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Abstract. Differing boundary/mixed-layer height measure-
ment methods were assessed in moderately polluted and
clean environments, with a focus on the Vaisala CL51
ceilometer. This intercomparison was performed as part of
ongoing measurements at the Chemistry And Physics of the
Atmospheric Boundary Layer Experiment (CAPABLE) site
in Hampton, Virginia and during the 2014 Deriving Informa-
tion on Surface Conditions from Column and Vertically Re-
solved Observations Relevant to Air Quality (DISCOVER-
AQ) field campaign that took place in and around Denver,
Colorado. We analyzed CL51 data that were collected via
two different methods (BLView software, which applied cor-
rection factors, and simple terminal emulation logging) to de-
termine the impact of data collection methodology. Further,
we evaluated the STRucture of the ATmosphere (STRAT) al-
gorithm as an open-source alternative to BLView (note that
the current work presents an evaluation of the BLView and
STRAT algorithms and does not intend to act as a valida-
tion of either). Filtering criteria were defined according to
the change in mixed-layer height (MLH) distributions for
each instrument and algorithm and were applied throughout
the analysis to remove high-frequency fluctuations from the

MLH retrievals. Of primary interest was determining how
the different data-collection methodologies and algorithms
compare to each other and to radiosonde-derived boundary-
layer heights when deployed as part of a larger instrument
network. We determined that data-collection methodology
is not as important as the processing algorithm and that
much of the algorithm differences might be driven by im-
pacts of local meteorology and precipitation events that pose
algorithm difficulties. The results of this study show that
a common processing algorithm is necessary for light de-
tection and ranging (lidar)-based MLH intercomparisons and
ceilometer-network operation, and that sonde-derived bound-
ary layer heights are higher (10–15 % at midday) than lidar-
derived mixed-layer heights. We show that averaging the re-
trieved MLH to 1 h resolution (an appropriate timescale for
a priori data model initialization) significantly improved the
correlation between differing instruments and differing algo-
rithms.
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1 Introduction

The atmospheric boundary layer (ABL) is the lowermost
portion of the troposphere that is directly influenced by the
Earth’s surface and responds to surface forcing of heat, mois-
ture, pollutant emissions, and momentum on a timescale of
1 h or less (Stull, 1988). The ABL can be defined by a num-
ber of criteria depending on the particular interest (e.g., ther-
modynamic boundary layer, chemical boundary layer (CBL),
aerosol mixed layer). The ABL is typically defined by ther-
modynamic data (i.e., potential temperature and/or skew-T
plot) obtained from meteorological sondes. While meteoro-
logical sondes have excellent vertical resolution, the tem-
poral resolution is generally poor, ongoing regular sonde
launches are labor intensive, and coverage is limited. Con-
versely, mixed-layer heights (MLHs), as calculated from
backscatter light detection and ranging (lidar) instruments,
provide both excellent vertical and temporal resolution. Typ-
ical analysis of lidar data involves identification of gradients
within the aerosol profile (Brooks, 2003), which is generally
considered to be a marker for the MLHs. With respect to air
quality, the top of the ABL often acts like a lid on the lowest
layer of the atmosphere and temporarily traps the majority of
near-surface anthropogenic and biogenic emissions. As a re-
sult, the vertical distribution of ambient air pollutants and
associated precursors within the ABL and lower-troposphere
are strongly influenced by the height of and vertical mixing
within the ABL.

ABL variability complicates quantitative determination
of surface trace-gas levels from a remote-sensing platform
(Coen et al., 2014; Herman et al., 2009; Knepp et al., 2015;
Lamsal et al., 2008, 2014; Petritoli et al., 2004; Piters et al.,
2012). Therefore, properly accounting for ABL variability
from a continuous measurement system such as lidar will
provide invaluable information to policy, health, modeling,
and remote-sensing communities for applications sensitive to
the vertical profiles of tracers (Compton et al., 2013; Martin,
2008; Scarino et al., 2014). In 2009, the United States Na-
tional Research Council highlighted ABL height as a high
priority observation needed to improve mesoscale predic-
tions of air quality, short-range severe-weather forecasting,
and regional climate modeling (NRC, 2009). More recently,
the National Plan for Civil Earth Observation called for im-
proved observation density and sampling of the boundary
layer (NSTC, 2014). In 2015, as part of the revisions to the
ozone (O3) National Ambient Air Quality Standards, the US
Environmental Protection Agency (EPA) finalized a new re-
quirement under the Photochemical Assessment Monitoring
Stations (PAMS) program for the collection of continuous
MLH observations. By 2019, the PAMS program will have
involved the implementation of approximately 50 air-quality
sites in the United States that provide continuous MLH.

Kotthaus et al. (2016) showed that intercomparison of
ceilometer data is not a straightforward endeavor. An inter-
comparison of ceilometer instrumentation was carried out

in support of upcoming PAMS monitoring requirements.
Results from an intercomparison of three backscatter li-
dar instruments from the 2014 DISCOVER-AQ field cam-
paign in Colorado (low aerosol load) and the Chemistry
and Physics of the Atmospheric Boundary Layer Experi-
ment (CAPABLE) site at NASA’s Langley Research Center
(LaRC; moderate aerosol load) in Hampton, Virginia are pre-
sented herein.

2 Instrumentation

2.1 CL51

The Vaisala (Vantaa, Finland) CL51 ceilometer is a single-
wavelength (eye safe Class 1M InGaAs diode laser emitting
at 910± 10 nm, pulsed at 6.5 kHz with a 110 ns pulse width
with average pulse power of 19.5 mW, and an avalanche pho-
todiode detector centered at 915 nm), single-lens, lidar sys-
tem originally designed to report cloud-base heights and vis-
ibility. More recently, ceilometers have been used to estimate
MLHs (Emeis and Schäfer, 2006; Emeis et al., 2008a, b;
Haeffelin et al., 2012; Morille et al., 2007; Schäfer et al.,
2012, 2013; Schween et al., 2014; Sokol et al., 2014; Wieg-
ner et al., 2014). These ceilometers have a 10 m vertical res-
olution (with 10 m overlap) up to a maximum altitude of
15.4 km (± greater of 1 % or 5 m precision, all altitudes are
with respect to ground level) and up to 2 s temporal reso-
lution (depending on the control software), though profiles
are generally averaged over 16–36 s to improve the signal-
to-noise ratio (see Sect. 3.1 for more details). An example
backscatter plot that includes increased signal at 3 km due to
transport of smoke from a Canadian forest fire is presented
in Fig. 1.

The CL51 was designed to operate continuously, regard-
less of meteorological conditions, in an autonomous manner
with minimal user support. Due to the emission wavelength’s
proximity to the near-infrared water vapor bands, ceilome-
ters operating at the stated wavelengths experience water va-
por interference, thereby lessening their utility in retrieval
of aerosol optical properties. However, the interference on
aerosol profile and MLH estimation is negligible (Wiegner
et al., 2014).

