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Abstract. We discuss uncertainty quantification for aerosol-
type selection in satellite-based atmospheric aerosol re-
trieval. The retrieval procedure uses precalculated aerosol
microphysical models stored in look-up tables (LUTs) and
top-of-atmosphere (TOA) spectral reflectance measurements
to solve the aerosol characteristics. The forward model ap-
proximations cause systematic differences between the mod-
elled and observed reflectance. Acknowledging this model
discrepancy as a source of uncertainty allows us to produce
more realistic uncertainty estimates and assists the selection
of the most appropriate LUTs for each individual retrieval.

This paper focuses on the aerosol microphysical model se-
lection and characterisation of uncertainty in the retrieved
aerosol type and aerosol optical depth (AOD). The concept of
model evidence is used as a tool for model comparison. The
method is based on Bayesian inference approach, in which
all uncertainties are described as a posterior probability dis-
tribution. When there is no single best-matching aerosol mi-
crophysical model, we use a statistical technique based on
Bayesian model averaging to combine AOD posterior prob-
ability densities of the best-fitting models to obtain an aver-
aged AOD estimate. We also determine the shared evidence
of the best-matching models of a certain main aerosol type
in order to quantify how plausible it is that it represents the
underlying atmospheric aerosol conditions.

The developed method is applied to Ozone Monitoring
Instrument (OMI) measurements using a multiwavelength
approach for retrieving the aerosol type and AOD estimate
with uncertainty quantification for cloud-free over-land pix-
els. Several larger pixel set areas were studied in order to
investigate the robustness of the developed method. We eval-
uated the retrieved AOD by comparison with ground-based

measurements at example sites. We found that the uncer-
tainty of AOD expressed by posterior probability distribution
reflects the difficulty in model selection. The posterior prob-
ability distribution can provide a comprehensive characteri-
sation of the uncertainty in this kind of problem for aerosol-
type selection. As a result, the proposed method can account
for the model error and also include the model selection un-
certainty in the total uncertainty budget.

1 Introduction

The atmospheric aerosols play an important role in our un-
derstanding of the Earth’s climate system. Aerosols have a
direct and indirect influence on the Earth’s radiation budget.
Satellite remote sensing observations have been utilised for
years to provide information on atmospheric aerosol condi-
tions on a global scale. The space-borne data are very use-
ful for detecting and following dynamic natural or anthro-
pogenic events such as sandstorms and active fires. The most
commonly retrieved aerosol characteristic is the aerosol opti-
cal depth (AOD), which is a function of the loading, size dis-
tribution and optical properties of aerosol particles. There are
a number of satellite instruments delivering aerosol products
and providing aerosol characteristics, e.g. the Ozone Mon-
itoring Instrument (OMI; Torres et al., 2007), the Moder-
ate Resolution Imaging Spectroradiometer (MODIS; Levy
et al., 2010), the Global Ozone Monitoring Experiment-2
(GOME-2; Hassinen et al., 2015), the Multi-angle Imaging
SpectroRadiometer (MISR; Kahn et al., 2010), the Advanced
Along-Track Scanning Radiometer (AATSR; Thomas et al.,
2009; Kolmonen et al., 2016), the Cloud-Aerosol Lidar with
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Orthogonal Polarization (CALIOP; Winker et al., 2009),
the SCanning Imaging Absorption spectroMeter for Atmo-
spheric CHartographY (SCIAMACHY; Bovensmann et al.,
1999), the Polarization and Directionality of the Earth’s Re-
flectance (POLDER; Dubovik et al., 2011) and the Spinning
Enhanced Visible and Infrared Imager (SEVIRI; Govaerts
et al., 2010; Wagner et al., 2010).

There is increasing potential to use and incorporate
satellite-based aerosol information as the instruments are get-
ting better in resolution and more sophisticated at detect-
ing aerosols (Holzer-Popp et al., 2013). In addition, the im-
provement of retrieval algorithms and the development of
novel methodologies extend opportunities in which to use
the data. In particular, one target is to derive information
on small aerosol particles (diameter less than 1 µm) from
satellite measurements. An important and challenging use
of satellite measurements is to assimilate aerosol character-
istics into large-scale global aerosol models (Benedetti et
al., 2009). Furthermore, the satellite based data can be com-
bined with numerical models when estimating aerosol emis-
sion fluxes (Huneeus et al., 2012) or spatially constraining
the amount of aerosol emissions (Wang et al., 2012; Xu et
al., 2013). Data validness as well as identification and quan-
tification of uncertainties are acknowledged when data are
used.

Uncertainties in satellite-based aerosol retrievals arise
from many sources, e.g. cloud contamination, treatment of
surface reflectance and instrumental issues. It is typical in
the aerosol retrievals that the radiative transfer (i.e. forward
model) calculations have been replaced by precalculated
look-up tables (LUTs) in order to speed up the necessary
computations. However, it can be noted here that research
has been carried out in which local aerosol optical properties
for a MODIS satellite AOD retrieval algorithm are derived
from a chemical transport model (Drury et al., 2008, 2010;
Wang et al., 2010). The LUTs are often multidimensional
tables containing simulated discrete descriptions of varying
aerosol conditions. Aerosols can be classified into categories
(i.e. main types) such as clean background, urban pollution,
dust, smoke (from biomass burning) and sea salt based on
the origins of the aerosol particles. The optical and micro-
physical properties of different aerosol types are described
in corresponding LUTs. The aerosol properties in the LUTs
can be based on observations or combination of observations
and climate models (Holzer-Popp et al., 2013). The situa-
tion is more complicated for a retrieval algorithm when an
aerosol containing air mass is a mixture of different types,
e.g. mixture of dust aerosols and biomass burning aerosols.
The proper aerosol-type selection from LUTs is a source of
uncertainty and affects the accuracy of the retrieval. Povey
and Grainger (2015) give an overview of the error analysis
and representation of uncertainty in the satellite data. One
application they discuss is related to the AOD retrievals in
which unquantifiable errors arise from the choice of a for-
ward model (i.e. aerosol microphysical properties).

