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Abstract. A novel approach for the nowcasting of clouds
and direct normal irradiance (DNI) based on the Spinning
Enhanced Visible and Infrared Imager (SEVIRI) aboard the
geostationary Meteosat Second Generation (MSG) satellite
is presented for a forecast horizon up to 120 min. The basis
of the algorithm is an optical flow method to derive cloud
motion vectors for all cloudy pixels. To facilitate forecasts
over a relevant time period, a classification of clouds into
objects and a weighted triangular interpolation of clear-sky
regions are used. Low and high level clouds are forecasted
separately because they show different velocities and mo-
tion directions. Additionally a distinction in advective and
convective clouds together with an intensity correction for
quickly thinning convective clouds is integrated. The DNI is
calculated from the forecasted optical thickness of the low
and high level clouds. In order to quantitatively assess the
performance of the algorithm, a forecast validation against
MSG/SEVIRI observations is performed for a period of 2
months. Error rates and Hanssen–Kuiper skill scores are de-
rived for forecasted cloud masks. For a forecast of 5 min for
most cloud situations more than 95 % of all pixels are pre-
dicted correctly cloudy or clear. This number decreases to
80–95 % for a forecast of 2 h depending on cloud type and
vertical cloud level. Hanssen–Kuiper skill scores for cloud
mask go down to 0.6–0.7 for a 2 h forecast. Compared to per-
sistence an improvement of forecast horizon by a factor of 2
is reached for all forecasts up to 2 h. A comparison of fore-
casted optical thickness distributions and DNI against ob-
servations yields correlation coefficients larger than 0.9 for
15 min forecasts and around 0.65 for 2 h forecasts.

1 Introduction

Availability of energy power plays a central role in soci-
ety and its economical evolution. Among the renewable en-
ergy sources, concentrating solar power (CSP) systems have
a great potential since they combine electricity production
with a storage capacity. By means of mirrors the incoming
solar irradiance is concentrated, heating a fluid and driving a
heat engine. The used technologies are parabolic trough, so-
lar power tower, Fresnel reflectors and dish Stirling. In case
of low insolation the electricity production is taken over by
a fuel, e.g., gas. The operation of such solar power plants
is challenging since the thermodynamic properties of the
heated fluid are difficult to control, for instance when the CSP
plant is only partially illuminated by the Sun or when insola-
tion is strongly variable over time ranges of a few minutes to
a few hours.

The fuel of solar power plants is direct normal irradiance
(DNI). The main source of DNI spatiotemporal variability is
cloudiness due to its intrinsic spatiotemporal inhomogene-
ity and to the fact that already thin clouds can reduce DNI
to unusable levels for CSP. Further factors that affect DNI
are aerosols and, to a lesser extent, water vapor and ozone
(Gueymard, 2012). Thus, the knowledge and the prediction
of cloud properties for the derivation of DNI is essential for
the optimization of the CSP operation strategy because for
day-ahead and intra-day electricity markets the electricity
production must be announced to the market operator and
deviations from the production schedule may lead to devia-
tion penalties. Kraas et al. (2013) show the economic mer-
its of a forecasting system for day-ahead forecasts for CSP,
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which reduces penalties by 47.6 % compared to a persis-
tence model. The persistence model (the cloud distribution
observed at the forecast starting point is assumed to stay un-
changed during the entire forecast time) is the simplest fore-
cast model and works well for periods of low cloud vari-
ability and obviously for clear-sky cases. Of course, the ac-
curacy of persistence models is reduced substantially when
the variability increases. Therefore other methods are used
based on data from various sources depending on the fore-
cast horizon. For the prediction of solar irradiance 1 or 2
days ahead numerical weather prediction (NWP) models are
used (Marquez and Coimbra, 2011), which provide better re-
sults when combined with artificial neural networks (ANNs)
(Gonzalez et al., 2010). However, for short-term forecasts up
to 6 h NWP models are not well suited and satellite-based
methods come into play: Perez et al. (2013) and Lorenz et al.
(2012) show that below a forecast horizon of 5–6 h, forecast-
ing methods of NWP models have a lower accuracy com-
pared to satellite-based algorithms (Eissa et al., 2013; Mar-
quez and Coimbra, 2013). Other approaches deal with the
detection and tracking of cloud patterns with satellite data
– a challenging task due to the nonlinearity in atmospheric
motion. They range from standard pattern recognition tech-
niques (Bolliger et al., 2003; Wu, 1995; Wu et al., 1997;
Schmetz et al., 1993a) to multichannel correlation–relaxation
labeling (Evans, 2006). Geostationary satellites usually pro-
vide multispectral images with a temporal resolution be-
tween 5 and 30 min that can be used for determining the mo-
tion of clouds and their properties. However, their temporal
and spatial resolution (on the order of kilometers) of satellite
images are inappropriate for accurate forecasts of clouds for
the next few minutes at particular (power plant) sites. This
lack can be overcome by using local high-frequency image-
capturing devices, such as total sky imagers (Chu et al., 2013;
Wacker et al., 2015) or other ground sensors (e.g., pyranome-
ters, Bosch and Kleissl, 2013).

Convective clouds are of particular interest for society due
to the high precipitation rates that are often connected to
them. Because of their rapid development they increase the
error in any forecast. Therefore it is reasonable to treat con-
vective and advective clouds separately and to investigate the
development of convective cells, which is a challenging task.
During the last decades a large number of different cloud
nowcasting approaches have been developed, most of them
with a strong focus on thunderstorms. These techniques are
using near real-time information from radars, e.g., CONRAD
(Lang, 2001) and TRT (Hering et al., 2004), and passive im-
agers, e.g., Bolliger et al. (2003), Zinner et al. (2008) or Fei-
das and Cartarlis (2005), or a combination of both (Henken
and Schmeits, 2011). There is also an effort to combine
the advantages of radar data with lightning data (Steinacker
et al., 2000) or additional numerical models (Pierce et al.,
2000), but these methods have the disadvantage that only
these areas can be observed where the used instruments are
sited.