Two CL51s were deployed as part of the 2014
DISCOVER-AQ mission in Colorado (Golden, and Erie,
Colorado). Before and after deployment, these ceilometers
were set up to continually collect data at the CAPABLE site
and the EPA Ambient Air Innovative Research Site (AIRS)
in Durham, North Carolina. The ceilometers were collo-
cated with meteorological sonde (met-sonde) launch sites
during the DISCOVER-AQ campaign and at the CAPA-
BLE site, allowing a direct intercomparison of the sonde
and lidar ABL/MLH methodologies. Furthermore, during the
DISCOVER-AQ campaign the ceilometers were collocated
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with other lidar instruments. Intercomparisons are presented
in Sect. 5.

2.1.1 Full-profile collection

The Vaisala standard MLH retrieval is based on a proprietary
wavelet/gradient technique built into the logging/analysis
software BLView. The BLView software provides not only
logging and data analysis (e.g., MLH and cloud-height es-
timates) but also archiving capability. While the CL51 re-
ports backscatter up to 15.4 km, BLView truncates the data-
collection at 4.5 km, precluding the ability to monitor upper-
troposphere/lower-stratosphere transport of aerosol, smoke,
or ash from major events. Therefore, a full-profile collec-
tion method that can run side by side with the standard data-
collection software was developed and implemented.

Data transmission from the ceilometer to the logging com-
puter was achieved by splitting an RS-232 connection into
two ports on the logging computer: one port logging to
BLView and the other logging to a custom script (e.g., as
written in Python). The primary drawback of using a sec-
ondary script to log the full profile (as opposed to logging in
BLView) is the inability to apply proprietary calibration coef-
ficients that are built into the BLView software to the logged
data. However, as shown in subsequent sections, this impacts
neither the MLH estimates nor the general profile shape sub-
stantially.

2.2 Micropulse lidar

Elastic lidar observations were performed using a Sigma
Space (Lanham, Maryland) Micropulse lidar (MPL), previ-
ously described by Spinhirne (1993) and Welton et al. (2000).
Briefly, the MPL transmitter consists of an eye-safe Nd:YLF
laser emitting at 527 nm and pulsed at 2.5 kHz with a pulse
power of 6–10 µJ. It has a software programmable vertical
resolution, with possible values of 15, 30, and 75 m (up to
25 km), and temporal resolutions ranging from 1 s to 15 min.
The receiver consists of a 178 mm telescope that collects the
backscattered light, which is then focused onto a photon-
counting silicon avalanche photodiode (APD). The APD out-
put is recorded by a field programmable gate array data sys-
tem that enables display and storage of range-dependent av-
erage count rates on a laptop computer. The raw data are con-
verted to aerosol attenuated backscatter, correcting for instru-
mental factors such as detector dead time, geometrical over-
lap, background subtraction, and range-squared normaliza-
tion. Recorded lidar profiles have temporal and vertical reso-
lutions of 1 min and 30 m, as set by the University of Mary-
land Baltimore County (UMBC) team for the DISCOVER-
AQ campaign. MPL is used for continuous recording of
aerosol profiles and optical properties, and calculating MLH
values.

2.3 Meteorological sondes and ozonesondes

A meteorological sonde (herein referred to as
sonde/radiosonde) is the conventional method for mea-
suring temperature, pressure, and humidity throughout the
atmosphere, and for characterizing the ABL. Radiosondes
were used to identify steep gradients within the potential
temperature (theta) profile (Fig. 2a) as identified by the
Heffter criteria shown in Eqs. (1) and (2) where 2 is
potential temperature in Kelvin, Z is altitude in meters, and
2top and 2base refer to the potential temperature at the top
and bottom of the proposed inversion layer as described in
(Heffter, 1980; Marsik et al., 1995). This thermodynamic
ABL is a product of atmospheric turbulent kinetic energy
and lapse rate. Similar gradients can be seen in chemical
and aerosol profiles as well (Fig. 2b and c). For the current
study, radiosondes from International Met Systems were
used (iMet; Grand Rapids, Michigan) and ozonesondes from
Droplet Measurement Technologies (DMT, now En-Sci;
Boulder, Colorado). iMet sondes require no preparation
and were used as received from the manufacturer, while
ozonesondes were conditioned according to the proce-
dure defined by the World Meteorological Organization
recommendations (Smit, 2013).

1θ

1Z
≥ 0.005K ·m−1 (1)

2top−2base ≥ 2K (2)

Results of numerous analyses have been published to il-
lustrate differences between the various chemical and mete-
orological sensors and to show how differing meteorological
sensors influence secondary chemical measurements such as
ozone (Deshler et al., 2008; Dirksen et al., 2014; Johnson
et al., 2002; Miloshevich et al., 2004; Nash et al., 2006, 2011;
Smit, 2013; Stauffer et al., 2014). While these influences can
impact the derived CBL, the ABL and MLH remain unper-
turbed. Therefore, the remainder of the current work focuses
on the MLH and ABL, with CBL variability regarded as out-
side the current scope.

3 Algorithms

3.1 BLView

BLView makes use of variable time and altitude averaging
when calculating the MLH. Typical averaging time ranges
from 14 min at night to 52 min during clear-sky, daytime
conditions and is automatically adjusted within the software
according to signal-to-noise ratio. Altitude averaging varies
with altitude and ranges from 80 m near the surface to 360 m
above 1.5 km. Further, BLView selectively removes false-
positive MLH identifications by requiring a minimum num-
ber of similar MLH values (±140 m) within the last several
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Figure 1. Backscatter curtain plot collected on 10 June 2015 when smoke from a Canadian forest fire was transported over the CAPABLE
site. The smoke is observed by increased backscatter in the 2500–4000 m range.

29
5

29
8

30
1

Theta (K)

0.0

0.5

1.0

1.5

2.0

A
lti

tu
de

 (
km

 a
.g

.l.
)

PBL

(a)

40 50 60 70

O3 (ppb)

CBL

(b)

40
0

55
0

70
0

85
0

Backscatter
(10−9 m−1 sr−1)

MLH

(c)

CAPABLE: 2015-06-08 13:00 (UTC-5)

Figure 2. Potential temperature, ozone, and backscatter profiles
recorded on 8 June 2015. The horizontal lines indicate the ABL,
CBL, and MLH at 13:00 local time.

minutes and has the ability to discriminate between MLH
inversions and changes in backscatter intensity induced by
clouds, precipitation, and fog.

Advantages of the BLView software are the standardiza-
tion of retrieval parameters and a user interface that provides
flexibility in setting user-specified sensitivities. These come
at the cost of a database system that makes access to raw data
difficult and makes it impossible to batch process archived

data, posing a severe limitation on reprocessing data sets with
a long record history.

