/

https://doi.org/10.1175/1520-0493(1990)118<2377:TOFICC>2.0.CO;2
https://doi.org/10.1175/1520-0493(1990)118<2377:TOFICC>2.0.CO;2
https://doi.org/10.1029/2011GL050545
https://doi.org/10.5194/acp-11-5603-2011
https://doi.org/10.5194/acp-11-5603-2011
https://doi.org/10.5067/CALIOP/CALIPSO/CAL_LID_L2_05kmCLay-Prov-V3-01_L2-003.01
https://doi.org/10.5067/CALIOP/CALIPSO/CAL_LID_L2_05kmCLay-Prov-V3-01_L2-003.01
https://doi.org/10.5067/CALIOP/CALIPSO/CAL_LID_L2_05kmCLay-Prov-V3-02_L2-003.02
https://doi.org/10.5067/CALIOP/CALIPSO/CAL_LID_L2_05kmCLay-Prov-V3-02_L2-003.02
https://doi.org/10.5067/CALIOP/CALIPSO/CAL_LID_L2_05kmALay-Prov-V3-01_L2-003.01
https://doi.org/10.5067/CALIOP/CALIPSO/CAL_LID_L2_05kmALay-Prov-V3-01_L2-003.01
https://doi.org/10.5067/CALIOP/CALIPSO/CAL_LID_L2_05kmALay-Prov-V3-02_L2-003.02
https://doi.org/10.5067/CALIOP/CALIPSO/CAL_LID_L2_05kmALay-Prov-V3-02_L2-003.02
https://doi.org/10.1109/IGARSS.2006.155
https://doi.org/10.1175/JTECH1943.1
https://doi.org/10.1029/2009JD013093
https://doi.org/10.1002/qj.828


J. Strandgren et al.: Geostationary cirrus retrieval using artificial neural networks 3571

Eliasson, S., Buehler, S. A., Milz, M., Eriksson, P., and John, V.
O.: Assessing observed and modelled spatial distributions of ice
water path using satellite data, Atmos. Chem. Phys., 11, 375–
391, https://doi.org/10.5194/acp-11-375-2011, 2011.

EUMETSAT: The Conversion from Effective Radiances to Equiva-
lent Brightness Temperatures, EUM/MET/TEN/11/0569, 2012.

Ewald, F., Bugliaro, L., Mannstein, H., and Mayer, B.: An im-
proved cirrus detection algorithm MeCiDA2 for SEVIRI and
its evaluation with MODIS, Atmos. Meas. Tech., 6, 309–322,
https://doi.org/10.5194/amt-6-309-2013, 2013.

Eyre, J. R. and Menzel, W. P.: Retrieval of Cloud Param-
eters from Satellite Sounder Data: a simulation study, J.
Appl. Meteorol., 28, 267–275, https://doi.org/10.1175/1520-
0450(1989)028<0267:ROCPFS>2.0.CO;2, 1989.

Fu, Q. and Liou, K. N.: Parameterization of the radiative properties
of cirrus clouds, J. Atmos. Sci., 50, 2008–2025, 1993.

Gao, B., Yang, P., Han, W., Li, R., and Wiscombe, W.:
An algorithm using visible and 1.38-µm channels to re-
trieve cirrus cloud reflectances from aircraft and satel-
lite data, IEEE T. Geosci. Remote, 40, 1659–1668,
https://doi.org/10.1109/TGRS.2002.802454, 2002.

Hamann, U., Walther, A., Baum, B., Bennartz, R., Bugliaro, L.,
Derrien, M., Francis, P. N., Heidinger, A., Joro, S., Kniffka, A.,
Le Gléau, H., Lockhoff, M., Lutz, H.-J., Meirink, J. F., Minnis,
P., Palikonda, R., Roebeling, R., Thoss, A., Platnick, S., Watts,
P., and Wind, G.: Remote sensing of cloud top pressure/height
from SEVIRI: analysis of ten current retrieval algorithms, At-
mos. Meas. Tech., 7, 2839–2867, https://doi.org/10.5194/amt-7-
2839-2014, 2014.

Heidinger, A. K. and Pavolonis, M. J.: Gazing at cir-
rus clouds for 25 years through a split window. Part
I: Methodology, J. Appl. Meteorol. Clim., 48, 1100–1116,
https://doi.org/10.1175/2008JAMC1882.1, 2009.