In this paper we discuss characterisation of uncertainty in
the aerosol type and AOD retrieval. We utilise the method,
described in Määttä et al. (2014), for estimating the uncer-
tainty in the retrieved AOD due to the aerosol microphysi-
cal model selection and the approximations in forward mod-
elling. The method is based on the Bayesian inference ap-
proach in which uncertainty estimates are an inherent part of
the formulation (MacKay, 1992; Spiegelhalter et al., 2002;
Robert, 2007). The uncertainty is given as a posterior den-
sity function of the AOD and a point estimate for the AOD
is the maximum a posterior (MAP) value. We calculate the
model evidence value for each aerosol microphysical model
involved in order to compare and select models. The se-
lection of single best-fitting aerosol microphysical model
is not always clear and this uncertainty has also been ad-
dressed in this study. We calculate the averaged posterior
probability distribution wherein the individual model pos-
terior distributions are weighted by their evidence. This is
implemented by the Bayesian model averaging technique
(Hoeting et al., 1999). We also perform the shared evidence
of the best-matching models within the main aerosol type
in order to quantify the plausibility of each main aerosol
type. We acknowledge the forward modelling uncertainty,
i.e. model discrepancy (Kennedy et al., 2001; Brynjarsdót-
tir et al., 2014) which arises from non-modelled systematic
differences between the modelled and observed reflectance.
The described method is applied to the aerosol retrieval using
cloud screened data from the OMI instrument.

The used data and methodology are introduced in Sects. 2
and 3. We have investigated the performance of the method
with case studies presented in Sect. 4. Section 5 discusses the
features and possibilities of the method.

2 OMI data

The Dutch–Finnish OMI instrument is on board NASA’s
Earth Observing System (EOS) Aura platform which was
launched in July 2004 (Levelt et al., 2006). The Aura satel-
lite is in a polar sun-synchronous orbit crossing the equator
approximately at 13:45 local time. OMI measures sunlight
backscattered from the Earth in the ultraviolet (UV) and visi-
ble (VIS) wavelength bands (270–500 nm). The ground pixel
size at nadir is 13× 24 km2. The retrieved products include
atmospheric trace gases (ozone, NO2, SO2, HCHO, BrO and
OClO), surface UV, cloud information and aerosol character-
istic.

The two operational aerosol algorithms that retrieve
aerosol characteristics from OMI measurements are the OMI
near-UV aerosol data product (OMAERUV) and the OMI
multiwavelength aerosol data product (OMAERO; Torres
et al., 2007, 2002). OMAERUV uses in the retrieval two
wavelength bands at 354 and 388 nm to determine the AOD,
aerosol index and single-scattering albedo (Ahn et al., 2014).
OMAERO uses the near UV and visible wavelengths be-
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tween 330 and 500 nm providing the AOD, best-matching
aerosol model and aerosol characteristics associated with
the best model (e.g. single-scattering albedo and aerosol in-
dices; Curier et al., 2008). The retrievals of AOD and single-
scattering albedo from OMAERUV and OMAERO have
been evaluated using airborne sun photometer, ground-based
sun/sky radiometer and other satellite measurements (Ahn et
al., 2008; Livingston et al., 2009).

The OMI data used in this study have been extracted
via Mirador data search tool provided by the NASA God-
dard Earth Sciences Data and Information Services Center
(GES DISC) data access system (https://urs.earthdata.nasa.
gov). We calculated the top-of-atmosphere (TOA) spectral
reflectance (referred to as measured or observed reflectance
from now on) from the OMI level 1B VIS (Dobber, 2007a)
and UV radiances (Dobber, 2007b) and level 1B Solar ir-
radiance (Dobber, 2007c) data. We took the effective cloud
fraction information from the level 2 OMI O2-O2 cloud prod-
uct (OMCLDO2, Veefkind, 2006). Then we applied a simple
scheme by using 0.34 as an effective cloud fraction thresh-
old value to detect and exclude a cloudy pixel. Thus we fol-
lowed only one of three tests for cloud screening used by
the OMAERO algorithm. The high threshold value of 0.34
was chosen in order to avoid excluding desert dust scenes
(OMAERO Readme Document, 2011). To assure measure-
ment data quality in the retrieval we used the pixel quality
and error flags from the OMI level 1B radiance products. In
addition, to ensure the forward model quality, we excluded
data with solar zenith angle above 75◦.

We used Ground Pixel Quality flags from the OMI
level 1B radiance product to choose the over-land pix-
els as this study was concentrated on the aerosol types
that are dominant over land areas. We accepted a pixel
and specified it as a land pixel if the flag indicated the
ground type to be land, shallow inland water, ocean
coastline/lake shoreline, ephemeral (intermittent) water
or deep inland water (OMI Level 1B Output products
and Metadata, 2009). For surface reflectivity, we used the
climatological surface reflectance database from the OMI
Earth Surface Reflectance Climatology product OMLER
(v003) (Kleipool, 2010). The OMLER (v003) product data
file (OMI-Aura_L3-OMLER_2005m01-2009m12_v003-
2010m0503t063707.he5) was extracted from the GES DISC
data service. The OMLER product contains global maps of
the monthly climatology of Lambert equivalent reflectance
(LER) in a 0.5× 0.5◦ grid based on 5 years (2005–2009) of
OMI data (OMLER Readme Document, 2010).

In our analysis we have used about 1 nm-wide wavelength
bands centred at 342.5, 367.0, 376.5, 388.0, 399.5, 406.0,
416.0, 425.5, 436.5, 442.0, 451.5, 463.0 and 483.5 nm. These
13 bands include one wavelength in the UV region and the
rest in the VIS region. The O2-O2 absorption wavelength
band, centred at 477 nm, provides important information on
the cloud height and, for cloud-free scenes, on the aerosol
layer height with high enough AOD levels (Veihelmann et

Table 1. Aerosol size distribution parameters and wavelength de-
pendent single-scattering albedo (SSA) for aerosol microphysical
models stored in LUTs. The third digit (“x”) in the model ID num-
ber for BB and DD models has a range of 1–3 and is intended for
different vertical distributions. The size distribution is given by log-
normal functions. The mean particle radius, rg [micron], and the
standard deviation, σ [micron], are given for both modes, m1 and
m2. A second mode fraction of the number concentration is given
in column n21. The SSA values shown here are for the first and last
wavelength bands.