3.2 STRAT

The STRucture of the ATmosphere (STRAT v1.04) algo-
rithm was developed under a GNU General Public License
to analyze aerosol vertical profiles as measured by lidar and
to estimate cloud heights and aerosol MLHs from a variety
of lidar instruments. It is currently in use by the European
Aerosol Research Lidar NETwork (EARLINET) (Haeffelin
et al., 2012; Hirsikko et al., 2014; Morille et al., 2007; Pap-
palardo et al., 2014). STRAT uses a covariance wavelet tech-
nique (CWT), of which the full details can be found in Mo-
rille et al. (2007) and Haeffelin et al. (2012). STRAT can be
run exclusively in MATLAB or a combination of MATLAB
and Python. Due to its widespread use throughout the Euro-
pean network it is considered here to be a viable open-source
alternative to BLView.

While BLView provides limited user control of the re-
trieval process, which is beneficial with regard to standardiz-
ing the retrieval process across a network, STRAT provides
a significantly greater amount of user control. Such control
is desirable since retrieval parameters in a heavily polluted
region will likely be different from those in a clean environ-
ment. Further, STRAT is provided as raw scripts as opposed
to BLView’s compiled executable, making the STRAT plat-
form independent and highly user configurable. STRAT can
also run batch jobs, which is useful when reprocessing data
from instruments that have a long record history.

The STRAT algorithm implements a user-defined nor-
mally distributed weighting function in both the temporal and
vertical domains to smooth the data, similarly to BLView. In
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the current study, the STRAT averaging time and vertical res-
olution were set to match the BLView settings as much as
possible for intercomparison. An analysis of how well the
two MLH algorithms agree is presented below.

3.3 UMBC algorithm

The UMBC algorithm was developed independently for es-
timating MLHs from lidar backscatter profiles using a CWT
similar to STRAT. The STRAT software was designed specif-
ically for single-channel lidars (primarily ceilometers) and
is not readily customizable to other lidar systems, such as
the MPL. The UMBC algorithm was designed to be more
flexible than STRAT in that regard and uses a CWT to
identify the sharp gradient changes indicative of the MLH
(Davis et al., 2000; Brooks, 2003). A detailed description of
the UMBC algorithm has been published in Compton et al.
(2013).

4 Locations

4.1 CAPABLE site

The CAPABLE site was established at LaRC, in the greater
Hampton Roads region (a group of cities in coastal Virginia,
also known as Tidewater Virginia: Virginia Beach, Nor-
folk, Chesapeake, Newport News, Hampton, Portsmouth,
Suffolk, Poquoson, Williamsburg), to continuously monitor
air-quality and meteorological parameters to bridge the gap
between satellite observations and ground conditions (i.e.,
where pollutants directly impact living organisms), improve
applicability of satellite data to the air-quality user commu-
nity, and act as a long-term satellite validation site. CAPA-
BLE has a suite of in situ and remote-sensing instruments,
including a CL51 ceilometer and sounding station. These
instruments allow thorough sampling of the atmosphere to
provide valuable in situ and profile information within the
lower troposphere in a highly complex (due to bay-breeze
events; see Martins et al., 2012) and moderately polluted
(NOx, SO2, aerosols) environment, yielding valuable satel-
lite ground-truthing and model a priori estimates.

CAPABLE (37.103◦ N, 76.387◦W, 5 ma.s.l.) is located on
a peninsula between the James River to the southwest, the
Chesapeake Bay to the north, and the Atlantic Ocean to the
east. The Hampton Roads region can be described as mod-
erately polluted. Aerosol statistics (PM2.5 and aerosol opti-
cal thickness (AOT) recorded by a sun photometer within
the AERosol Robotic NETwork (AERONET) as described
by Holben et al., 1998) are presented in Table 1. The data
show that AOT loads at CAPABLE are significantly higher
than at the corresponding Colorado sites, particularly in the
lower size distributions (i.e., lower wavelengths in Table 1).

Table 1. Aerosol optical thickness statistics at the three sites under
study. Here, Q1, Q2, and Q3 represent the 25th, 50th, and 75th
percentiles. Data have been filtered to show only data collected
during the DISCOVER-AQ 2014 field campaign period (July–
August 2014).

Site λ (nm)/ Mean Q1 Q2 Q3
PM size

BAO Tower 380 0.23 0.13 0.19 0.32
BAO Tower 500 0.15 0.09 0.13 0.22
BAO Tower 675 0.09 0.05 0.08 0.13
BAO Tower 870 0.06 0.04 0.06 0.08
BAO Tower 1020 0.05 0.03 0.04 0.06
Golden, CO 380 0.20 0.10 0.16 0.27
Golden, CO 500 0.13 0.06 0.10 0.18
Golden, CO 675 0.08 0.04 0.06 0.11
Golden, CO 870 0.05 0.03 0.04 0.07
Golden, CO 1020 0.04 0.02 0.03 0.05
CAPABLE 380 0.34 0.21 0.33 0.45
CAPABLE 500 0.23 0.13 0.23 0.32
CAPABLE 675 0.14 0.08 0.14 0.20
CAPABLE 870 0.09 0.05 0.09 0.13
CAPABLE 1020 0.07 0.03 0.06 0.10
CAPABLE PM2.5 5.80 2.59 5.00 8.44

4.2 DISCOVER-AQ and FRAPPE sites

From 2011 to 2014 the National Aeronautics and Space
Administration (NASA) conducted the Deriving Informa-
tion on Surface Conditions from Column and Vertically Re-
solved Observations Relevant to Air Quality (DISCOVER-
AQ) Earth Venture Suborbital Mission with four field de-
ployments. A primary objective of DISCOVER-AQ was to
investigate the ability of satellite remote sensing to inform
surface air quality. Since the ABL limits vertical exchange of
primary pollutants and directly influences near-surface pol-
lutant concentrations, the ABL height directly influences air
quality and chemistry. Therefore, measurements during these
missions focused on the vertical distribution of trace gases
and aerosols within the ABL and lower troposphere as well
as the diurnal variability of these distributions in conjunction
with the ABL. The final DISCOVER-AQ field mission was
conducted over Denver and the Front Range region of Col-
orado in July and August 2014, and was conducted jointly
with the Front Range Air Pollution and Photochemistry Ex-
periment (FRAPPE).