Heidinger, A. K., Li, Y., Baum, B. A., Holz, R. E., Platnick, S., and
Yang, P.: Retrieval of cirrus cloud optical depth under day and
night conditions from MODIS Collection 6 cloud property data,
Remote Sens., 7, 7257–7271, 2015.

Heymsfield, A. J., Winker, D., and van Zadelhoff, G.-
J.: Extinction-ice water content-effective radius algo-
rithms for CALIPSO, Geophys. Res. Lett., 32, l10807,
https://doi.org/10.1029/2005GL022742, 2005.

Hlavka, D. L., Yorks, J. E., Young, S. A., Vaughan, M. A.,
Kuehn, R. E., McGill, M. J., and Rodier, S. D.: Airborne val-
idation of cirrus cloud properties derived from CALIPSO lidar
measurements: optical properties, J. Geophys. Res.-Atmos., 117,
D09207, https://doi.org/10.1029/2011JD017053, 2012.

Holl, G., Eliasson, S., Mendrok, J., and Buehler, S. A.:
SPARE-ICE: synergistic ice water path from passive oper-
ational sensors, J. Geophys. Res.-Atmos., 119, 1504–1523,
https://doi.org/10.1002/2013JD020759, 2014.

Holz, R., Ackerman, S., Nagle, F., Frey, R., Dutcher, S., Kuehn, R.,
Vaughan, M., and Baum, B.: Global Moderate Resolution Imag-
ing Spectroradiometer (MODIS) cloud detection and height eval-
uation using CALIOP, J. Geophys. Res.-Atmos., 113, D00A19,
https://doi.org/10.1029/2008JD009837, 2008.

Holz, R. E., Platnick, S., Meyer, K., Vaughan, M., Heidinger, A.,
Yang, P., Wind, G., Dutcher, S., Ackerman, S., Amarasinghe, N.,
Nagle, F., and Wang, C.: Resolving ice cloud optical thickness bi-
ases between CALIOP and MODIS using infrared retrievals, At-

mos. Chem. Phys., 16, 5075–5090, https://doi.org/10.5194/acp-
16-5075-2016, 2016.

Hu, Y., Winker, D., Vaughan, M., Lin, B., Omar, A., Trepte, C.,
Flittner, D., Yang, P., Nasiri, S. L., Baum, B., Holz, R.,
Sun, W., Liu, Z., Wang, Z., Young, S., Stamnes, K., Huang, J.,
and Kuehn, R.: CALIPSO/CALIOP cloud phase discrimi-
nation algorithm, J. Atmos. Ocean. Tech., 26, 2293–2309,
https://doi.org/10.1175/2009JTECHA1280.1, 2009.

Inoue, T.: On the temperature and effective emissivity determina-
tion of semi-transparent cirrus clouds by bi-spectral measure-
ments in the 10 µm window region, J. Meteorol. Soc. Jpn., 63,
88–99, 1985.

Jensen, E., Kinne, S., and Toon, O.: Tropical cirrus cloud radiative
forcing: Sensitivity studies, Geophys. Res. Lett., 21, 2023–2026,
1994.

Kox, S., Bugliaro, L., and Ostler, A.: Retrieval of cirrus cloud opti-
cal thickness and top altitude from geostationary remote sensing,
Atmos. Meas. Tech., 7, 3233–3246, https://doi.org/10.5194/amt-
7-3233-2014, 2014.

Krebs, W., Mannstein, H., Bugliaro, L., and Mayer, B.: Technical
note: A new day- and night-time Meteosat Second Generation
Cirrus Detection Algorithm MeCiDA, Atmos. Chem. Phys., 7,
6145–6159, https://doi.org/10.5194/acp-7-6145-2007, 2007.

Kriebel, K., Gesell, G., Kästner, M., and Mannstein, H.: The cloud
analysis tool APOLLO: improvements and validations, Int. J. Re-
mote Sens., 24, 2389–2408, 2003.

LeCun, Y., Bottou, L., Orr, G., and Müller, K.: Efficient BackProp,
Neural Networks: Tricks of the Trade, 546–546, 1998.

Liou, K.: An introduction to atmospheric radiation, vol. 84, in: In-
ternational Geophysics Series, 2 Edn., USA, 2002.