This publication presents a novel nowcasting algorithm
based on satellite data from the Spinning Enhanced Visible
and Infrared Imager (SEVIRI) aboard Meteosat Second Gen-
eration (MSG) for all clouds with a focus on clouds which are
relevant for CSP generation. With its high repetition rate of
15 min, its spatial sampling distance of 3 km and the avail-
ability of 12 spectral channels, this sensor is very well suited
for the determination and forecast of cloud optical properties
to be used to derive DNI since clouds are highly variable in
space and time. Our method focuses on forecast times from
5 to 120 min. It exploits an optical flow algorithm to deter-
mine atmospheric motion vectors for every pixel. The start-
ing point is represented by the optical thickness of clouds that
are first split up into two (vertically overlapping) layers in or-
der to take care of different velocities of upper level and low
level clouds. To reduce the turbulent character of the atmo-
spheric motion field on small scales, rendering long-range
forecasts impossible, cloud subsets are defined as rigid ob-
jects that move with time. Convection cannot be forecasted
adequately this way, but our approach considers dissipating
convective clouds, where extended anvils are produced that
can live for many hours and have an important impact on
DNI. DNI itself is eventually computed from the cloud op-
tical thickness forecast. A validation against MSG/SEVIRI
observations is shown at the end.

After a description of the satellite instrument
MSG/SEVIRI and the cloud detection the analysis al-
gorithms needed for our forecast method including the
optical flow procedure are presented (Sect. 2). In Sect. 3 the
nowcasting algorithm is described followed by its validation
in Sect. 4.

2 Instrument and tools

MSG is a series of European geostationary satellites operated
by EUMETSAT. Their primary mission is the observation of
weather phenomena on the Earth’s full disk with the SEVIRI
imager. It consists of three channels in the visible, one in the
near infrared and eight in the infrared spectral range with a
sampling distance of 3 km at the sub-satellite point (Schmetz
et al., 2002). Additionally a broadband high-resolution visi-
ble (HRV) channel is integrated, which covers only a part of
the Earth’s full disk with a higher spatial resolution of 1 km
at the sub-satellite point. The usual repetition rate of 15 min
is reduced to 5 min in rapid-scan mode for a part of the disk.

Optical, micro- and macrophysical properties of clouds are
important parameters for the modeling of radiation–cloud in-
teractions. Thus, their determination plays an important role
for the computation of surface radiation, including DNI. The
cloud detection and analysis algorithms used in this work are
presented in the following two sections (Sect. 2.1 and 2.2).
In Sect. 2.3 an optical flow method for the determination of
cloud motion fields is described.
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2.1 Cloud classification and cloud optical properties

For thin ice clouds the “Cirrus Optical properties derived
from CALIOP and SEVIRI during day and night” (COCS;
Kox et al., 2014) algorithm is used. It is a back-propagation
neural network, which is trained with collocated products of
the depolarization-lidar CALIOP (Cloud-Aerosol Lidar with
Orthogonal Polarization) aboard the Cloud-Aerosol Lidar
and Infrared Pathfinder Satellite Observations (CALIPSO)
and brightness temperatures as well as brightness tempera-
ture differences of MSG/SEVIRI. The COCS algorithm pro-
vides optical thickness (denoted by τCOCS in the following)
and cloud top height for the highest ice cloud layer. In a val-
idation study against airborne high spectral resolution lidar
measurements (Kox et al., 2014), COCS detected 80 % of the
cirrus clouds with optical thickness 0.2 and its detection ef-
ficiency increased for higher optical thicknesses. For optical
thickness 0.1 COCS detected still 50 % of the cirrus clouds
observed by CALIPSO. The false alarm ratio amounted to
2.6 % for all measured cirrus clouds. It is very robust for
small optical thicknesses above 0.1 up to a maximum of 2.5.
Clouds with larger optical thickness cannot be penetrated by
CALIOP (Winker et al., 2010).

In addition to COCS, APICS (Algorithm for the Physical
Investigation of Clouds with SEVIRI; Bugliaro et al., 2011)
is applied for the detection of liquid water clouds and thick
cirrus. The APICS cloud detection is based on Kriebel et al.
(2003) and consists of two groups of threshold tests applied
to the solar SEVIRI channels. The first group detects a cloud
when it is bright enough compared to the cloud-free reflectiv-
ity. The second is applied over sea and detects a cloud when
the variability of the signal is higher than that of the cloud-
free background (the sea surface reflectivity is supposed to
be spatially homogeneous). A pixel is cloudy when at least
one test gives a positive result; the pixel cloud phase can be
liquid or ice.

A cloud top phase mask is produced by merging the results
of the two algorithms. A cloud detected by COCS is an ice
cloud, i.e., its cloud top is composed of ice. Clouds detected
by APICS can be both ice and liquid water clouds. Thus, we
assign all clouds detected by COCS to the ice phase, while a
cloud that is detected by APICS but not by COCS is assigned
to the liquid water phase.

Cloud optical properties are obtained the following way.
COCS provides the optical thickness of the upmost cloud
layer. Furthermore, for both cloud types (liquid water and
ice), cloud optical thickness and effective radius are derived
from two solar channels using APICS. In APICS, SEVIRI
channels centered at 0.6 and 1.6 µm are used based on the
method by Nakajima and King (1990) and Nakajima and
Nakajima (1995). The lookup tables required for this applica-
tion have been computed with the radiative transfer model li-
bRadtran (Mayer and Kylling, 2005; Emde et al., 2016) using
a midlatitude standard atmosphere (Anderson et al., 1986),
a typical continental aerosol load, a rural type aerosol in

the boundary layer, background aerosol above 2 km, spring–
summer conditions and a visibility of 50 km (Shettle, 1989).
Surface albedo is taken from the temporally appropriate
white sky MODIS albedo product MCD43C1 (Schaaf et al.,
2002). For liquid water clouds, Mie cloud optical properties
are assumed (spherical particles), while for ice clouds the pa-
rameterization by Baum et al. (2005) is used (a mixture of
ice cloud habits as a function of ice crystal size). The op-
tical thickness derived this way (denoted by τAPICS, liq and
τAPICS, ice for liquid and ice water clouds respectively) ranges
from 0 to 100 and refers to the entire atmospheric column.
For ice clouds, τAPICS, ice is usually higher than τCOCS, which
refers to the upmost ice cloud layer.