Model rg m1 rg m2 σ m1 σ m2 n21 SSA

WA1111 0.078 0.497 1.499 2.160 4.36e-4 1–1
WA1112 0.088 0.509 1.499 2.160 4.04e-4 1–1
WA1113 0.137 0.567 1.499 2.160 8.10e-4 1–1
WA1114 0.030 0.240 2.030 2.030 1.53e-2 1–1
WA1211 0.078 0.497 1.499 2.160 4.36e-4 0.96–0.95
WA1212 0.088 0.509 1.499 2.160 4.04e-4 0.97–0.96
WA1213 0.137 0.567 1.499 2.160 8.10e-4 0.97–0.98
WA1311 0.078 0.497 1.499 2.160 4.36e-4 0.91–0.88
WA1312 0.088 0.509 1.499 2.160 4.04e-4 0.91–0.90
WA1313 0.137 0.567 1.499 2.160 8.10e-4 0.92–0.92
BB21x1 0.074 0.511 1.537 2.203 1.70e-4 0.94–0.93
BB21x2 0.087 0.567 1.537 2.203 2.06e-4 0.94–0.93
BB21x3 0.124 0.719 1.537 2.203 2.94e-4 0.93–0.94
BB22x1 0.074 0.511 1.537 2.203 1.70e-4 0.90–0.88
BB22x2 0.087 0.567 1.537 2.203 2.06e-4 0.90–0.89
BB22x3 0.124 0.719 1.537 2.203 2.94e-4 0.89–0.90
BB23x1 0.074 0.511 1.537 2.203 1.70e-4 0.86–0.82
BB23x2 0.087 0.567 1.537 2.203 2.06e-4 0.86–0.84
BB23x3 0.124 0.719 1.537 2.203 2.94e-4 0.84–0.85
DD31x1 0.042 0.670 1.697 1.806 4.35e-3 0.82–0.94
DD31x2 0.052 0.670 1.697 1.806 4.35e-3 0.86–0.95
DD32x1 0.042 0.670 1.697 1.806 4.35e-3 0.74–0.90
DD32x2 0.052 0.670 1.697 1.806 4.35e-3 0.79–0.91
VO4111 0.230 0.230 0.800 0.800 0.5 1–1

al., 2007). However, in our study we omitted the band 477 nm
due to experimental purposes and since we did not need
aerosol height information.

2.1 Aerosol microphysical models

The aerosol microphysical models stored in the OMI LUTs
are produced via the radiative transfer calculations for a
range of aerosol physical properties and sun-satellite ge-
ometries (Torres et al., 2002, 2007). There are four main
aerosol types: weakly absorbing (WA), biomass burning
(BB), desert dust (DD) and volcanic (VO) aerosols. The
weakly-absorbing-type aerosol models are composed of
urban-industrial and natural oceanic aerosols (Torres et al.,
2002). (Veihelmann et al., 2007) discuss the capability of the
OMI multiwavelength algorithm to distinguish between dif-
ferent aerosol types.

The main types are split into subtypes (i.e. models) ac-
cording to the aerosol size distribution, refractive index and
vertical profile. We used a set of OMI aerosol microphysi-
cal models, a total of 50 models, in the work presented here
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(see Table 1). Each model consists of a set of parameters
(e.g. AOD, single-scattering albedo, viewing and solar zenith
angle, relative azimuth angle, path reflectance, transmission
and spherical albedo) with predefined values at node points.

A weakly absorbing aerosol model WA1114 represents sea
salt particles having a higher fraction of coarse particles than
the other weakly absorbing models (see Table 1). We have
classified the model WA1114 as the fifth main aerosol type
when reporting results from the case examples (see Sect. 4).

3 Methodology

The proposed method is applied to the retrieval scheme that
is similar to the OMAERO algorithm. The unknown aerosol
parameter is the AOD at the reference wavelength of 500 nm,
for which we will use the symbol τ . The related uncer-
tainty is analysed using Bayesian statistical inference. The
observations are TOA reflectances Robs(λ) at a set of wave-
lengths λ= (λ1, . . .,λn). The modelled spectral reflectance
Rmod(τ, λ) depends on τ within the specific aerosol micro-
physical model in LUT. The AOD parameter τ is adjusted
between the nodal values in the model LUT to find the mod-
elled reflectance that has the best fit with the observed spec-
tral reflectance.

Assuming a Lambertian surface the contribution of the ra-
diation at the TOA can be separated from that of the atmo-
sphere (e.g. Chandrasekhar, 1960), leading to the equation
for modelled reflectance as

Rmod (λ, τ, µ, µ0, 1φ, ps)

= Ra (λ, τ, µ, µ0, 1φ, ps)

+
As(λ)

1 − As(λ) s (λ, τ, ps)
T (λ, τ, µ, µ0, ps) . (1)

Here path reflectance Ra , transmittance T and spherical
albedo s of the atmosphere are derived from LUT by inter-
polation as a function of λ, τ , 1φ (relative azimuth angle),
ps (surface pressure), µ (cosine of viewing zenith angle) and
µ0 (cosine of solar zenith angle). The sun-satellite geome-
try data 1φ, ps, µ and µ0 are included in the OMI level 1B
data. The surface reflectance As is taken from the Lamber-
tian equivalent surface reflectance climatology based on the
geolocation of the retrieved pixel and month.

3.1 Acknowledging the model discrepancy

The aerosol microphysical models used in the retrieval pro-
cedure are discrete representations of the aerosols in the real
atmosphere. Approximations in forward modelling together
with uncertainties in the assumptions, e.g. in the surface re-
flectance, cause model discrepancy, which manifests itself as
systematic deviations between the modelled and observed re-
flectance.

We pay special attention to the model discrepancy in the
fitting process by adding the related uncertainty term η(λ) to

the observation model

Robs(λ) = Rmod(τ, λ) + η(λ) + εobs(λ). (2)

The model discrepancy error term η(λ) enables correlated
errors between neighbouring wavelengths, thus allowing for
smooth departures from the model. The measurement error
εobs(λ) ∼N(0, σ 2

obs(λ)) will describe the independent in-
strument noise that will be assumed to be known in the re-
trieval procedure from the instrument properties and from
the calculation of the observed reflectance. In the fitting pro-
cedure, for simplicity, we have σ obs(λ)=Robs(λ)/SNR, for
which we used value SNR= 500 for the signal-to-noise ratio
of the instrument.

Our approach to estimating the model discrepancy term
η(λ) was to explore systematic differences between the mea-
sured and modelled reflectance (i.e. residuals). The system-
atic structure in the residuals indicates inadequacy in the for-
ward model. The model discrepancy was characterised using
a zero mean Gaussian process η(λ)∼GP(0,C) (Rasmussen
and Williams, 2006), as described by (Määttä et al., 2014),
where the covariance matrix C defines the wavelength-
dependent correlation properties of the discrepancy. The co-
variance matrix C was constructed by means of an empirical
semivariogram when the variances of the residual differences
were calculated for each wavelength pairs with the distance
d . Next, the theoretical Gaussian variogram model was fitted
to these empirical semivariogram values. The outcome of this
analysis was the values for parameters that define the model
discrepancy covariance matrix C (see Määttä et al., 2014 for
details).