Liu, Z., Vaughan, M., Winker, D., Kittaka, C., Getzewich, B.,
Kuehn, R., Omar, A., Powell, K., Trepte, C., and
Hostetler, C.: The CALIPSO Lidar Cloud and Aerosol
Discrimination: version 2 algorithm and initial assessment
of performance, J. Atmos. Ocean. Tech., 26, 1198–1213,
https://doi.org/10.1175/2009JTECHA1229.1, 2009.

Luo, Z. and Rossow, W. B.: Characterizing tropical cirrus life cycle,
evolution, and interaction with upper-tropospheric water vapor
using Lagrangian trajectory analysis of satellite observations, J.
Climate, 17, 4541–4563, https://doi.org/10.1175/3222.1, 2004.

Martins, E., Noel, V., and Chepfer, H.: Properties of cirrus and
subvisible cirrus from nighttime Cloud-Aerosol Lidar with Or-
thogonal Polarization (CALIOP), related to atmospheric dynam-
ics and water vapor, J. Geophys. Res.-Atmos., 116, d02208,
https://doi.org/10.1029/2010JD014519, 2011.

McGill, M., Hlavka, D., Hart, W., Scott, V. S., Spinhirne, J., and
Schmid, B.: Cloud physics lidar: instrument description and ini-
tial measurement results, Appl. Optics, 41, 3725–3734, 2002.

McGill, M. J., Vaughan, M. A., Trepte, C. R., Hart, W. D.,
Hlavka, D. L., Winker, D. M., and Kuehn, R.: Air-
borne validation of spatial properties measured by the
CALIPSO lidar, J. Geophys. Res.-Atmos., 112, D20201,
https://doi.org/10.1029/2007JD008768, 2007.

Meerkötter, R., Schumann, U., Doelling, D. R., Minnis, P., Naka-
jima, T., and Tsushima, Y.: Radiative forcing by contrails, Ann.
Geophys., 17, 1080–1094, https://doi.org/10.1007/s00585-999-
1080-7, 1999.

www.atmos-meas-tech.net/10/3547/2017/ Atmos. Meas. Tech., 10, 3547–3573, 2017

https://doi.org/10.5194/acp-11-375-2011
https://doi.org/10.5194/amt-6-309-2013
https://doi.org/10.1175/1520-0450(1989)028<0267:ROCPFS>2.0.CO;2
https://doi.org/10.1175/1520-0450(1989)028<0267:ROCPFS>2.0.CO;2
https://doi.org/10.1109/TGRS.2002.802454
https://doi.org/10.5194/amt-7-2839-2014
https://doi.org/10.5194/amt-7-2839-2014
https://doi.org/10.1175/2008JAMC1882.1
https://doi.org/10.1029/2005GL022742
https://doi.org/10.1029/2011JD017053
https://doi.org/10.1002/2013JD020759
https://doi.org/10.1029/2008JD009837
https://doi.org/10.5194/acp-16-5075-2016
https://doi.org/10.5194/acp-16-5075-2016
https://doi.org/10.1175/2009JTECHA1280.1
https://doi.org/10.5194/amt-7-3233-2014
https://doi.org/10.5194/amt-7-3233-2014
https://doi.org/10.5194/acp-7-6145-2007
https://doi.org/10.1175/2009JTECHA1229.1
https://doi.org/10.1175/3222.1
https://doi.org/10.1029/2010JD014519
https://doi.org/10.1029/2007JD008768
https://doi.org/10.1007/s00585-999-1080-7
https://doi.org/10.1007/s00585-999-1080-7


3572 J. Strandgren et al.: Geostationary cirrus retrieval using artificial neural networks

Menzel, W., Smith, W., and Stewart, T.: Improved cloud motion
wind vector and altitude assignment using VAS, J. Appl. Meteo-
rol., 22, 377–384, 1983.

Menzel, W. P., Frey, R. A., Zhang, H., Wylie, D. P.,
Moeller, C. C., Holz, R. E., Maddux, B., Baum, B. A.,
Strabala, K. I., and Gumley, L. E.: MODIS global cloud-
top pressure and amount estimation: algorithm descrip-
tion and results, J. Appl. Meteorol. Clim., 47, 1175–1198,
https://doi.org/10.1175/2007JAMC1705.1, 2008.