2.2 Quickly developing convective clouds

For the detection of convective clouds, procedures of the Cb-
TRAM algorithm (CumulonimBus TRacking And Monitor-
ing; Zinner et al., 2008, 2013; Merk and Zinner, 2013) have
been examined and exploited in this work. Cb-TRAM di-
vides convection into three stages:

– convection initiation (stage 1)

– rapid cooling (stage 2)

– mature thunderstorm cells (stage 3).

In this work we consider only stage 3, the detection of mature
thunderstorm cells. It is limited to areas with a strong spa-
tial roughness of the HRV, determined by the local standard
deviation, combined with the brightness temperature differ-
ence of 6.2 and 10.8 µm. This is only valid for daytime. Dur-
ing night the HRV is replaced by a similar measure for the
brightness temperature at 6.2 µm, which is less successful
at confining the detection to the active updraft but includes
large parts of the surrounding anvil and is independent of
sunlight conditions; i.e., it produces smooth results in partic-
ular at sunrise, when the forecast is started. As these thinner
clouds are most interesting for the derivation of DNI, the lat-
ter detection is used as part of the forecast algorithm in the
following.

2.3 Cloud motion fields

The forecast rests upon an optical flow method determining
a motion vector field from two consecutive images which is
part of Cb-TRAM (Zinner et al., 2008). Unlike feature-based
approaches, often used for the determination of atmospheric
motion vectors for single objects/clouds in an image (e.g.,
Schmetz et al., 1993b), this method is pixel-based: instead of
vectors only for interesting cloud patterns, a disparity vector
field V (P ) defined at each pixel position P is derived.

Movements in the atmosphere take place on different
scales reaching from microscale (few centimeters) to global
scale (10 000 km). These large-scale flows overlay the small-
scale movements so that the determination of the disparity
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Figure 1. (a) Start image A. (b) Start image B. A and B are squares that have to be matched by the pyramidal matcher. (c) The final disparity
vector field V is plotted on the start image A and A′(P )= A(P−VA→B (P )) with (d) the remaining difference field A′−B after processing
on all pyramid levels.

vector field for all scales is challenging. In order to take this
into account the disparity vector fields are successively de-
rived on different scales, starting from low resolution down
to high resolution – a pyramidal scheme.

The procedure is described by means of an example for
two images A and B (Fig. 1a, b) with a size of nx =
100× ny = 100 pixels displaying two squares (10× 10 pix-
els). Similar structures in the images A and B are identified
iteratively at different spatial scales, i.e., for all sub-sampling
levels l of the pyramidal approach with M levels, starting
with the topmost level with the roughest resolution:

1. Select the number of sub-sampling levels N (e.g., N =
2 for a pyramid with M =N + 1= 3 levels); this num-
ber depends on the size of the shifts that are expected.

2. Define the imagesAM = A and BM = B, set l =M−1.

3. Start the iterative process.

3.1. Calculate the dimensions nxl = nx/2l and nyl = ny/2l

of the given sub-sampling level l (nxl × nyl = 25× 25
pixels for the topmost level, nxl × nyl = 50× 50 pixels
for the second sub-level).

3.2. Resample the start images Al+1 and Bl+1 to nxl × nyl
to obtain Al and Bl .

3.3. Determine comparison images Al,s by shifting ev-
ery pixel P in image Al to Al,s = Al(P +1K i,j ) by
1K i,j = (i,j), i,j ∈ [−2,2], in both dimensions.

3.4. Identify the best fit between all possibleAl,s and the tar-
get image Bl through minimization of the squared dif-
ference of the intensities of Al,s and Bl in a surrounding
of each pixel: this results in the disparity vector field V l

with dimensions nxl × nyl .

3.5. To mitigate the impact of singular incorrect motion
derivations and ensure physically realistic local flow
fields, these initially integer displacements V l are
smoothed over the local neighborhood of each pixel.

3.6. Blow up the resolution of V l to the original one nx×ny
to obtain V l,original.

3.7. Add the motion vectors obtained so far to V =∑N
i=lV l,original.
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3.8. Warp the image A with the disparity vector field V to

Al(P )= A(P −V (P )), (1)

for every pixel position P . Notice that this equation im-
plies that pixels P in A are not shifted with V into Al ,
but for every pixel P in the forecast image Al a value
from the starting image A is assigned which can be
found there at position P−V (P ). So every pixel is allo-
cated to a value and no information gaps (i.e., no “holes”
in the image Al) occur in the forecast. However, since
V contains floating point values due to the smoothing
in step 3.5, bilinear interpolation of A in x and y is ap-
plied when performing Eq. (1). Thus, the warped image
is only a “remapping” of the start image.

3.9. Reduce the value of l by 1 and go back to step 3.1 if
l ≥ 0.

4. At the end of the iterative procedure, the refined dispar-
ity vector field V that has been obtained through suc-
cessive addition of the results of all pyramidal levels
provides the final disparity vector field V A→B in full
resolution and its application to Eq. (1) the final warped
image A′(P )= Al=0(P )= A(P −V (P )).

The refined disparity vector field V A→B in full resolution
is shown in Fig. 1c. Notice that it is different from zero not
only over the area defined by the initial image A but also in
the direct neighborhood. Due to that, disparity vectors are not
always pointing from A to B but, outside of image A and B,
also in other directions. Figure 1c also shows the final warped
image A′. The displacement of image A onto B shows good
results as the final remaining difference field (Fig. 1d)A′−B
exhibits only small differences at the edges of the squares
caused by the relaxation of the disparity analysis by smooth-
ing.