4.2.1 Erie, Colorado and BAO Tower

Data were collected at the Erie, Colorado site (40.045◦ N,
105.005◦W, 1500 ma.s.l.), which is considered to be a clean
environment compared to CAPABLE (see Table 1), from
14 July to 12 August 2014 as part of the DISCOVER-AQ
field mission. The Erie site (rural community surrounded
by agricultural activity) was located at NOAA’s Earth Sys-
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tem Research Laboratory’s (ESRL) Boulder Atmospheric
Observatory (BAO) and served as a combined DISCOVER-
AQ/FRAPPE ground site. The site is often referred to as BAO
Tower because of the site’s primary feature: a 300 m tower.
BAO Tower provided a unique profiling ability for in situ
samplers by mounting them on the tower for static sampling
or on the carriage to collect “active” profiles.

As part of FRAPPE, the University of Wisconsin’s (UW)
Space Science and Engineering Center trailer, which housed
a high spectral resolution lidar and from which regular sonde
launches were performed, was stationed at the site. The UW
trailer temporarily housed a CL51 during the mission. Due
to the proximity of the UW trailer, both ceilometers experi-
enced the same chemical, aerosol, and meteorological condi-
tions.

4.2.2 Golden, Colorado

CL51 data were collected at the Golden, Colorado site
(39.750◦ N, 105.183◦W, 1850 ma.s.l.) (considered to be
a clean environment compared to CAPABLE; see Table 1)
from 14 July to 12 August 2014 as part of the DISCOVER-
AQ field mission. The Golden site was located next to the
National Renewable Energy Laboratory (NREL) on Table
Mountain mesa (a flat-topped geographic structure). Due to
the site’s elevation on the mesa and its limited emissions
sources, conditions at the Golden site were generally clean
from an aerosol perspective and did not typically experience
a well-developed ABL/ML. This is demonstrated in Fig. 3
by the lack of structure in the diurnal MLH profile. While
both the BAO and CAPABLE sites demonstrate the expected
nocturnal low and daytime high MLHs, the Golden diurnal
variability is not as well defined, consistent with ABL de-
velopment in mountainous terrain (Banta, 1984; Tripoli and
Cotton, 1989; Bossert et al., 1989; Bossert and Cotton, 1994).

The Golden site housed the US EPA trailer, the LaRC
ozone lidar, MPL and LEOSPHERE ALS-450 lidar operated
by UMBC, a SOnic Detection and Ranging (SODAR) instru-
ment operated by Millersville University (MU), and regular
met-sonde launches from the MU group.

5 Analysis

Lidar data collected during the DISCOVER-AQ campaign
had sampling times that ranged from 36 to 60 s, while sonde-
profile data had average measurement times of 1 s. Due to the
nature of sounding data sets, sonde-based ABL’s were not
averaged to 5 min resolution. To harmonize lidar data sets to
a common time frame, the data were averaged to 5 min res-
olution unless otherwise specified. Further, it is well known
that the atmosphere changes throughout the day due to sur-
face heating, etc. (hence, driving ABL variability). There-
fore, some of the analyses were broken into 4 h segments
to remove biases caused by time-of-day influences. Since
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Figure 3. Diurnal variability of the MLH at the three sites. Data
were resampled to 5 min averages and filtered.

the primary objective of this assessment was to understand
how the CL51 MLH compared with other instruments and
methods, all analytical results are presented in relation to the
CL51.

The analysis was performed using several ceilometer
MLH products for a thorough comparison of instruments
(CL51, MPL, and met-sondes), collection methods (allowing
BLView to collect profile data with application of calibration
factors vs. logging raw data with a custom Python script), and
data-processing algorithms (BLView vs. STRAT and custom
MLH scripts from UMBC). Assessment of data-acquisition
methodology is presented first, followed by a comparison of
MLH retrieval algorithms applied to data collected by a sin-
gle instrument, and then a comparison of the various instru-
mentation. As MLH variability follows a distinct diurnal cy-
cle as shown in Fig. 3, all dates and times are presented in
local standard time.

5.1 Data acquisition

Data-acquisition methods were analyzed to determine
whether the CL51 data-logging methodology influenced the
MLH estimate. As described above, CL51 profile data were
logged using two methodologies: BLView and a custom
Python routine. The BLView software has the advantage of
applying the ceilometer’s calibration factors and precondi-
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tioning the profiles (here referred to as BLView; note, how-
ever, that this refers to the backscatter-profile that is logged
by BLView and not the BLView-calculated MLH), while the
Python script logged the raw incoming data stream up to the
full profile (FP) height (i.e., 15.4 km). The question was, does
application of the lidar calibration factor influence the MLH
estimate? This question is addressed in Sect. 5.1.2, but first,
viable filtering criteria to remove spurious MLH fluctuations
from the data set were developed prior to analysis, as dis-
cussed in Sect. 5.1.1.

5.1.1 Filtering criteria

Regardless of the data-acquisition method (i.e., BLView or
Python), pragmatic data-selection criteria were needed for
quality control. Since ABL and MLH variations occur in
a generally smooth manner, it is expected that the variance
within a short time interval will be minimal, and that any
larger variance is indicative of other events (e.g., precipi-
tation, frontal systems, window contamination). Therefore,
cutoff criteria for implementing data filtering were identified.
This portion of the analysis was conducted first, because ap-
plication of these cutoff criteria will influence the data acqui-
sition comparison (i.e., BLView-corrected data vs. raw data
collected via the Python script).

Despite the atmosphere’s smooth variation in ABL and
MLH, these parameters do change substantially over long
periods of time (e.g., an hour or day), with SDs significantly
increasing over the longer time periods and during rapid tran-
sition events. Therefore, the current analysis was performed
on short-time-series data (i.e., MLH resampled to 5 min res-
olution) to eliminate bias caused by natural low-frequency
changes. Figure 4 shows a series of percentile plots for data
collected at LaRC (N >30E5), where the SD of MLH was
calculated over 5 min intervals and subsequently averaged to
provide mean SD every 4 h. This figure elucidates the vari-
ability of the MLH SD for both collection methods and algo-
rithms. Except for the afternoon period (12:00–19:00, local
time) when the variability is slightly increased, 85 % of the
data fall within one SD (≈ 0.20 km) regardless of time of day.
Therefore, data with a 5 min SD greater than 0.20 km were
removed from subsequent analysis (labeled “filtered”). Data
with a relative SD greater than or equal to 20 % were also
removed. Implementation of these filter criteria removed up
to 10 % of the data at each site.

This filtering method is further supported by observing
the variability in the BLView and Python-collected data sets
(both processed in STRAT) in relation to backscatter curtains
(Fig. 5), where it is observed that much of the difference be-
tween the BLView and Python-collected data occurs during
times of high variability or precipitation (e.g., 19:00–24:00 in
Fig. 5). During such events, neither collection method is ex-
pected to provide valid MLH estimates; rather, to overcome
such discrepancies, if possible, the MLH algorithms must be
adjusted accordingly.
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Figure 4. Percentiles for MLH SD throughout the day from the
CAPABLE site. Data in panel (a) were collected and processed in
BLView, data in panel (b) were collected with the Python script and
processed in STRAT, data in panel (c) were collected in BLView and
processed in STRAT. It is observed that variability was maximum
during the afternoon regardless of collection method or processing
algorithm.