Minnis, P., Sun-Mack, S., Young, D. F., Heck, P. W., Garber, D. P.,
Chen, Y., Spangenberg, D. A., Arduini, R. F., Trepte, Q. Z.,
Smith, W. L., Ayers, J. K., Gibson, S. C., Miller, W. F.,
Hong, G., Chakrapani, V., Takano, Y., Liou, K. N., Xie, Y.,
and Yang, P.: CERES Edition-2 Cloud Property Retrievals
using TRMM VIRS and Terra and Aqua MODIS Data –
Part I: Algorithms, IEEE T. Geosci. Remote, 49, 4374–4400,
https://doi.org/10.1109/TGRS.2011.2144601, 2011.

Minnis, P., Hong, G., Sun-Mack, S., Smith, W. L., Chen, Y., and
Miller, S. D.: Estimating nocturnal opaque ice cloud optical
depth from MODIS multispectral infrared radiances using a neu-
ral network method, J. Geophys. Res.-Atmos., 121, 4907–4932,
https://doi.org/10.1002/2015JD024456, 2016.

Nakajima, T. and King, M. D.: Determination of the opti-
cal thickness and effective particle radius of clouds from
reflected solar radiation measurements. Part I: Theory, J.
Atmos. Sci., 47, 1878–1893, https://doi.org/10.1175/1520-
0469(1990)047<1878:DOTOTA>2.0.CO;2, 1990.

NASA Atmospheric Science Data Center: CALIPSO Qual-
ity Statements Lidar Level 2 Cloud and Aerosol Layer
Products Version Releases: 3.01, 3.02, available at:
https://eosweb.larc.nasa.gov/sites/default/files/project/calipso/
quality_summaries/CALIOP_L2LayerProducts_3.01.pdf (last
access: 18 September 2017), 2010.

Nguyen, D. and Widrow, B.: Improving the learning speed of 2-
layer neural networks by choosing initial values of the adaptive
weights, in: Neural Networks, 1990 IJCNN International Joint
Conference on, IEEE, 21–26, 1990.

Nieman, S., Schmetz, J., and Menzel, W.: A comparison of several
techniques to assign heights to cloud tracers, J. Appl. Meteorol.,
32, 1559–1568, 1993.

Nissen, S.: Implementation of a Fast Artificial Neural Network Li-
brary (fann), Tech. rep., Department of Computer Science Uni-
versity of Copenhagen (DIKU), available at: http://fann.sf.net
(last access: 1 March 2016), 2003.

Platnick, S., King, M. D., Ackerman, S. A., Men-
zel, W. P., Baum, B. A., Riedi, J. C., and Frey, R. A.:
The MODIS cloud products: algorithms and exam-
ples from Terra, IEEE T. Geosci. Remote, 41, 459–473,
https://doi.org/10.1109/TGRS.2002.808301, 2003.

Prabhakara, C., Fraser, R. S., Dalu, G., Wu, M.-L. C., Cur-
ran, R. J., and Styles, T.: Thin Cirrus Clouds: seasonal
distribution over oceans deduced from Nimbus-4 IRIS, J.
Appl. Meteorol., 27, 379–399, https://doi.org/10.1175/1520-
0450(1988)027<0379:TCCSDO>2.0.CO;2, 1988.

Protat, A., Delanoë, J., O’Connor, E., and L’Ecuyer, T.: The evalu-
ation of CloudSat and CALIPSO ice microphysical products us-
ing ground-based cloud radar and lidar observations, J. Atmos.
Ocean. Tech., 27, 793–810, 2010.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J.: Learning inter-
nal representations by error propagation, in: Parallel Distributed
Processing: Explorations in the Microstructure of Cognition, Vol.
1, MIT Press, Cambridge, MA, USA, 318–362, 1986.

Sassen, K., Wang, Z., and Liu, D.: Cirrus clouds and
deep convection in the tropics: Insights from CALIPSO
and CloudSat, J. Geophys. Res.-Atmos., 114, D00H06,
https://doi.org/10.1029/2009JD011916, 2009.

Saunders, R. W. and Kriebel, K. T.: An improved method for de-
tecting clear sky and cloudy radiances from AVHRR data, Int. J.
Remote Sens., 9, 123–150, 1988.

Sayer, A. M., Poulsen, C. A., Arnold, C., Campmany, E., Dean, S.,
Ewen, G. B. L., Grainger, R. G., Lawrence, B. N., Siddans, R.,
Thomas, G. E., and Watts, P. D.: Global retrieval of ATSR cloud
parameters and evaluation (GRAPE): dataset assessment, At-
mos. Chem. Phys., 11, 3913–3936, https://doi.org/10.5194/acp-
11-3913-2011, 2011.