For more details, technicalities and an additional example
please see Zinner et al. (2008).

3 Forecast algorithm

In this section the forecast algorithm is described. It ex-
ploits the methods introduced in the previous section. First, a
more advanced cloud classification is implemented that dis-
tinguishes two overlapping classes of clouds. Then, the pixel-
based disparity vector field is determined for both cloud
classes separately. Cloud objects are formed, based on op-
tical thickness, and motion vectors are derived for these ob-
jects. After the assignment of motion vectors to cloud-free
areas, clouds are warped to their new position with this mo-
tion vector field. An intensity correction is applied for rapidly
thinning convective clouds. In a last step the DNI is calcu-
lated from the optical thickness.

3.1 Step 1: cloud classification

In the following, clouds are classified in SEVIRI images ac-
cording to two criteria: The first one considers the cloud top
phase and the vertical structure of clouds (Sect. 3.1.1); the
second identifies a type of convective clouds particularly rel-
evant for our application, dissipating convective clouds with
a thinning anvil (Sect. 3.1.2).

3.1.1 Cloud optical properties

Low level and high level clouds are often observed to move
in different directions at different velocities due to complex
wind profiles in the atmosphere. In order to take this as-
pect into account, we aim at the separation of low and high
level clouds and the generation of two forecasts, one for low
level and one for high level clouds. However, using APICS
and COCS applied to SEVIRI satellite data according to
Sect. 2.1, this is only possible to some extent. A high ice
cloud layer as detected by COCS might occur in the same
pixel as a low level liquid water cloud. Optical thickness of
the cirrus cloud is then well accounted for by the COCS re-
sult, while APICS provides an approximation of the total op-
tical thickness of the upper ice cloud and the lower water
cloud together. Inaccuracies are due to the fact that cloud op-
tical thickness is always derived by APICS according to the
given cloud top phase, when the atmospheric column con-
sists of both liquid water and ice this assumption fails and
the resulting optical thickness is only an approximation to
the correct total optical thickness. Furthermore, the ice layer
detected by COCS might be the upper layer of a vertically
and optically much thicker cloud like a Cb (cumulonimbus).
In this case, the total optical thickness of the cloud is most
likely much larger than the COCS maximum value of 2.5,
and APICS can much better capture this aspect since its op-
tical thickness is based on the reflectivity of the entire atmo-
spheric column.

In general, the discrimination among all these cases and
the determination of optical properties for all cloud layers is
challenging using only passive satellite observations. Several
approaches have been proposed (for instance, Joiner et al.,
2010; Gonzalez et al., 2003; Huang et al., 2005; Baum et al.,
1995). In this work, we want to forecast surface DNI, which
becomes ≈ 0.1 % of the original value for a slant optical
thickness of 7, as obtained by radiative transfer computa-
tions. To this end, all liquid water clouds usually reduce DNI
to values far below the range interesting for CSP produc-
tion due to their high optical thickness. Thus, accuracy in
this range is not crucial. In case of thin cirrus, however, sur-
face DNI is not zero and the accuracy of the ice cloud optical
thickness is important as CSP, like parabolic troughs, is shut
down when DNI< 200 W m−2, which corresponds to a ver-
tical optical thickness of 2.

Qualitative indications contained in SEVIRI’s spectral
channels can be exploited to provide a reasonable differen-
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tiation between one layer and two layer cloud situations. For
clarification an example is depicted in Fig. 2 for 7 April 2013.
On this day a frontal zone is crossing the Iberian Peninsula.
A SEVIRI false color composite (Fig. 2a) suggests the verti-
cal structure of the clouds. The yellow colored cloud of the
frontal zone consists of low, warm water clouds (i.e., a small
blue component for which the inverted channel at 10.8 µm
is used). In other regions these clouds are overlaid by high
thin ice clouds with low temperatures (blueish or violet col-
ors). Over the Mediterranean Sea, east of Gibraltar, single-
layer ice clouds are observed. We exploit the differences be-
tween the APICS and COCS results for ice and liquid op-
tical thickness to define two possibly overlapping classes of
clouds called upper clouds and lower clouds that enable us
to differentiate among these cases. The classification is sum-
marized in Table 1 and explained in detail in the following.

Liquid water clouds identified following Sect. 2.1 are as-
signed to the lower cloud layer and their optical thickness
is the APICS optical thickness. If APICS and COCS indi-
cate a thin ice cloud (τAPICS, ice ≤ 2.5), the presence of an
ice cloud without lower liquid cloud layers is assumed and
optical thickness of COCS is assigned to the upper cloud
layer (because COCS is assumed to be more accurate than
APICS for thin cirrus clouds). For a cloud with ice top and
APICS ice optical thickness larger than 2.5, the difference
between the APICS ice optical thickness and the COCS op-
tical thickness is investigated. If τAPICS, ice− τCOCS ≤ 2.3,
this is interpreted as possible deviation between two different
methods providing results for the same cloud: please notice
that if τAPICS, ice is smaller than τCOCS then this condition
is always fulfilled, while an upper limit to τAPICS, ice is set
here as τCOCS+ 2.3; i.e., τAPICS, ice can be at most approx-
imately twice as large as τCOCS. Since COCS is supposed
to be more accurate than APICS for thin cirrus (and for the
sake of a “consistent” treatment of thin ice clouds), COCS
optical thickness is selected for the upper cloud while the
lower cloud optical thickness is set to zero. When in contrast
APICS retrieves an ice optical thickness larger than 2.5 (the
upper limit of COCS) and the difference between APICS and
COCS is larger than 2.3 (τAPICS, ice− τCOCS > 2.3), this dif-
ference is assumed to have physical reasons due to the pres-
ence of a lower cloud layer. The situation encountered here
is thus either a thin ice cloud on top of a water cloud or a
vertically extended cloud with ice, liquid or mixed-phase mi-
crophysics below the upper ice layer. In all cases the cloud
is thick enough that DNI at the surface is diminished to be-
low 10 % of its top-of-atmosphere value. The correct optical
thickness distribution between lower and upper cloud can-
not be determined, we arbitrarily set the optical thickness of
the lower cloud to τAPICS, ice and that of the upper cloud to
τCOCS. This ensures that the upper cloud is considered cor-
rectly in case of a thin cirrus on top of a low liquid water
cloud. Then, when the upper and the lower clouds are mov-
ing in different directions and the Sun can shine through the
thin cirrus to the ground, the most appropriate ice cloud op-