We assume that the likelihood function describing the dis-
tribution of the observations given the model follows a Gaus-
sian distribution. The likelihood function has an additional
error covariance term due to the model error,

p(Robs|τ, m) ∝

exp
(
−

1
2
Rres(λ)

T
(

C + diag
(
σ 2

obs(λ)
))−1

Rres(λ)

)
, (3)

where Rres(λ)=Robs(λ)−Rmod(τ, λ) is the residual, C is
the model discrepancy covariance matrix and diag(σ 2(λ))

is a diagonal matrix of the measurement error variances
σ 2

obs(λ). The likelihood function is needed for the calculation
of posterior distribution using Bayes’ formula (see Sect. 3.2).

3.2 Aerosol type and AOD retrieval with uncertainty
quantification

In the Bayesian inference, the solution of an inverse prob-
lem is presented as a posterior distribution of the unknown.
This approach provides a natural way of presenting the un-
certainty in the AOD and in the aerosol microphysical model
m. By Bayes’ formula the posterior distribution for τ within
the model m and given the observed reflectance Robs is

p(τ |Robs, m)=
p(Robs|τ, m)p(τ |m)

p(Robs|m)
, (4)
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Table 2. The retrieved aerosol characteristics for AERONET sites and results from the presented method. The collocated OMI pixel indices
in orbit are given in the column Pixel ind. The AERONET AOD at 440 and the Ångström exponent α(440–675) nm are daily averages of the
data from level 2.0 version 2 direct-sun algorithm. We interpolated AERONET AOD at 500 nm (marked by ∗) by Ångström power law using
the instant values of α(440–675) and AOD at 440 nm. The AOD at 500 nm retrieved by the presented method is the MAP estimate from the
averaged posterior density. The Ångström exponents α1(442–500) and α2(442–500) nm are calculated from the best-matching model LUT
and from the second-best-matching model LUT, respectively. We interpolated OMAERO AOD at 500 nm (marked by ∗∗) in the best-fitting
LUT using AOD at 342.5 nm.

Site name (Lat, lon) Pixel ind AOD 440 AOD 500 α(440–675) AOD 500 α1 α2 AOD 500
AERONET AERONET OMI AERONET AERONET AERONET OMAERO

Beijinga (39.9◦ N, 116.3◦W) (1029.25) 2.488 2.160∗ 1.108 3.602 1.008 1.610 –
Beijingb (39.9◦ N, 116.3◦W) (1004.12) 0.807 0.665∗ 1.522 0.624 1.560 1.259 –
Agoufou (15.3◦ N, 1.4◦W) (905.9) 0.228 0.218∗ 0.375 2.549 0.293 – 1.557∗∗

DMN_Maine_Soroa (13.2◦ N, 12.0◦ E) (873.53) 0.143 0.139∗ 0.267 0.087 0.978 1.560 0.148∗∗

IER_Cinzana (13.2◦ N, 5.9◦W) (899.2) 0.424 0.414∗ 0.236 0.206 0.561 0.290 0.234∗∗

Saada (31.6◦ N, 8.1◦W) (1047.6) 0.302 0.276∗ 0.697 0.312 0.561 0.290 –
a 16 April 2008. b 27 April 2008.

where p(Robs|τ, m) is the likelihood and p(τ |m) is a prior
distribution for τ depending on the aerosol microphysical
model m. The denominator p(Robs|m) does not depend on
τ and acts to normalise the numerator. We assumed that
the prior p(τ |m) follows a log-normal distribution in order
to ensure that the estimated AOD is positive. The calcula-
tion of the actual posterior distribution requires solving in-
tegrals over the parameter and model space. In our case, the
model selection procedure seeks the solution for one param-
eter τ and then the calculation of posterior distribution is
fairly straightforward by numerical quadrature. The calcu-
lation of the posterior distribution is presented in more detail
in Määttä et al. (2014).

The denominator p(Robs|m)=
∫
p(Robs|τ, m) p(τ |m)dτ

in Eq. (4) is the probability of the observed reflectance Robs
assuming the model m is the correct one. However, when
considering our problem of choosing the right model m,
the p(Robs|m) acts as an evidence in favour for m. Conse-
quently, we compare models using their evidence values. In
the retrieval procedure we accept the models with the high-
est amount of evidence until a cumulative sum of the selected
models’ evidence passes the value of 0.8 or the number of se-
lected models is 10.

Since we assume that a priori all models are equally likely,
we end up calculating the relative evidence for each selected
model mi using the formula

p(mi |Robs)=
p(Robs|mi)∑
j

p
(
Robs|mj

) . (5)

Here the denominator is a sum over all the evidence of the
models mj under the comparison process (see Määttä et al.,
2014 for details). The relative evidence indicates how plau-
sible the aerosol microphysical model is among the set of
potential models.

Even when a model has the highest amount of evidence,
it does not ensure that it adequately fits the observed re-

flectance. The goodness of fit of the selected model is anal-
ysed by the modified chi-squared value

χ2
=

1
n− 1

Rres(λ)
T
(

C + diag(σ 2(λ))
)−1

Rres(λ), (6)

where C is a covariance matrix for the model discrepancy
and n is the number of wavelength bands in the spectral re-
flectance. We accepted the retrieved solution (i.e. the selected
best model) if this merit function gave a value ≤ 2.

3.3 Bayesian model averaging

Traditionally, the aerosol microphysical model mi with the
highest amount of evidence can be treated as the correct one.
However, there can be several models that could explain the
measurements equally well when taking into account the un-
certainty in the selection procedure. In that case the selection
of single model (i.e. aerosol subtype) does not ensure that
it is the most appropriate model, since it may have been se-
lected by chance. In addition, the posterior distribution for
τ can differ from model to model among the best models.
This indicates that the selection of one particular model as
the correct one is not always self-evident or meaningful.