5.1.2 Collection method dependence

To determine whether the data-collection method influ-
enced MLH estimates, both BLView and Python-collected
backscatter profiles were processed on a common algorithm
(STRAT) using identical input configuration files. Both the
BLView and FP profiles were processed using the STRAT al-
gorithm as described in Sect. 3.2, followed by a 5 min block
average.

The data were replotted as correlation plots with the z axis
being representative of the immediate data density (a dimen-
sionless value that has been scaled to 1). The data density
was calculated by implementing a Gaussian-based kernel-
density estimation (Scott, 1992; Silverman, 1986) as sup-
plied in Python’s scipy.stats.kde module, represented math-
ematically in Eqs. (3)–(5), where X is the 2×n vector of the
x and y vectors (i.e., flattened and stacked atop one another),
n represents the number of points within each data set (as-
suming data sets are of equal length), f is the Scott’s factor
(n
−1
d+4 ), d is the number of independent data sets analyzed,

and Eq. (5) is evaluated over the range 1 to n. As these den-
sity values are used as weights in subsequent calculations, the
output vector is labeled w here. It is observed that the major-
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Figure 5. Backscatter curtain plot with STRAT-derived MLH values (5 min mean) from the BLView (BLV) and Python (FP) collection
methods.

ity of MLH estimates fall along the 1 : 1 line (center column
in Fig. 6), though there is significant scatter along both axes.

1X =X−X[:, i] (3)

E =
∑
j=1
1Xj ·

cov(X)−1

f−2 ·1Xj (4)

w[i] =

∑
k=1
e−Ek√

det
[
2π · cov(X) · f 2

]
∣∣∣∣∣∣∣
n

i

{i ∈ N : i ≤ n} (5)

Figure 6 was divided into 4 h blocks to identify any time-
of-day dependence. The figure shows that most of the data
continued to fall along the 1 : 1 line regardless of time of
day, as indicated in the CAPABLE and BAO Tower density
plots. The Golden site displays some disruption in the 16:00–
19:59 panel, but the source of this discrepancy is currently
unknown. It has become clear, however, that the meteorology
at the Golden site is different from that observed at CAPA-
BLE and BAO Tower. It is suggested that this difference is
primarily driven by orographic perturbations as well as the
Golden site’s location atop a mesa, both of which can in-
hibit formation of stable ABL and ML (Bossert et al., 1989;
Bossert and Cotton, 1994; Tripoli and Cotton, 1989).

For regulatory and modeling applications, 1 h averages are
standard, requiring the data to be averaged down to 1 h res-
olution. The impact of the filtering criteria and resampling
to 1 h resolution throughout the day can be seen in Fig. 7.
Note that the density of data around the 1 : 1 line is readily
apparent in Fig. 7; therefore the z axis has been converted
to relative SD to show the relative variability within each
1 h time block, after application of filtering criteria. The in-
tention is to provide some understanding of how much the

Table 2. Summary of aggregate statistics for the Python-collected
(FP)/STRAT-processed and the BLView-collected (BLV)/STRAT-
processed MLH estimates (y and x, respectively). Data were resam-
pled to 5 min resolution followed by application of filtering criteria
to both data sets (lines labeled 1 h present statistics after data were
filtered and subsequently resampled by a 1 h block average). Values
in parentheses indicate percent of the difference value with respect
to the BLView-derived MLH.

R LOBF 〈FP−BL〉 (km)

CAPABLE 5 min 0.87 y = 0.913 · x+ 0.11 −0.02 (1.4)
CAPABLE 1 h 0.87 y = 0.925 · x+ 0.11 −0.03 (2.7)
BAO 5 min 0.76 y = 0.817 · x+ 0.25 −0.08 (9.1)
BAO 1 h 0.77 y = 0.814 · x+ 0.32 −0.14 (15.1)
Golden 5 min 0.72 y = 0.777 · x+ 0.30 −0.08 (8.1)
Golden 1 h 0.77 y = 0.792 · x+ 0.35 −0.14 (13.0)

MLH will change within the model and regulatory applica-
tions’ time frame. Table 2 presents statistics on the aggregate
analysis. While the aggregate coefficients of correlation and
line-of-best-fit (LOBF) equations do not change substantially
after resampling to 1 h blocks, the scatter is dramatically
reduced. This is likely due to the scatter being evenly dis-
tributed around the 1 : 1 line and the majority of data points
falling along the 1 : 1 line, as observed in the data-density
panels of Fig. 7.

It can be concluded from the current analysis that the ma-
jority of variability was driven by local atmospheric fluctua-
tions and events that cannot be readily accounted for within
the algorithms. In addition, no significant difference is ob-
served between the BLView- and Python-collected data sets
on the timescales relevant to model inputs and atmospheric
variations when processed on a common algorithm. Findings
presented in Sect. 5.1.3 further support this conclusion.
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Figure 6. Correlation plots for data collected at the three sites under study. Data density is presented to better understand the distribution
within the scatter plots. Data were averaged to 5 min resolution, without application of filtering criteria.
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5.1.3 MLH algorithm dependence

In the previous section, the data collection method (i.e.,
Python vs. BLView) was shown to have little impact on the
derived MLH values when the two data sets were processed
using a common algorithm (STRAT). The question remains
of how the two data sets compare when processed in differ-
ent algorithms. To answer this question, data collected with
the Python script were processed using the STRAT algorithm
and were compared with data collected and processed with
BLView.

Figure 8 presents scatter plots similar to those in Fig. 6,
but with data collected and processed using the two dif-
ferent methods. Most data continued to fall along the 1 : 1
line, as shown in the density plots, and much of the scat-
ter is caused by short-term variability. However, in contrast
to Fig. 6, the scatter is neither as evenly distributed nor as
tightly grouped around the 1 : 1 line. The STRAT-derived
MLHs were generally lower than those calculated in BLView
(given by the slopes) at all sites, while the aggregate mean
difference shows the opposite for the Colorado sites (Ta-
ble 3), which is likely driven by outliers.

The agreement between the two data sets is less than when
a common algorithm was employed (Table 3). Despite the
increased scatter, a significant subset of data remains along
the 1 : 1 line. As a test for how well the data fit the 1 : 1
line, the R and LOBF values were recalculated using Eq. (5)
with weights applied according to data density. Therefore,
points that had a greater number of surrounding data points
received more weight, while more isolated points received
less weight. Weighted coefficients of correlation were calcu-
lated using Eq. (6), where variables with a w subscript indi-
cate weighted means. Weighted regressions were performed
by simultaneously solving the modified normal equations of
regression shown in Eqs. (7) and (8) with weighting factors
applied.