Schaul, T., Zhang, S., and LeCun, Y.: No more pesky learning rates,
in: Proceedings of the 30th International Conference on Machine
Learning (ICML-13), 343–351, 2013.

Schmetz, J., Holmlund, K., Hoffman, J., Strauss, B., Ma-
son, B., Gaertner, V., Koch, A., and van de Berg, L.: Oper-
ational cloud-motion winds from Meteosat infrared images, J.
Appl. Meteorol., 32, 1206–1225, https://doi.org/10.1175/1520-
0450(1993)032<1206:OCMWFM>2.0.CO;2, 1993.

Schmetz, J., Pili, P., Tjemkes, S., Just, D., Kerkmann, J.,
Rota, S., and Ratier, A.: An introduction to Me-
teosat Second Generation (MSG), B. Am. Meteo-
rol. Soc., 83, 977–992, https://doi.org/10.1175/1520-
0477(2002)083<0977:AITMSG>2.3.CO;2, 2002.

Schmidhuber, J.: Deep learning in neural networks: an overview,
Neural Networks, 61, 85–117, 2015.

Smith, W. and Platt, C.: Intercomparison of radiosonde, ground-
based laser, and satellite-deduced cloud heights, J. Appl. Meteo-
rol., 17, 1796–1802, 1978.

Smith, W., Woolf, H., and Jacob, W.: A regression method for ob-
taining real-time temperature and geopotential height profiles
from satellite spectrometer measurements and its application to
Nimbus-3 SIRS observations, Mon. Weather Rev., 98, 604–611,
1970.

Strandgren, J., Fricker, J., and Bugliaro, L.: Characterisation of
the artificial neural network CiPS for cirrus cloud remote
sensing with MSG/SEVIRI, Atmos. Meas. Tech. Discuss.,
https://doi.org/10.5194/amt-2017-218, in review, 2017.

Stengel, M., Kniffka, A., Meirink, J. F., Lockhoff, M., Tan,
J., and Hollmann, R.: CLAAS: the CM SAF cloud property
data set using SEVIRI, Atmos. Chem. Phys., 14, 4297–4311,
https://doi.org/10.5194/acp-14-4297-2014, 2014.

Stephens, G. L., Vane, D. G., Boain, R. J., Mace, G. G.,
Sassen, K., Wang, Z., Illingworth, A. J., O’Connor, E. J.,
Rossow, W. B., Durden, S. L., Miller, S. D., Austin, R. T.,
Benedetti, A., Mitrescu, C., and Team, T. C. S.: The Cloudsat
Mission and the A-train, B. Am. Meteorol. Soc., 83, 1771–1790,
https://doi.org/10.1175/BAMS-83-12-1771, 2002.

Stubenrauch, C. J., Cros, S., Guignard, A., and Lamquin, N.:
A 6-year global cloud climatology from the Atmospheric In-
fraRed Sounder AIRS and a statistical analysis in synergy with
CALIPSO and CloudSat, Atmos. Chem. Phys., 10, 7197–7214,
https://doi.org/10.5194/acp-10-7197-2010, 2010.

Atmos. Meas. Tech., 10, 3547–3573, 2017 www.atmos-meas-tech.net/10/3547/2017/

https://doi.org/10.1175/2007JAMC1705.1
https://doi.org/10.1109/TGRS.2011.2144601
https://doi.org/10.1002/2015JD024456
https://doi.org/10.1175/1520-0469(1990)047<1878:DOTOTA>2.0.CO;2
https://doi.org/10.1175/1520-0469(1990)047<1878:DOTOTA>2.0.CO;2
https://eosweb.larc.nasa.gov/sites/default/files/project/calipso/quality_summaries/CALIOP_L2LayerProducts_3.01.pdf
https://eosweb.larc.nasa.gov/sites/default/files/project/calipso/quality_summaries/CALIOP_L2LayerProducts_3.01.pdf
http://fann.sf.net
https://doi.org/10.1109/TGRS.2002.808301
https://doi.org/10.1175/1520-0450(1988)027<0379:TCCSDO>2.0.CO;2
https://doi.org/10.1175/1520-0450(1988)027<0379:TCCSDO>2.0.CO;2
https://doi.org/10.1029/2009JD011916
https://doi.org/10.5194/acp-11-3913-2011
https://doi.org/10.5194/acp-11-3913-2011
https://doi.org/10.1175/1520-0450(1993)032<1206:OCMWFM>2.0.CO;2
https://doi.org/10.1175/1520-0450(1993)032<1206:OCMWFM>2.0.CO;2
https://doi.org/10.1175/1520-0477(2002)083<0977:AITMSG>2.3.CO;2
https://doi.org/10.1175/1520-0477(2002)083<0977:AITMSG>2.3.CO;2
https://doi.org/10.5194/amt-2017-218
https://doi.org/10.5194/acp-14-4297-2014
https://doi.org/10.1175/BAMS-83-12-1771
https://doi.org/10.5194/acp-10-7197-2010