We have used the Bayesian model averaging approach
(Hoeting et al., 1999; Robert, 2007) to calculate averaged
posterior distribution using the formula

pavg (τ |Robs) =

n∑
i=1

p(τ |Robs, mi) p (mi |Robs) , (7)

where the posterior distributions for τ , assuming that mi is
the correct model, are weighted by the models’ evidence. By
model averaging we perform the shared inference about the
AOD over the best-fitting models. Secondly, the uncertainty
in the model selection is incorporated in the uncertainty esti-
mate of the AOD.
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4 Case studies and results

With the following test cases we study the functioning of the
aerosol-type selection procedure, the concept of the evidence
for model comparison and the resulting AOD posterior distri-
bution for expressing the uncertainty due to model selection
and approximations in forward modelling. The relative evi-
dence of a single model, with respect to the other selected
models, describes how likely it is that the model explains the
observed reflectance. The width of the posterior density func-
tion illustrates the level of the uncertainty, i.e. the wider the
width the higher the uncertainty.

We consider two test cases in which the atmospheric
aerosol conditions are different from each other. The first
case study focuses on an urban area around Beijing, where
we analyse the retrieved aerosol characteristics on 2 days
to observe the difference as well as the similarity between
aerosol conditions on these days. The Beijing case is chal-
lenging since the aerosol air mass is a mixture of dust from
the north blending with urban pollution around Beijing. On
the other hand, this case enables us to examine aerosol-type
selection in a situation with high AOD levels. The other test
case covers northern and central Africa where we expect dust
aerosols in the north and biomass burning aerosols in the cen-
tral part. In particular, this test case covers a large, almost
cloud-free area.

We evaluated the retrieved AOD estimates using collo-
cated ground-based Aerosol Robotic Network (AERONET)
data of aerosol properties. The AERONET programme is
a federation of ground-based remote sensing aerosol net-
works (Holben et al., 1998). We downloaded the version
2 direct-sun level 2.0 quality-assured and cloud-screened
aerosol data for the AERONET sites under investigation. We
tracked clouds and land scenes for the case studies by util-
ising true-colour images from MODIS on the Aqua satellite,
which has an equator crossing time of only about 15 min ear-
lier than OMI. The MODIS instrument is on board both the
Terra and Aqua spacecraft. The data products derived from
MODIS measurements include atmosphere (e.g. cloud mask
and aerosol products), land, cryosphere and ocean products
(see e.g. http://modis.gsfc.nasa.gov).

4.1 Beijing area on 16 and 27 April 2008

In this case study focusing on an urban area around Beijing,
we analysed the retrieved aerosol characteristics on 2 days:
16 and 27 April 2008. In the spring season the atmosphere
is typically loaded with a mixture of urban and dust aerosols
(Yu et al., 2016). Figure 1 shows the true-colour images from
the MODIS, on board the NASA’s Aqua satellite, on 16 April
2008 at 05:15 UTC (left) and 27 April 2008 at 04:55 UTC
(right) over the Beijing area.

The OMI pixels that were analysed are located on rows
23–29 across the orbit on the first case day (i.e. 16 April)
and on rows 10–20 on the second case day (i.e. 27 April). No

data are reported if the pixel is cloud contaminated or if none
of the models had adequate fit with the measured reflectance
(Eq. 6).

Figure 2 presents the number of most appropriate models
retrieved for each pixel on both days. The maximum number
of best models was restricted to 10 (see Sect. 3.2). On the
first case day the variety of the number of best models is
wide (left), whereas on the latter case day (right) for most
of the pixels the maximum number of models are selected to
explain the measurements.

In Fig. 3 is shown the distribution of the main aerosol types
of the retrieved aerosol microphysical models (i.e. subtypes)
having the highest amount of evidence. The main aerosol
types are the weakly absorbing (WA), weakly absorbing sea
salt (WA1114), biomass burning (BB), desert dust (DD) and
volcanic (VO) aerosols. The prevailing types on both days in
the vicinity of Beijing AERONET site (marked with black
star in Fig. 3) are the BB and WA types. The appearance of
marine type WA1114 as the best-matching type may occur
due to cloud impact since the nearby pixels with no results
have been omitted as cloudy pixels. In addition, on 27 April
(right) the desert dust type obtained the greatest evidence in
the upper part of the examination area. An air mass trajec-
tory analysis (not shown here) indicated that on 27 April dust
from the Gobi desert (north of the study area) was entering
the Beijing area.

Figures 4 and 5 illustrate how plausible it is that the main
aerosol type represents the prevailing aerosol air mass type.
We have summed up the relative evidence (%) of the selected
models (i.e. subtypes) within each main type to get a quan-
tity of confidence, i.e. shared evidence, for each main aerosol
type. Figures b-f show pixel-wise the shared evidence (%) for
each main type. However, the figure on the upper-left cor-
ner (a) presents the relative evidence (%) of the single best-
fitting aerosol microphysical model indicating how superior
the ranked best model is with respect to the other selected
models if any. We can notice that the one best model does not
necessarily determine the aerosol type alone, but a mixture of
models could give a better match. We also observe that both
WA- and BB-type aerosol microphysical models get support
as representative models for some pixel areas (b-d). In ad-
dition, on 27 April, the DD type gets strong evidence in the
upper-right corner of the examination area (Fig. 5e).

Figure 6 shows the distribution of the retrieved MAP AOD
estimates on both days. The upper row shows the MAP esti-
mate from the aerosol microphysical model with the highest
amount of evidence. The lower row shows the MAP estimate
from the averaged posterior distribution over the selected
best models. In general, the AOD point estimate value from
the averaged posterior distribution is lower than the AOD es-
timate based on the single best model.

Figure 7 shows the results for a single pixel having a ge-
ometric collocation with the AERONET Beijing site; i.e. the
Beijing site coordinates are inside an OMI pixel. The up-
per row shows the measured reflectance (in blue) and the
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 (a)  (b)

Figure 1. True-colour MODIS image (RGB) on 16 April 2008 at 05:15 UTC (a) and on 27 April 2008 at 04:55 UTC (b) over the Beijing
area. MODIS, on the Aqua satellite, has the equator crossing time at only about 15 min earlier than OMI. The area of analysed OMI pixels is
marked with red contours.

Figure 2. The number of most appropriate aerosol microphysical models at the retrieved pixels on 16 April (a) and 27 April (b).

selected best-matching modelled reflectances (in green) for
16 April (left) and 27 April (right). In the lower row the pos-
terior density functions that characterise the uncertainty are
shown. Also, the best-matching models’ identification num-
bers and the associated relative evidence inside brackets are
given. The relative evidence (%; Eq. 5) expresses how plau-
sible it is that this model explains the measured spectral re-
flectance with respect to the other selected best models. The
averaged posterior distribution (Eq. 7) has two peaks indi-
cating difficulty in model selection. The red vertical dashed
line denotes the MAP AOD estimate (i.e. the posterior mode)

from the averaged posterior. The grey vertical lines show the
AERONET AOD at 500 nm values at separate measurement
times.