R =

N∑
i=1
wi · (xi − xw) · (yi − yw)√

N∑
i=1
wi · (xi − xw)2 ·

N∑
i=1
wi · (yi − yw)

2

(6)

m=

N
N∑
i=1
wixiyi −

(
N∑
i=1
wixi

)(
N∑
i=1
wiyi

)
N

N∑
i=1
wix

2
i −

(
N∑
i=1
wixi

)2 (7)

b =

N∑
i=1
wiyi −m

N∑
i=1
wixi

N
(8)

These weighted statistics are not included to suggest that
the agreement has actually improved (R), nor do they sug-
gest improved predictability (LOBF). Rather, the improved
R values and slopes reflect the degree to which the data are

predominantly distributed around the 1 : 1 line to the exclu-
sion of other regions. As an example, the improvement in the
Golden regressions, despite weighting, is notably less than
at the other two sites. This is likely due to more spread in
the data, which mitigates the influence of the points along
the 1 : 1 line in the regression analyses. Therefore, the pre-
ponderance of the data collected at the CAPABLE and BAO
Tower sites falls nearer the 1 : 1 line when processed using
the different algorithms compared to the data collected at the
Golden site. Further, despite most data falling nearer the 1 : 1
line for these two sites, influences remain that neither the
STRAT configuration nor the current filter methodology can
account for, which likely drives the poor correlation in con-
trast to Table 2. This is possibly a product of how the differ-
ing algorithms handle atmospheric interferential events (e.g.,
precipitation, fog). The application of a filtering methodol-
ogy to account for and remove these events will be the sub-
ject of future study.

Finally, the analysis was repeated by using STRAT to pro-
cess backscatter data collected by BLView for comparison
with the BLView-collected/processed product. As concluded
in Sect. 5.1.2, the data collection method had little influ-
ence on the MLH estimation when both data sets were pro-
cessed using a common algorithm (STRAT). Based on that
conclusion, it would be expected that the current compar-
ison would be similar to the previous comparison as sum-
marized in Table 3. This is, in fact, what was observed.
The aggregate statistics for the BLView-collected, STRAT-
processed vs. BLView-collected/processed intercomparison
are presented in Table 4, wherein we see similarity with Ta-
ble 3. These findings further support the conclusion that data
collection methods (including application of calibration fac-
tors) play much less of a role in identifying a qualitative gra-
dient within the profile than the choice of MLH algorithm.
Indeed, it can be concluded that choice and configuration of
the algorithm are critical and that, for network intercompar-
isons, all networked lidar systems should have their data pro-
cessed by a common algorithm.

5.2 Sonde intercomparison

Meteorological soundings have been a staple for profiling the
atmosphere and deriving ABL heights for decades. These
ABL heights are typically derived using potential temper-
ature (e.g., using the Heffter criteria) or through analyzing
skew-T, log-P plots that implement potential temperature,
both of which are different from the gradient-based MLH al-
gorithms implemented here. As ABL data are typically used
in chemical transport models, it is necessary to determine
how these MLH data compare to the sonde-derived ABL data
collected at the three measurement locations.

Intercomparison of sonde-based ABL and ceilometer-
based MLH can be complicated due to the fundamentally dif-
ferent nature of the two observations. Sondes provide a direct
measurement of the atmosphere, while ceilometers provide
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Figure 8. Correlation plots for data collected at the three sites under study. At all sites the data were collected by or processed in
Python/STRAT and BLView/BLView. Plots show the data density to better understand the distribution within the scatter plots. Data were
averaged to 5 min resolution, without application of filtering criteria.

Table 3. Summary of statistics for the Python-collected/STRAT-processed and the BLView-collected/BLView-processed MLH estimates.
Values in parentheses indicate percent of the difference value with respect to the BLView-derived MLH, and the w subscript indicates
a weighting function was applied. Data were resampled to 5 min resolution followed by application of filtering criteria to both data sets (lines
labeled 1 h present statistics after data were filtered and subsequently resampled by a 1 h block average).

R Line of best fit 〈FP−BLV〉 (km) Rw LOBFw 〈FP−BLV〉w (km)

CAPABLE 5 min 0.47 y = 0.499 · x+ 0.70 −0.24 (26.8) 0.836 y = 0.986 · x+ 0.70 −0.02 (3.8)
CAPABLE 1 h 0.48 y = 0.467 · x+ 0.74 −0.23 (24.4) 0.799 y = 0.997 · x+ 0.74 −0.08 (12.5)
BAO 5 min 0.43 y = 0.374 · x+ 0.65 0.04 (3.4) 0.789 y = 0.905 · x+ 0.65 −0.01 (0.9)
BAO 1 h 0.39 y = 0.305 · x+ 0.72 0.17 (13.1) 0.740 y = 0.881 · x+ 0.72 −0.01 (1.2)
Golden 5 min 0.24 y = 0.193 · x+ 0.90 0.25 (17.7) 0.541 y = 0.629 · x+ 0.90 0.09 (10.3)
Golden 1 h 0.12 y = 0.086 · x+ 1.12 0.39 (23.6) 0.316 y = 0.361 · x+ 1.12 0.20 (16.1)

an indirect (i.e., remotely sensed) measurement. Therefore,
care must be taken when comparing the two sets of observa-
tions. Further, the aerosol profile can be impacted by aerosol
layers transported aloft, thereby offsetting the MLH estimate.
Since the sondes capture an ephemeral snapshot of the atmo-
sphere’s current conditions and traverse several kilometers
in the horizontal direction due to winds, the ceilometer data
were averaged over 30 min for comparison. Additionally,
each measurement can be impacted by atmospheric phenom-
ena that can affect the measurements in different ways and
can in turn affect the comparison of the measurements. Met-
sondes can be impacted by local updrafts and downdrafts,
and result in ABL estimates that are higher or lower than

the time- or space-averaged MLHs. The response time of the
sensors is less than 1 s, thereby minimizing offset in vertical
structure. The CL51 MLH is calculated based on identifica-
tion of a sufficiently steep, vertically averaged, backscatter
gradient, so if there are additional aerosol layers just above
the MLH, the contrast between the aerosol layers might not
be strong enough for the CL51 to identify each layer or the
correct altitude of the MLH.

Correlation plots for the CL51 MLH calculated via
BLView compared to sonde ABL are shown in Fig. 9a–c with
statistics summarized in Table 5. For all coincidence times,
the CAPABLE site showed the best correlations between the
CL51 and sondes. The correlation for the CL51 vs. all the
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Table 4. Summary of statistics for the BLView-collected/STRAT-processed and the BLView-collected/BLView-processed MLH estimates.
Values in parentheses indicate percent of the difference value with respect to the BLView-derived MLH, and the w subscript indicates
a weighting function was applied. Data were resampled to 5 min resolution followed by application of filtering criteria to both data sets (lines
labeled 1 h present statistics after data were filtered and subsequently resampled by a 1 h block average). Herein, the comparison is limited
strictly to the MLH algorithms.