tical thickness is used. In contrast, liquid cloud optical thick-
ness is not important because it is usually so high that no DNI
can illuminate the surface. For a Cb-like cloud, this decision
is again not crucial for our application since the cloud usu-
ally moves as a whole (i.e., lower and upper layer continue to
overlap) and its total optical thickness is so high that DNI at
the surface is always zero. For this classification, the thresh-
old value of 2.3 used above has been determined empirically
based on visual inspection of false color composites like the
one shown in Fig. 2. This classification does not claim to be
exhaustive and could be further optimized, e.g., by the use
of CALIPSO/CALIOP lidar data. However, it has the advan-
tage of being computationally fast and enables the detection
of liquid water clouds below thin ice clouds and the discrim-
ination between thin and thick ice clouds. It is now possible
to follow such a cloud when it is shaded by the advection of
a thin cirrus cloud as long as the cirrus is thin enough.

The results of the classification applied to Fig. 2a are pro-
vided in Fig. 2b, c, d. The yellow colored clouds (low warm
clouds) are characterized by the blue colored region in the
cloud phase mask shown in Fig. 2b, unless they are overlaid
by high thin ice clouds (blueish colors in Fig. 2a), in which
case they are detected as multiphase clouds in the cloud mask
(red color). The green areas in Fig. 2b denote single-layer ice
clouds. Cloud-free areas are depicted in white. Figure 2c, d
show the corresponding optical thickness for the upper and
lower cloud layer derived by COCS and APICS according to
the procedure described above and in Table 1.

3.1.2 Convective clouds

The focus of the presented forecast method is the accurate
prediction of thin ice clouds since they modulate surface
DNI in the relevant range for CSP. Often ice clouds are
formed by convection. In contrast to most ice clouds that
are mainly characterized by horizontal advection, convec-
tive clouds show a strong local vertical development. While
during growth and maturity of convective cells large opti-
cal thickness values dominate and DNI at surface is negli-
gible, anvil ice clouds formed during maturity can live much
longer than the thunderstorm cloud itself during the decaying
stage (Byers and Braham, 1948). Thus they can lead to large
but isolated cirrus clouds that are indeed interesting for DNI.
Considering that convection is stronger and more important
at low latitudes, where the solar power potential is high too,
the specific consideration of decaying convective clouds rep-
resents an important aspect.

For this reason, a third class of clouds is defined: we sin-
gle out mature convective clouds using the stage 3 detection
of the Cb-TRAM algorithm as discussed in Sect. 2.2. This
classification is independent of the previous classification in
lower and upper cloud layers (Sect. 3.1.1), but due to the na-
ture of the convective life cycle Cb-TRAM stage 3 nighttime
detections turn out to always belong to the upper cloud layer.
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Table 1. Assignment of cloud optical thickness to two cloud classes called upper clouds and lower clouds. τAPICS, liq is the APICS optical
thickness for clouds with liquid cloud top phase, τAPICS, ice is the APICS optical thickness for clouds with ice cloud top phase, τCOCS is the
COCS ice optical thickness, τlow is the optical thickness assigned to the lower clouds, and τup is the optical thickness assigned to the upper
clouds.

Liquid water cloud, no ice cloud above
τAPICS, liq > 0 ∨ τCOCS = 0 τlow = τAPICS, liq τup = 0

Thin cirrus cloud, no water cloud below
τAPICS, ice ≤ 2.5 ∨ τCOCS > 0 τlow = 0 τup = τCOCS

Thick cirrus cloud, no water cloud below
τAPICS, ice > 2.5∨ (τAPICS, ice− τCOCS)≤ 2.3 τlow = 0 τup = τCOCS

Multilayer cloud
τAPICS, ice > 2.5∨ (τAPICS, ice− τCOCS) > 2.3 τlow = τAPICS, ice τup = τCOCS

Figure 2. (a) False color composite (channels centered at 0.6, 0.8 and 10.8 µm) for 7 April 2013, 13:15 UTC, for the Iberian Peninsula.
(b) The cloud mask for this scene with ice clouds in green, water clouds in blue, multiphase clouds in red and cloud-free areas in black. The
optical thickness for upper (c) and lower (d) clouds.

3.2 Step 2: motion vectors

Once clouds have been classified and cloud optical thickness
has been determined (Sect. 3.1.1), lower and upper clouds
can be considered separately; i.e., two forecasts are imple-
mented, one for lower and one for upper clouds. Thus we
proceed in the following way. First, the optical flow method
described in Sect. 2.3 (often referred to as the matcher) is
applied separately to lower and upper clouds, producing two
independent “pixel-based” motion vector fields (Sect. 3.2.1).
Second, for reasons that will become evident below, these
two motion vector fields are averaged over specific cloud

subsets (Sect. 3.2.2). Finally, motion vectors are provided for
the cloud-free areas (Sect. 3.2.3).

3.2.1 Pixel-based motion vectors

In this first stage motion vector fields are derived for the op-
tical thickness of lower clouds and upper clouds separately.
Since convective clouds as defined in Sect. 3.1.2 are a subset
of the upper clouds, they are not mentioned explicitly here
since they do not play any role at this point. Note that in or-
der to avoid edge effects one should match areas larger than
the given region of interest: the selected area should be as
large as to allow the observations of all clouds that will en-
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ter the region of interest during the time span needed for the
forecast, in this case 120 min.