On 16 April (Fig. 7 left) two best-matching models are
selected, both of the BB type. The other types of models,
e.g. weakly absorbing type, do not match as well as the se-
lected best BB models. The width of the averaged poste-
rior is relatively wide, indicating high uncertainty in the re-
sult. The model with the higher evidence has much weight
in the averaged posterior and this affects the retrieved AOD,
which is higher than the AERONET values. The AERONET
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Figure 3. The main aerosol type of the retrieved model with the highest amount of evidence, i.e. the best model on 16 April (a) and 27
April (b). The main aerosol types are WA1114 (weakly absorbing sea salt), WA (weakly absorbing), BB (biomass burning), DD (desert dust)
and VO (volcanic). The location of the AERONET site Beijing, China (see Table 2) is marked by a black star.

measurements are in the time range of 00:02–04:59 UTC,
which is before the OMI overflight time (∼ 05:25 UTC).
However, there are some AERONET AOD measurements
(n= 3) within a 2 h time window including OMI overpass
time. These AOD values are marked by darker grey vertical
lines, and the black vertical line is the average.

On 27 April (Fig. 7 right) the resulting AOD from the aver-
aged posterior is in agreement with the AERONET data. On
that day the AERONET measurements, marked by grey ver-
tical lines, are in time range of 08:22–09:43 UTC, thus were
monitored after the OMI overpass time (∼ 05:06 UTC). The
selected best models are BB type, except for one WA type
model (blue posterior curve) that is ranked as the second-
best model in the fitting. The averaged posterior distribution
has two modes indicating two alternative explanations for the
observed reflectance. The higher mode of the averaged pos-
terior gets a larger portion of the model evidence, thus yield-
ing the MAP AOD estimate. However, if the end result is
based on the one best-fitting model, i.e. BB2312, the esti-
mated AOD level would be higher since the corresponding
posterior distribution curve is the right one.

In Table 2 the aerosol characteristics are given for
the AERONET sites and results, e.g. AOD at 500 nm
and Ångström exponent values, retrieved by the proposed
method. The AERONET data for Beijing shown in Table 2
are the daily averages. We interpolated AOD at 500 nm by us-
ing the AERONET AOD at 440 nm and the AERONET pro-
vided Ångström exponent 440–675 nm. The Ångström expo-
nent describes the dependency of the AOD on wavelength. It
gives an approximation of the aerosol particle size in such a
way that when coarse aerosol particles dominate the expo-
nent is small, and vice versa for the fine-particle dominance.
In our retrieval we calculated the Ångström exponent (442–

500 nm) by Ångström exponent power law where the AOD
at 442 nm was derived from the associated LUT based on
the retrieved AOD at 500 nm. Thus the reported Ångström
exponent is completely determined by the model LUT. In
Table 2 Ångström exponent values are presented, based on
the best-fitted (α1) and the second-best-fitted (α2) model.
For Beijing, on both days, the derived Ångström exponent
value of the best model (α1) is in good agreement with the
AERONET value. Even so, on 16 April α2 deviates more
from the AERONET value, although the estimated AOD,
based on the second-best model, is closer to the AERONET
AOD values (see Fig. 7, left panels).

4.2 Northern and central Africa on 26 March 2008

This case study covers a large area over northern and cen-
tral Africa on 26 March 2008. Figure 8 shows the merged
Aqua/MODIS true-colour images on 26 March 2008 at 13:00
and at 13:05 UTC over northern and central Africa. The view
is mainly cloud free except for some broken cloud cover
in coastal regions. The AOD data from four AERONET
sites, Agoufou (northern Mali), DMN_Maine_Soroa (Niger),
IER_Cinzana (Mali) and Saada (Morocco), are used to eval-
uate the results. Daily averaged AERONET version 2 direct-
sun level 2.0 AOD data are reported in Table 2.

In Fig. 9 we can see the areas where the maximum num-
ber of aerosol microphysical models are selected, as well as
the areas where only one model dominates. In the middle of
the orbit is an area where none of the models have an ad-
equate fit with the measured reflectance (Eq. 6). In March
2008 the rows 54–55 (i.e. 53–54 if 0-based) in the OMI mea-
surements are affected by a row anomaly (OMI row anomaly
team, 2016). We have omitted these two rows in the analysis.
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Figure 4. The relative evidence distribution (%) of the selected models on 16 April 2008. (a) The relative evidence of the best model with
the highest amount of evidence and the shared evidence of the best models within each main aerosol type: (b) weakly absorbing, (c) weakly
absorbing sea salt, (d) biomass burning, (e) desert dust and (f) volcanic aerosols.
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Figure 5. Same as Fig. 4 but showing the relative evidence distribution (%) of the selected best models on 27 April 2008.
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Figure 6. The MAP AOD estimate based on the best model (a, b) and based on the averaged posterior distribution (c, d) shown for 16 April
(a, c) and 27 April (b, d). Please note the different colour scale.

As seen in Fig. 10 the desert dust type dominates the se-
lected best models. There are also areas where the BB-type
model gets the highest amount of evidence to explain the
measurement. The pixels for which the weakly absorbing
sea-salt-type aerosols (type WA1114) have the best fit are lo-
cated in the edge areas of clouds or in partly cloudy areas (see
Fig. 8). The selection of volcanic aerosol type as the only ap-
propriate aerosol type happens for pixels located north-east
of Lake Chad for which cloud is seen in the MODIS RGB
image (Fig. 8). The location of AERONET sites are marked
with black stars.

Figs. 11b–f reveal that all the selected best models (i.e.
subtypes) usually are of the same main type, namely BB or
DD type. However, in the area around Algeria, the occur-

rence of a mixture of main types may be related to the cloud
contamination of these pixels.

From Fig. 12 it can be concluded that the MAP estimate
from the single best aerosol microphysical model often has
a slightly higher AOD level (left) than the MAP estimate
from the averaged posterior distribution over the selected
best models (right). We can notice that in the area south of
8◦ latitude, where the biomass-burning-type models domi-
nate, the AOD estimates are higher. Active fire maps from
satellite data (not shown here) support the fire activity at that
area. We can also notice the DD-type dominating area near
the Agoufou AERONET site where the AOD level is higher
(see Figs. 12 and 11e).