J. Strandgren et al.: Geostationary cirrus retrieval using artificial neural networks 3573

Stubenrauch, C. J., Rossow, W. B., Kinne, S., Ackerman, S., Ce-
sana, G., Chepfer, H., Girolamo, L. D., Getzewich, B., Guig-
nard, A., Heidinger, A., Maddux, B. C., Menzel, W. P., Min-
nis, P., Pearl, C., Platnick, S., Poulsen, C., Riedi, J., Sun-
Mack, S., Walther, A., Winker, D., Zeng, S., and Zhao, G.: As-
sessment of global cloud datasets from satellites: project and
database initiated by the GEWEX radiation panel, B. Am. Mete-
orol. Soc., 94, 1031–1049, https://doi.org/10.1175/BAMS-D-12-
00117.1, 2013.

Szantai, A., Désalmand, F., and Desbois, M.: Monitor-
ing the life cycle of cirrus clouds using Meteosat-4
data during ICE-1989, Meteorol. Appl., 8, 153–168,
https://doi.org/10.1017/S1350482701002031, 2001.

Szejwach, G.: Determination of semi-transparent cirrus cloud tem-
peratures from infrared radiances: Application to Meteosat, J.
Appl. Meteorol., 21, 384–393, 1982.

Taravat, A., Proud, S., Peronaci, S., Del Frate, F., and Oppelt, N.:
Multilayer perceptron neural networks model for meteosat sec-
ond generation SEVIRI daytime cloud masking, Remote Sens.,
7, 1529–1539, 2015.

Vaughan, M. A., Winker, D. M., and Powell, K. A.: CALIOP Algo-
rithm Theoretical Basis Document Part 2: Feature Detection and
Layer Properties Algorithms, PC-SCI-202 Part 2, 2005.

Vaughan, M. A., Powell, K. A., Winker, D. M., Hostetler, C. A.,
Kuehn, R. E., Hunt, W. H., Getzewich, B. J., Young, S. A.,
Liu, Z., and McGill, M. J.: Fully automated detec-
tion of cloud and aerosol layers in the CALIPSO Lidar
Measurements, J. Atmos. Ocean. Tech., 26, 2034–2050,
https://doi.org/10.1175/2009JTECHA1228.1, 2009.

Vázquez-Navarro, M., Mannstein, H., and Kox, S.: Contrail
life cycle and properties from 1 year of MSG/SEVIRI
rapid-scan images, Atmos. Chem. Phys., 15, 8739–8749,
https://doi.org/10.5194/acp-15-8739-2015, 2015.

Waliser, D. E., Li, J.-L. F., Woods, C. P., Austin, R. T., Bacmeis-
ter, J., Chern, J., Del Genio, A., Jiang, J. H., Kuang, Z., Meng, H.,
Minnis, P., Platnick, S., Rossow, W. B., Stephens, G. L., Sun-
Mack, S., Tao, W.-K., Tompkins, A. M., Vane, D. G., Walker, C.,
and Wu, D.: Cloud ice: A climate model challenge with signs and
expectations of progress, J. Geophys. Res.-Atmos., 114, d00A21,
https://doi.org/10.1029/2008JD010015, 2009.

Wang, C., Platnick, S., Zhang, Z., Meyer, K., and Yang, P.: Retrieval
of ice cloud properties using an optimal estimation algorithm and
MODIS infrared observations: 1. Forward model, error analysis,
and information content, J. Geophys. Res.-Atmos., 121, 5809–
5826, https://doi.org/10.1002/2015JD024526, 2015JD024526,
2016.

Watts, P. D., Bennartz, R., and Fell, F.: Retrieval of two-
layer cloud properties from multispectral observations using
optimal estimation, J. Geophys. Res.-Atmos., 116, d16203,
https://doi.org/10.1029/2011JD015883, 2011.