There are two reasons for the use of the optical thickness
as input parameter for the optical flow method: first, it is the
quantity need for the calculation of DNI (see Sect. 3.5); sec-
ond, the matcher works best if only the objects that are meant
to move are matched against each other – in this case the
cloud objects.

Forecasts are produced in forecast steps of1tf = 5 min up
to a forecast horizon of 120 min. First, the disparity vector
field V A→B between the initial images A and B separated
by a time interval 1t = 15 min is determined by the pyra-
midal matcher with N = 3 pyramidal sampling levels (see
Sect. 2.3). Accordingly, the possible “search radius” is given
by at least 2(N+2)

= 32 pixels, corresponding to an atmo-
spheric motion of more than 360 km h−1 at midlatitudes for
the operational SEVIRI scan mode with 15 min repetition
time (see also Zinner et al., 2008). Then, a disparity vec-
tor field V 5 min according to the length of the time step 1tf
is computed by multiplication of the disparity vector field
V A→B by d =1tf/1t = 1/3:

V 5 min = d ·V A→B .

The forecast image F5 min for the lead time of 5 min is then
produced according to Eq. (1) with the corresponding dispar-
ity vector field V 5 min applied to the later initial image B:

F5 min(P )= B(P −V 5 min(P )) for all pixels P.

Forecasts with longer lead times can be performed as well.
For the next forecast step of 10 min the 2-D disparity vec-
tor field V 5 min = (u5 min,v5 min) is shifted with itself, i.e., its
components are advected according to the cloud–air motion:

u5 min,shifted(P )= u5 min(P −V 5 min(P ))

v5 min,shifted(P )= v5 min(P −V 5 min(P )).

The shifted disparity vector field V 5 min,shifted =

(u5 min,shifted,v5 min,shifted)= V 5 min(P −V 5 min(P ))=:

s(1)(P ) provides the information about the disparity vector
field at the position where the pixels will be located accord-
ing to the atmospheric flow after 5 min. This vector is then
added to V 5 min to produce V 10 min:

V 10 min(P )= V 5 min(P )+ s(1)(P )

and

F10 min(P )= B(P −V 10 min(P )) for all pixels P.

This procedure is iterated for further time steps according to
the general formula

V n·5 min(P )= V (n−1)·5 min(P )+ s(n−1)(P − s(n−1)(P ))

Fn·5 min(P )= B(P −V n·5 min(P )), n≥ 2, (2)

where any s(n) is determined recursively as

s(n)(P )= s(n−1)(P − s(n−1))

s(1)(P ) := V 5 min(P −V 5 min(P )) .

Physically, this approach means that the motion vector field
V 5 min is supposed to describe the atmospheric flow as it
can be determined from the two initial images. The forecast
procedure, Eq. (2), follows the atmospheric flow in steps of
5 min by evaluating s(n) at the different positions a cloud–air
parcel runs through with time.

To illustrate the result of this forecast procedure we con-
sider the upper cloud layer from the example in Fig. 2. The
optical thickness of these clouds is depicted in Fig. 3 for
13:00 UTC (a) and 13:15 UTC (c). The disparity vector field
V = V A→B obtained from these two images is also dis-
played in Fig. 3c using small arrows. For clarity only 1 out of
10 vectors is shown. Nonetheless, the cloud motion vectors
still exhibit a strong horizontal variability, especially inside
cloud regions and close to them. The large cloud field in the
eastern part of the Iberian Peninsula is generally shifted to-
wards east or northeast. However, motion vectors abruptly
vary from one pixel to the next. The motion vector field is
applied to the 13:15 UTC image (using Eq. 2) to produce a
1 h forecast (Fig. 3d). This forecast shows several deficien-
cies compared to the real cloud optical thickness observed
at this time (Fig. 3b) for the following reason: the pyrami-
dal matcher provides a detailed motion field representative
only for changes during a (short) 15 min time period. Small-
scale turbulence and changes produce a very variable dispar-
ity vector field (in direction and absolute value) not repre-
sentative for a longer time period. As a consequence, cloud
patterns dissolve into small patches within a short period of
time, which does not correspond to reality as only the aver-
age larger-scale motions stay stable over longer periods.

3.2.2 Object-based cloud motion vectors

For the reason discussed above, an averaging procedure for
the pixel-based cloud motion vectors is implemented. To this
end, neighboring pixels with similar optical thickness are
combined to objects. This procedure is called object classifi-
cation and is applied separately to upper and lower cloud lay-
ers since they are forecasted separately. At this step, convec-
tive clouds are treated separately. This averaging procedure
removes small-scale variability that is realistic at the moment
of derivation but makes the forecast unstable.

For upper clouds, first each convective cell (Sect. 2.2)
is classified as an individual object as prerequisite for the
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Figure 3. Illustration of the forecast of optical thickness for upper clouds for 7 April 2013 (a) and (c). Initial images A (13:00 UTC) and
B (13:15 UTC) with the calculated pixel-based disparity vector field on top. (b) Upper cloud optical thickness at 14:15 UTC. (d) Pixel-
based 1 h forecast (i.e., for 14:15 UTC) of upper cloud optical thickness. (e) Upper cloud optical thickness at 13:15 UTC with the calculated
object-based disparity vector field V obj on top. (f) Object-based 1 h forecast for 14:15 UTC of upper cloud optical thickness. (g) Upper cloud
optical thickness at 13:15 UTC with the calculated object-based disparity vector field on top for cloudy areas V obj and cloud-free areas V clr.
(h) Object-based 1 h forecast for 14:15 UTC of upper cloud optical thickness including cloud-free motion vectors.

application of a specific procedure presented further down
(Sect. 3.3). For the remaining part of the upper cloud layer,
the optical thickness range [0.1,2.5] is divided into eight
classes with a bin size of 0.3 to create objects. An example

for this object classification is depicted in Fig. 4. The upper
cloud layer (left panel in Fig. 4), which does not contain any
convective cell in this case, is separated into 39 objects (right
panel in Fig. 4). Each object consists of all contiguous pixels
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Figure 4. Upper cloud layer optical thickness extracted from the lower left part of Fig. 3c (left). Corresponding classification into 39 objects:
pixels with the same color belong to the same object (right).

belonging to the same of the eight optical thickness classes.
The size of the single objects varies strongly from 1 pixel to
50 pixels or more.