R Line of best fit 〈FP−BLV〉 (km) Rw LOBFw 〈FP−BLV〉w (km)

CAPABLE 5 min 0.54 y = 0.553 · x+ 0.61 −0.19 (21.2) 0.91 y = 0.975 · x+ 0.61 −0.03 (4.2)
CAPABLE 1 h 0.54 y = 0.519 · x+ 0.64 −0.18 (18.5) 0.87 y = 0.973 · x+ 0.64 −0.06 (9.8)
BAO 5 min 0.41 y = 0.326 · x+ 0.58 0.14 (13.1) 0.78 y = 0.843 · x+ 0.58 −0.01 (1.4)
BAO 1 h 0.31 y = 0.232 · x+ 0.65 0.32 (25.5) 0.58 y = 0.573 · x+ 0.65 −0.09 (13.0)
Golden 5 min 0.25 y = 0.184 · x+ 0.83 0.36 (24.5) 0.49 y = 0.484 · x+ 0.83 0.16 (16.6)
Golden 1 h 0.14 y = 0.101 · x+ 0.96 0.55 (32.8) 0.27 y = 0.229 · x+ 0.96 0.37 (29.1)

Table 5. Summary of statistics for the CL51/sonde MLH/ABL in-
tercomparison, corresponding to Fig. 9. Numbers in parentheses in-
dicate sample size. Composite statistics were generated by looking
at all sites as a single data set. In this table only, the filtering method
for the STRAT-based MLH is based on visual identification of false
MLH values due to clouds/precipitation events and unusually clean
atmospheres as described in text.

Site Algorithm Not filtered Filtered

CAPABLE BLView 0.79 (26) 0.82 (23)
CAPABLE STRAT 0.14 (14) 0.82 (11)
BAO Tower BLView 0.63 (16) 0.58 (14)
BAO Tower STRAT 0.34 (16) 0.79 (14)
Golden BLView −0.28 (12) 0.74 (10)
Golden STRAT 0.70 (13) 0.70 (13)
Composite BLView 0.55 (54) 0.80 (47)
Composite STRAT 0.44 (43) 0.72 (38)

sondes (N = 25) at the CAPABLE site was R = 0.79, with
a similar correlation R = 0.82 (N = 22) when the filtering
criteria were implemented. For daytime data, the CAPABLE
site contained two early morning sondes (before 10:00 lo-
cal time), with all other sondes launched between 10:00 and
16:00 local time. By late morning, ≈ 10:00 local time, the
vertical dispersion of aerosols due to turbulent mixing likely
resulted in a well-mixed boundary layer, so the ABL and
MLH coincide in elevation, which is evident in Fig. 9a, where
many of the data points fall close to the 1 : 1 line.

Met-sonde data collected at the BAO Tower site showed
lower correlations than the CAPABLE site (unfiltered R =
0.63, N = 16; filtered R = 0.58, N = 14), while the Golden
site correlations (unfiltered R =−0.28, N = 12) appear to
be strongly impacted by two morning sonde launches, which
occurred during a transition period when the boundary layer
was experiencing rapid growth. Upon applying the filtering
criteria, the two early morning data points were removed, re-
sulting in a much improved correlation (filtered R = 0.74,
N = 10) for the Golden site. These results indicate that the
CL51 might have difficultly capturing an accurate MLH dur-

ing rapidly changing conditions, such as during early morn-
ing and late evening transition periods in a clean atmosphere.

It is somewhat surprising that the filtered correlation for
the Golden site is better than the filtered result for the BAO
Tower site, given that the BAO Tower site is situated farther
to the east of the Rocky Mountains, at the start of the High
Plains, which are less influenced by very local geographic
perturbations, and that a similar relationship is not observed
in the CL51 intercomparisons (Tables 2, 3, and 5). As a check
of the met-sonde potential temperate profiles, the potential
temperature data from the NASA P-3B aircraft spirals con-
ducted over the Golden and Erie sites are shown in Figs. 12
and 13. These spirals are coincident with the launch of the
met-sondes from the sites. The coincident CL51 backscatter
profiles are also plotted in Figs. 12 and 13. The agreement be-
tween the radiosonde and P-3B aircraft profiles is good, indi-
cating that the potential temperature within the aircraft spiral
radius is consistent with that of the radiosonde. These figures
show agreement between the potential temperature ABL and
CL51 MLH by identifying the same first major gradient in
the MLH data on certain days.

The STRAT-derived intercomparison with sonde ABL is
presented in Fig. 9d–f, where it is observed that the agree-
ment is significantly less than when BLView was used to
calculate MLH. This disparity is caused by spurious MLH
values from STRAT that are observed under two condi-
tions: (1) during heavy cloud cover and precipitation events
STRAT sometimes falsely identified the cloud deck as the
MLH and completely ignored the MLH gradient 1–2 km be-
low the cloud; (2) STRAT failed to identify a valid MLH
when the atmosphere was exceptionally clean, and instead
identified a stronger, spurious, gradient 2–4 km up. An ex-
ample of the first type is presented in Fig. 10 where STRAT
switches from properly identifying the MLH at ≈ 0.5 km to
identifying the cloud deck (≈ 2.4 km) as the MLH starting
around 12:00 local time and an example of the second type is
shown in Fig. 11. A corresponding shift was not observed in
the BLView-derived MLH for the same day, indicating that
BLView has been trained to recognize these spurious events
and ignore them.
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Figure 9. Correlation plots for CL51 MLH and sonde-derived ABL estimates. Black error bars represent the spread in unfiltered data, while
the red error bars represent the filtered data set. MLH values (30 min average, centered on sonde-launch time) were calculated in BLView
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Figure 10. Example plot in which STRAT identifies cloud deck as the MLH (12:00).

After removing these “false” MLH values, the coefficient
of correlation between STRAT-derived MLH and sonde ABL
(pre-filtering) improved for all sites to 0.82, 0.79, and 0.70
for LaRC, BAO Tower, and Golden. The results of these cor-
relations are encouraging and are indicative of the impor-
tance of properly training the STRAT algorithm to identify
and exclude these false-positive events. The downside is that,
despite having a better correlation (after removing spurious
events), the variance of STRAT MLH values are larger than
that of BLView, indicating that defining an MLH filter criteria
is dependent on the algorithm in use. However, the positive
aspect of this is that the STRAT algorithm, being open source
with the source code available, can, in theory, be modified by
end users to identify and account for these spurious events.