Figure 13 shows the Ångström exponent (442–500 nm)
values based on the best-fitted (left) and the second-best-
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Figure 7. Beijing, 16 April (a, c) and 27 April (b, d). (a, b) The observed reflectance (blue dots) and modelled reflectance (green dots) of
the selected best-fitting models. The error bars in blue correspond to 2× standard measurement error and the error bars in grey correspond
to 2× standard uncertainty due to measurement and model error. (c, d) The posterior probability distribution of AOD for each best-fitting
model. The biomass-burning-type model’s posterior density curve is in red and weakly-absorbing-type model’s curve in blue. The dashed
black curve is the averaged posterior distribution over the best-fitting models (Eq. 7). The red vertical dashed line indicates the MAP estimate
from the averaged posterior distribution. The grey vertical lines show AERONET version 2 direct-sun level 2.0 AOD at 500 nm values
position at the horizontal axis. The darker grey vertical lines (c) denote AERONET AOD values (n= 3) within a 2 h time window including
OMI overpass time and the black vertical line is the average of these values.

fitted (right) model. In Table 2 the calculated Ångström expo-
nent (442–500 nm) values are shown at the locations of the
reference AERONET sites. Again, it should be noted here
that the retrieved Ångström exponent is completely deter-
mined by the model LUT. Consequently, as seen in Fig. 13
the Ångström parameters reflect the selected aerosol micro-
physical models. That is, the Ångström values are low where
the desert-dust-type models dominate. Correspondingly, in
the coastal region where smoke and urban polluted air are
typical the Ångström exponent is higher.

Figures 14 and 15 show the spectral reflectance fitting
curves (on the left-hand side) and the retrieved AOD esti-
mates with uncertainty (on the right-hand side) for the sin-
gle pixels located around the AERONET sites: Agoufou,
DMN_Maine_Soroa, IER_Cinzana and Saada. In the figure

showing the posterior distributions (right) the grey vertical
lines indicate AERONET direct sun level 2.0 AOD at 500 nm
values measured during that day. The darker grey vertical
lines denote AERONET AOD values within a 2 h time win-
dow including the OMI overpass time and the black vertical
line is the average of these AOD values.

The measured reflectance at the Agoufou site (first row in
Fig. 14) has a rather unique spectral structure and there is
only one dust-type model that fits the measured reflectance
at all. The associated AOD from the model LUT is high
with respect to the AERONET values. The large width of
the posterior distribution, which is the averaged posterior
distribution as well, indicates high uncertainty in the model
selection and thus in the retrieved AOD. Even the retrieval
uncertainty is high, the posterior density does not cover
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Figure 8. Merged true-colour Aqua/MODIS image (RGB) on 26
March 2008 at 13:00 and 13:05 UTC. The area of the analysed OMI
pixels is marked with red contours.

Figure 9. The number of most appropriate aerosol microphysical
models at the retrieved pixels.

the AERONET AOD values at all. However, the posterior
density covers AOD from the OMAERO product (Stein-
Zweers and Veefkind, 2012), which is also high compared
to the AERONET daily average value (Table 2). It can be
noted here that AERONET measurements at the Agoufou
site were made in the morning in time range of 06:58–
09:27 UTC whereas the OMI overpass time at that location
was at ∼ 13:15 UTC. However, the derived Ångström expo-

Figure 10. The main aerosol type of the retrieved model with
the highest amount of evidence. The locations of AERONET sites
Agoufou, DMN_Maine_Soroa, IER_Cinzana and Saada (see Ta-
ble 2) are marked by black stars.

nent α1 has rather good agreement with the AERONET value
(Table 2).

At the other three reference AERONET sites AOD val-
ues are measured during the OMI overpass time. In Fig. 14,
showing the results for DMN_Maine_Soroa case (lower
row), all 10 selected models belong to the biomass burn-
ing type, and their posteriors indicate an uniform small un-
certainty. The estimated AOD values are consistent with
the AERONET AOD values within uncertainty but the de-
rived Ångström exponents, α1 and α2, do not agree with
the AERONET value (Table 2). In the IER_Cinzana case
(Fig. 15 upper row) the selected models are of desert dust
type (orange) except for one biomass-burning-type model
(red curve). The estimated AOD is a bit lower than the
AERONET measurements. In the Saada case (Fig. 15 bottom
row) the AERONET AOD values are in good agreement with
estimated AOD, although the averaged AERONET AOD
(black vertical line) of the measurements made around the
OMI overpass time is slightly lower than the MAP AOD
estimate (red dashed vertical line). Also, the AOD values
from the OMAERO product are in good agreement with the
AERONET values (Table 2). For the sites IER_Cinzana and
Saada the best and the second-best models have good evi-
dence (Fig. 15 right column) indicating that the selection of
the best model happened by chance. Consequently, the de-
rived α1 for the Saada site is consistent with the AERONET
value, whereas the derived α2 for IER_Cinzana has better
agreement than α1 with the AERONET value.
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Figure 11. Same as Fig. 4 but showing the relative evidence distribution (%) of the selected best models in the Africa case on 26 March
2008.
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Figure 12. The MAP AOD estimate based on the best model (a) and based on the averaged posterior distribution (b).

Figure 13. The Ångström exponent at 442–500 nm of the ranked best (a) and the second-best (b) aerosol microphysical model.

5 Discussion and conclusions

In this paper, we focused on the aerosol microphysical model
selection in the aerosol retrieval and on the quantification
of uncertainty for the retrieved aerosol type and AOD using
OMI TOA spectral reflectance measurements. The aerosol-
type selection from LUTs is a source of uncertainty and af-
fects the accuracy of the retrieval. The main targets of our
study are (1) to improve the retrieval error estimate (i.e. to
produce more realistic uncertainty estimate), (2) to evaluate
the model choice procedure and (3) to find a more robust
AOD estimate that is based on the average of the most ap-
propriate aerosol microphysical models instead of on a single
model chosen probably by chance. The retrieval scheme is
similar to the OMAERO algorithm, using information from
several wavelength bands between 330 and 500 nm and pre-

calculated LUTs for aerosol microphysical properties. The
presented methodology was introduced and previously used
by Määttä et al. (2014) for the uncertainty quantification in
the retrieval of AOD at the reference wavelength of 500 nm.
This new research investigates the uncertainty in the aerosol-
type selection in more detail. What is more, we used the pro-
posed methodology to experiment with test cases, covering
large pixel areas. We evaluated the retrieved AOD by com-
parison with AERONET measurements at example sites. For
simplicity, we studied only cloud-free over-land OMI pixels.