For the lower clouds the object classification is performed
in a similar way: optical thickness in the range [0,100] is
divided into 10 intervals with a width of 10.

Next, a mean motion vector is calculated for each object
and this vector is assigned to every pixel in the object; i.e.,
the object moves as a whole during the forecasting proce-
dure. The forecast image produced this way is called object-
based forecast. An example is shown in Fig. 3e, f for upper
clouds. One can observe that the object-based cloud motion
vector field V obj is much smoother and points mainly to the
east in the southern part and to the northeast in the northern
part. The front position is well captured by the object-based
forecast when compared to the observation. Comparing the
object-based forecast (Fig. 3f) to the pixel-based (Fig. 3d),
it can be seen that the front line stays much more stable in
the object-based forecast and the isolated cloud to the west
(pixel position between 0 and 150 in x and between 150 and
200 in y) is moving as a whole and compares very well to
the observation. However, the elongated cloud patches north
of Spain (between pixel 100 and 150 in x and above pixel
200 in y) cannot be forecasted well and still the edge of the
forecasted cloud layer looks too patchy.

3.2.3 Motion vectors for cloud-free areas

As the motion vectors are derived from cloud optical thick-
ness, the disparity vector field in the area between the clouds
goes to zero (Fig. 3e). In case those cloud objects move into
these regions, they stop. The thin line left of the front line and
the squeezed cloud in the lower left corner (between pixel
50 and 150 in x and between 0 and 100 in y) in Fig. 3f
show this effect. This is partially compensated through the
mentioned advection of the disparity vector field before its
use in the forecast. The remaining effect, for forecasts over
extended lead times, is further minimized if the cloud-free

Figure 5. Delaunay triangulation for the x component of the dispar-
ity vector field for upper clouds (black contours) returning a regular
triangular grid of interpolated values between the clouds.

areas are filled with sensible motion estimates. The dispar-
ity vector field is divided into the object field for the clouds
V obj and the field V clr for the clear-sky areas called back-
ground. A weighted triangular interpolation of the disparity
vector field between clouds is applied. A Delaunay triangu-
lation creates a triangle mesh for interpolation between sin-
gle cloud-object-related vectors returning a regular grid of
interpolated values. Delaunay triangulations avoid sliver tri-
angles by maximizing the minimum angle of all the angles
in the triangulation. Therefore, a relatively uniform field can
be created. Values inside the triangles issue from a smooth
quintic interpolation of the wind field. The method used for
the triangulation is the divide-and-conquer algorithm from
Lee and Schachter (1980). In Fig. 5, a weighted interpolation
for the x component of the disparity vector field is shown.
In cloudy areas (black contour) the derived disparity vector
field is used, while the interpolated values for the background
field are calculated between the clouds (triangular shape).
For forecast applications the values of the background field
are limited to a range between −5 and 5 to avoid high gradi-
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Figure 6. Domain used for the classification of decaying cells and
for the validation presented in Sect. 4 (red square).

ents. The resulting disparity vector field (Fig. 3g) is signifi-
cantly smoother than before (Fig. 3c).

3.3 Step 3: intensity correction for quickly thinning
convective clouds

The pyramidal matcher (Sect. 2.3) can only predict the move-
ment of the features in the images, i.e., rearrangement of val-
ues including divergence and convergence, but cannot cre-
ate values in a given local area which could not be found,
roughly speaking, within the “search radius” defined by the
typical local wind–disparity vector (apart from the bilinear
interpolation implemented in Eq. 1). This means that a lo-
cal development of values of optical thickness is very limited
in our case since the matcher is rather thought to detect ob-
ject displacement and distortion. Neither in situ formation of
cirrus clouds, which are particularly important for DNI, nor
the time and place of convective initiation can be predicted.
Once a cloud is observed its future evolution can be fore-
casted by continuation of the observed development: e.g., an
increase in optical thickness in a cloud patch can be fore-
casted through disparity vectors, as far as it can be repre-
sented by pure growth of areas with values of optical thick-
ness present in the source image. Values larger than the ones
found in the local surrounding around the cloud patch in the
source image cannot be provided in the forecast. As men-
tioned before, the decaying stage of convective cells is of
interest for the purpose of DNI forecasting as thinning cir-
rus might allow an earlier recovery to DNI levels useful for
CSP production (usually DNI> 200 W m−2). In contrast to
the growing stage where, by no means, a nowcast of con-
vective cell positions for the future 2 h is possible, for the
decaying stage at least some useable initial information on
the convective cloud is available. We found out that in this
particular case, when convective cells start to decay leaving
behind a thinning anvil cirrus layer, the temporal evolution of
the cloud optical thickness can be reasonably well forecasted
or at least improved with respect to the output of the matcher.

Figure 7. Distribution of the change in ice optical thickness in rela-
tion to the divergence with blue crosses denoting the decaying cells
and red for the non-decaying cells.