Overall, all three sites show good correlation between the
CL51 and met-sonde data, with MLH and ABL estimates
from the sondes being, on average, higher than the CL51
MLHs (200 m (13 %), 390 m (15 %), −240 m (9 %) for CA-
PABLE, BAO Tower, and Golden) as indicated in the linear
regression lines plotted in Fig. 9, with the exception being
the unfiltered results for Golden.

5.3 MPL intercomparison

The MPL instrument was collocated with the CL51 sta-
tioned at the NREL site in Golden, Colorado. Being a li-
dar instrument, it profiles the atmosphere similarly to the
CL51 with the major difference being their hardware. The
two instruments emit different wavelengths (CL51:910 nm,
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Figure 11. Example plot in which STRAT fails to identify a reasonable MLH due to unusually clean conditions.

MPL:532 nm), causing the instruments to differ in sensitiv-
ity with respect to particle size and geometry. Therefore, it is
feasible that the two instruments observed “different” atmo-
spheres in a quantitative manner (e.g., AOT). However, if the
ML is well mixed, then the general particle distribution and
gradient will be the same, making the two intercomparable.

Figures 14 and 15 shows that the agreement between the
two instruments and algorithms (BLView, STRAT for CL51
profiles and UMBC algorithm-processing MPL profiles) is
poor, even though a significant subset of data fall along the
1 : 1 line, as indicated by data density (z axis). The low cor-
relation is partly driven by the invariability in one instru-
ment compared to the other at lower MLH values (≤ 500 m).
Removal of MLH below 500 m improved the coefficients
of correlation for the 5 min averaged data to 0.467, 0.489,
and 0.469 for BLView-derived MLH values (Fig. 14a–c) and
0.433, 0.471, and 0.368 for STRAT-derived MLH (Fig. 15a–
c) values. Similarly to the algorithm comparison, much of
the variability between the two instruments and algorithms
occurs during events that inhibit a reliable estimation (e.g.,
fog, precipitation) of MLH (as seen in Fig. 16).

The most commonly used statistical techniques used for
comparing two data sets depended on two key assump-
tions: data were normally distributed and homoscedastic. The
CL51 and MPL MLH 5 min averaged data sets were con-
firmed to be nonnormal via the Kolmogorov–Smirnov test
and passed Levene’s test for homoscedasticity (p value 0.39).
Therefore, similarity between the two corresponding prob-
ability distributions was determined using the two-sample
Kolmogorov–Smirnov test. It was determined that the 5 min
averaged MPL and CL51 data sets were statistically differ-
ent (p� 0.01), regardless of filtering and averaging. How-

ever, when considering 1 h averaged data that were filtered
to remove data with large relative SDs (≥ 0.20) and MLH≤
0.5 km, the two data sets were statistically indistinguishable
(p > 0.8). While we cannot account for the bias induced by
these low-altitude MLH values it is quite clear that they sig-
nificantly influence the intercomparison. Given that this is
the first intercomparison of these two instruments and algo-
rithms, it is not surprising that a significant difference was
identified in this regime.

6 Conclusions

A CL51-focused intercomparison of different ABL/MLH
methodologies was performed at three different sites that ex-
perience different meteorological, aerosol, and emission con-
ditions. The CL51 MLH results were compared with ABL
from radiosondes at all three locations as well as an MPL at
the Golden, Colorado site.

Two collection methods and processing algorithms were
tested for the CL51 MLH calculation. We demonstrated that
the data-collection method played an insignificant role in
MLH estimation when the data sets were processed using
a common algorithm. Furthermore, the choice of process-
ing algorithm played a significant role in MLH estimation.
Therefore, we recommend that, for ceilometer and lidar net-
works, a common MLH processing algorithm be employed.
Agreement between the different algorithm products might
be dictated, to a large degree, by local atmospheric fluctu-
ations and interferential events (e.g., fog), which should be
a topic for future investigation.

A total of 53 potential temperature profiles from radioson-
des were used to evaluate the CL51. While the 53 radioson-
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Figure 12. Potential temperature and Cl51 backscatter profiles collected at the BAO Tower site. Horizontal lines indicate MLH as determined
by BLView.
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Figure 13. Potential temperature and Cl51 backscatter profiles collected at the Golden NREL site. Horizontal lines indicate MLH as deter-
mined by BLView.
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Figure 14. Correlation and data-density plots for the CL51 (BLView processed) and MPL (UMBC algorithm) MLH estimates from Golden,
Colorado.
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Figure 15. Correlation and data-density plots for the CL51 (STRAT processed) and MPL (UMBC algorithm) MLH estimates from Golden,
Colorado.

des were spread across three sites, this represents a robust
data set of soundings. Overall, the met-sonde-derived ABL
was higher than the CL51 MLH. A comparison of MLH from
the CL51 vs. met-sondes shows the CL51 performed best at
the CAPABLE research site (nonfiltered R = 0.79, filtered
R = 0.82), a moderately polluted coastal site primarily influ-
enced by a combination of sulfate and marine aerosols. Both
the Golden and BAO Tower sites are located in cleaner en-
vironments than CAPABLE and show good correlation be-
tween the CL51 and met-sondes (Golden filtered R = 0.74,
BOA nonfilteredR = 0.63, filteredR = 0.58), with two early
morning sondes at the Golden site strongly influencing the
nonfiltered correlation (R =−0.28). These two sondes mea-
sured a very shallow boundary layer, < 500 m, while the
CL51 identified the MLH above 2 km, which was likely due

to residual aerosol layers aloft. The lower correlations at the
Colorado sites (Golden and BAO Tower) were likely due
to the sites’ proximity to the Rocky Mountains. Complex
atmospheric flow patterns, which are driven by the Rocky
Mountains to the west of the Front Range area, can induce
the formation of distinctive dynamic features such as up-
and downslope flows (Bossert et al., 1989; Bossert and Cot-
ton, 1994; Sullivan et al., 2016; Tripoli and Cotton, 1989).
The Golden site likely experienced greater up- and downs-
lope flows than the BOA-Tower site because of its location
along the slope of the mountains and on a mesa. Such lo-
cal orographic influences likely impacted or challenged the
well-mixed assumption required to compare thermodynamic
ABL measured via potential temperature and MLH measured
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Figure 16. Comparison of the CL51 and UMBC MPL profiles for 23 and 27 July 2014 at the Golden, Colorado site.

via aerosol backscatter in the current study. These influences
should be made a consideration in future intercomparisons.

The results of the CL51 and the UMBC algorithms that
were run on MPL data showed a low correlation (R = 0.3).
However, the majority of coincident MLH observations from
both instruments were clustered around the 1 : 1 line in the
regression plots. When data-filtering criteria were applied,
the two data sets were statistically indistinguishable (p >
0.8). Additional analysis is planned to further explore the
cause of the low correlation. However, the MLH from the
CL51 and MPL agree well when there is a well-defined
MLH.
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