The method uses Bayesian statistical inference to quan-
tify uncertainties due to model selection and approximations
in the forward modelling. The concept of model evidence is
used as a tool for model comparison and to assist in the selec-
tion of the best models. The forward model approximations
cause model errors that result in systematic differences be-
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Figure 14. Same as Fig. 7 but for the pixels located at Agoufou (a, b) and DMN_Maine_Soroa (c, d). The grey vertical lines show AERONET
version 2 direct-sun level 2 AOD at 500 nm values. The darker grey vertical lines (d) denote AERONET AOD values within a 2 h time window
including OMI overpass time and the black vertical line is the average of these values.

tween the modelled and observed reflectance. We acknowl-
edge this model discrepancy when choosing the most appro-
priate LUTs in order to produce more realistic uncertainty
estimates of the retrieved AOD. Following the Bayesian ap-
proach the uncertainty is described by the posterior proba-
bility distribution. The selection of single best-fitting aerosol
microphysical model is not always clear and this uncertainty
is addressed in this study. We use a statistical technique based
on Bayesian model averaging to combine the AOD posterior
probability densities of the best models to obtain the aver-
aged posterior distribution. Then the retrieved AOD is the
MAP estimate from the averaged posterior function. We also
determine the shared evidence of the best-matching mod-
els within a main aerosol type (weakly absorbing, sea salt,
biomass burning, dust and volcanic) in order to quantify the
plausibility of each main aerosol type.

Retrieving the aerosol type and AOD from the TOA re-
flectance measurements is an ill-posed problem and a priori

information on prevailing aerosol conditions are needed to
obtain a solution. The limited information content in the OMI
measurements and the narrow wavelength band range up to
500 nm make solving the problem very challenging. In our
approach we did not preselect aerosol microphysical models
based on, for example, a climatology of aerosol geographical
distribution. Instead, we fitted all the available models (i.e.
LUTs), a total of 50 models, to the spectral measurement.
This makes the whole process slower but is justified here for
studying the uncertainty in the aerosol model selection. The
goodness-of-fit value (Eq. 6) was used to analyse whether
the retrieved solution is acceptable. It is highly likely that
the used model set is not comprehensive enough to represent
all aerosol air mass conditions. In the Beijing case studies the
absorbing biomass-burning-type aerosol microphysical mod-
els dominate (Sect. 4.1), and the reason could be a lack of
proper models for the prevailing aerosol conditions during
the selected days. In addition, in the case of northern and
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Figure 15. Same as Fig. 14 but for the pixels located at IER_Cinzana (a, b) and Saada (c, d). (b, d) The desert-dust-type models’ posterior
density curves are marked with orange and biomass-burning-type models with red.

central Africa (Sect. 4.2), there is an area in the middle of the
orbit where none of the available models gave an adequate
fit.

We made the cloud screening in a straightforward way just
using the effective cloud fraction threshold value of 0.34 (see
Sect. 2) and thus there were most probably cloud-affected
pixels left. The suspicious results were often localised to pix-
els in the edge of a cloud or inside broken-cloud areas. In
these cases the observed reflectance was such that the unex-
pected model, e.g. an oceanic or volcanic aerosol model, had
the best fit (see Fig. 10). This could be used as an additional
cloud detection feature.

Here the model discrepancy was determined empirically
by exploring a set of residuals (i.e. the difference between
observed and modelled reflectance) and then fitting a Gaus-
sian process to find the characteristics of the model error
(see Määttä et al., 2014). Brynjarsdóttir et al. (2014) dis-
cussed model discrepancy and its effect on the results with
simple examples. They also emphasised the importance of

modelling the model error properly and the use of realistic
priors for the model discrepancy.

The presented method accounts for the forward modelling
uncertainty and also includes the uncertainty due to model
selection in the total uncertainty budget. In particular, it pro-
vides tools for analysing the different sources of uncertain-
ties and the influence of aerosol microphysical model selec-
tion on the estimated AOD. The case studies indicate that
the developed methodology, in general, works in the varying
aerosol conditions as expected. However, even the method
gives a solution that passed the goodness-of-fit test, it does
not ensure correctness of the result. We found that the in-
creased uncertainty of AOD expressed by the posterior distri-
bution reflects the difficulty in model selection. This provides
more information on the uncertainty and produces more real-
istic uncertainty estimates as well. We can also conclude that,
for the most part, the combination of aerosol models obtained
by the Bayesian model averaging approach gives better AOD
estimates than if it were based on one best model that may
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have been selected by chance. There are cases when several
selected models have almost the same portion of the relative
evidence and so the order of the best models may have been
happened by chance. This situation is even more complicated
if the level of the AOD varies from model to model.

The comparison with the AERONET data revealed that if
the estimated AOD at 500 nm from the averaged posterior
distribution is not consistent with the AERONET AOD val-
ues, the derived uncertainty of AOD is higher. Then, in most
cases, the averaged posterior density covers the AERONET
AOD values. The derived Ångström exponent values are in
rather good agreement with the AERONET values, even if
they are LUT dependent (see Table 2). In general, the re-
trieved AOD values are also consistent with the AOD from
the OMAERO product and the solution is achieved for a
larger pixel set.

However, in order to confirm robustness of the method-
ology more comprehensive and systematic assessment and
evaluation of the method are needed. This involves valida-
tion studies with reference data as well as implementation of
the method using other instruments’ measurements. Also, the
examination of the method with simulated data would offer
additional information on the usability and reliability of the
approach. Moreover, further study and discussion are needed
to determine how to express the uncertainty information pro-
vided by the posterior distribution in a more compact form.

The method described in this work is applicable to any
instrument measurements where the observed reflectance is
available as well as the aerosol microphysical models. Our
plan is to apply this method to an AATSR retrieval algo-
rithm where the models are constructed during the fitting us-
ing a limited amount of aerosol components describing non-
absorbing and absorbing fine particles together with coarse
marine and dust particles (Kolmonen et al., 2016).

Data availability. The OMI level 1B, OMCLDO2 product, OM-
LER product and OMAERO product data used in this study are
from the NASA Goddard Earth Sciences Data and Information Ser-
vices Center (GES DISC) archive and are freely available to the
user community via the website: https://urs.earthdata.nasa.gov. The
results of the case studies derived by the presented method are avail-
able upon request from the corresponding author.
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