Wendisch, M., Yang, P., and Pilewskie, P.: Effects of ice
crystal habit on thermal infrared radiative properties and
forcing of cirrus, J. Geophys. Res.-Atmos., 112, D08201,
https://doi.org/10.1029/2006JD007899, 2007.

Winker, D. M., Vaughan, M. A., Omar, A., Hu, Y., Pow-
ell, K. A., Liu, Z., Hunt, W. H., and Young, S. A.:
Overview of the CALIPSO Mission and CALIOP Data Pro-
cessing Algorithms, J. Atmos. Ocean. Tech., 26, 2310–2323,
https://doi.org/10.1175/2009JTECHA1281.1, 2009.

Wu, D. L., Lambert, A., Read, W. G., Eriksson, P., and Gong, J.:
MLS and CALIOP cloud ice measurements in the upper tropo-
sphere: a constraint from microwave on cloud microphysics, J.
Appl. Meteorol. Clim., 53, 157–165, 2014.

Yorks, J. E., Hlavka, D. L., Vaughan, M. A., McGill, M. J.,
Hart, W. D., Rodier, S., and Kuehn, R.: Airborne validation
of cirrus cloud properties derived from CALIPSO lidar mea-
surements: spatial properties, J. Geophys. Res.-Atmos., 116,
D19207, https://doi.org/10.1029/2011JD015942, 2011.

Young, S. A. and Vaughan, M. A.: The retrieval of pro-
files of particulate extinction from Cloud-Aerosol Lidar In-
frared Pathfinder Satellite Observations (CALIPSO) data: al-
gorithm description, J. Atmos. Ocean. Tech., 26, 1105–1119,
https://doi.org/10.1175/2008JTECHA1221.1, 2009.

Yue, Q. and Liou, K.: Cirrus cloud optical and microphysical prop-
erties determined from AIRS infrared spectra, Geophys. Res.
Lett., 36, L05810, https://doi.org/10.1029/2008GL036502, 2009.

Zhang, H. and Menzel, W. P.: Improvement in thin cir-
rus retrievals using an emissivity-adjusted CO2 slicing
algorithm, J. Geophys. Res., 107, AAC 2-1–AAC 2–11,
https://doi.org/10.1029/2001JD001037, 2002.

Zhang, Y., Macke, A., and Albers, F.: Effect of crystal size spectrum
and crystal shape on stratiform cirrus radiative forcing, Atmos.
Res., 52, 59–75, https://doi.org/10.1016/S0169-8095(99)00026-
5, 1999.

www.atmos-meas-tech.net/10/3547/2017/ Atmos. Meas. Tech., 10, 3547–3573, 2017

https://doi.org/10.1175/BAMS-D-12-00117.1
https://doi.org/10.1175/BAMS-D-12-00117.1
https://doi.org/10.1017/S1350482701002031
https://doi.org/10.1175/2009JTECHA1228.1
https://doi.org/10.5194/acp-15-8739-2015
https://doi.org/10.1029/2008JD010015
https://doi.org/10.1002/2015JD024526
https://doi.org/10.1029/2011JD015883
https://doi.org/10.1029/2006JD007899
https://doi.org/10.1175/2009JTECHA1281.1
https://doi.org/10.1029/2011JD015942
https://doi.org/10.1175/2008JTECHA1221.1
https://doi.org/10.1029/2008GL036502
https://doi.org/10.1029/2001JD001037
https://doi.org/10.1016/S0169-8095(99)00026-5
https://doi.org/10.1016/S0169-8095(99)00026-5

	Abstract
	Introduction
	Instruments and tools 
	SEVIRI
	CALIOP 
	Artificial neural networks 
	Multilayer perceptron (MLP) 
	Learning through back-propagation 

	Validation metrics 
	The COCS algorithm 

	CiPS 
	Multiple artificial neural networks 
	Input data 
	Brightness temperatures from SEVIRI
	Surface temperature from ECMWF
	Auxiliary data

	Output data: cirrus properties from CALIOP 
	Data preparation
	Data collocation  
	Training and validation data 

	Training 
	Cirrus detection and opacity classification thresholds 
	Evaluation of different MLP structures 

	CiPS application and validation 
	Application
	Validation against CALIOP 
	Cirrus classification 
	Cirrus properties 


	The cirrus life cycle with CiPS 
	Conclusions
	Data availability
	Appendix A
	Competing interests
	Acknowledgements
	References