To this end, quickly thinning convective clouds are first
identified in satellite data and the successive evolution of
their optical thickness, as far as it can be forecasted through
disparity vectors, is then corrected to follow typical temporal
patterns. Both the identification of these clouds and the de-
termination of typical values for the temporal evolution have
been developed based on 300 cells detected by Cb-TRAM
(stage 3, mature cells, according to the classification pre-
sented in Sect. 3.1.2). They have been investigated manu-
ally in an area covering central and southern Europe includ-
ing the western part of Mediterranean Africa with a size of
1050× 600 pixels (Fig. 6) and for the time period April–June
2013. Cells were classified as decaying cells in cases where
a decrease in optical thickness and a convergence of the anvil
could be observed for the next time steps (temporal resolu-
tion 15 min). The “divergence” div (V ) is derived from the
motion vector field V = (u,v) for each pixel:

div(V ) := (uright− uleft)+ (vabove− vbelow) (3)

with the motion vector components (u and v) of the four
neighboring pixels above, below, right and left of the pixel
under investigation. A positive value denotes a divergence,
while a negative value indicates a convergence. Figure 7
shows the distribution of the change in upper cloud layer
optical thickness from one time step to the next, averaged
over an entire convective cell in relation to the average diver-
gence of the given cell. The blue crosses denote cells which
were found to be in decaying stage by eye and red ones for
non-decaying cells. Obviously most blue crosses concentrate
in a region with divergence smaller than −0.1 (horizontal
line) and below a change in optical thickness of −0.01 (ver-
tical line). As only a few red crosses for the apparently non-
decaying cells lie in this area, these object-averaged parame-
ters can be used in an automated procedure for identification
of quickly thinning upper clouds:
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Figure 8. Distribution of the decrease factor 1τ/1τinitial used to approximate the optical thickness decrease of a decaying cell (see text for
details) for the 70 observed decaying cells for a forecast of 15 min (left) and 45 min (right).

– mean change in optical thickness from one time to the
next is smaller than −0.01;

– mean divergence div (Eq. 3) of the motion vector field
is smaller than −0.1.

Thus, a decrease in optical thickness and a slight converging
movement indicate a decaying cell.

To determine a typical correction term for the temporal
evolution of upper cloud optical thickness after the decaying
phase has started, the subset of all 70 decaying cells has been
investigated closer. An empirical modification derived from
them is imposed onto the optical thickness of the convective
objects forecasted through the disparity vectors. Before the
application of disparity vectors as described in Sect. 3.2.2,
optical thickness τ(P ) of each pixel P inside the convective
object is decreased by f ·1τ . f is the number of time steps
after the forecast starts and 1τ is an empirical average opti-
cal thickness step found using the mentioned 70 cases:

τcorr(P )= τ(P )+1τ · f. (4)

On its turn, the typical step 1τ is parameterized as a func-
tion of the observed mean optical thickness decrease1τinitial
of the convective object’s optical thickness between the two
initial images. This information,1τinitial, is selected because
it depends on the convective cell under observation and be-
cause it is representative to the given atmospheric and phys-
ical conditions encountered. For application within the fore-
cast procedure, the occurrence of 1τ/1τinitial in the range
[0,1] in bins of size 0.1 is investigated and shown in Fig. 8
for a forecast of 15 min (left) and 45 min (right), where 1τ
is the mean observed cell optical thickness decrease. It turns
out that the mean initial optical thickness decrease of the con-
vective cell is the strongest one and that the most typical
decrease corresponds to half this value for all forecast lead
times up to 1 h. Therefore, forecasts for all decaying cells are
implemented using a decrease 1τ = 0.5 ·1τinitial in Eq. 4.
This method is not reasonable for a forecast of more than 1 h
for the following reasons: (1) the remnants of the cells may
merge with other clouds and are not detectable any more;

(2) the forecast and the observation of the cell differ strongly
in shape, size and position. Thus, for a forecast of more than
1 h no further decrease in optical thickness is applied.

One example of a decaying cell is shown in Fig. 9. The
object-based forecast for 30 min without intensity correction
(left) predicts a larger ice optical thickness for the cell than
it is in reality (middle). Figure 9 (right) depicts the effect of
the intensity correction. The upper cloud optical thickness
predicted by application of this intensity correction is lower
and more realistic than for the original forecast (left).

3.4 Step 4: synthesis

After classification into upper and lower layer, object-based
forecast of these layers and special correction for decaying
upper layer convective cirrus clouds, two fields of possi-
bly overlapping forecast optical thickness are available. Fig-
ure 3h shows, comparable to Fig. 3f, the 1 h forecast of upper
cloud optical thickness and Fig. 3g the corresponding dispar-
ity vector field on top of the second initial image. By com-
paring both forecasts (Fig. 3f and Fig. 3h) the higher accu-
racy of the final forecast in terms of cloud coverage and op-
tical thickness is clearly visible. In particular, the thin cloud
patches in the northern part are better represented, the front
is moving in a more compact way and the shape of cloud-
free regions in the south is more realistic. However, the fi-
nal forecast appears smoother than the observation because
of the averaging procedure implemented for the cloud and
cloud-free objects and because of the interpolation procedure
implemented in Eq. (1).

3.5 Step 5: calculation of DNI

DNI computed in this paper considers only photons coming
from the Sun that do not interact with the atmosphere (see
the “strict definition” of DNI for numerical modeling of ra-
diative transfer in Blanc et al., 2014). In particular, neither
circumsolar radiation nor 3-D radiative effects are taken into
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Figure 9. Upper cloud optical thickness for 9 June 2013, 17:00 UTC, for the real situation (middle) compared to the object-based forecast
for 30 min (left) and the forecast with intensity correction (right).

Figure 10. Optical thickness for upper and lower clouds together for 7 April 2013, 13:15 UTC (left), and the calculated direct normal
irradiance in W m−2 (right).

account. Thus,

DNI=
∫
E0(λ) · exp(−τ(λ)/cos(θ0))dλ, (5)

according to the Lambert–Beer law. Here, the integral over
wavelength λ extends over the entire solar spectrum, E0(λ)

represents the incoming solar radiation spectrum at top of at-
mosphere, θ0 the solar zenith angle and τ(λ) the vertical op-
tical thickness of the atmosphere, including clouds, aerosols
and (trace) gases. In the following, Eq. (5) is then approxi-
mated by means of

DNI= I0 · exp(−(τg + τcld)/cos(θ0)), (6)

with the broadband extraterrestrial solar irradiance I0 =∫
E0(λ)dλ. In Eq. (6), τcld represents the “broadband” cloud

optical thickness and τg the “broadband” optical thickness
of the atmosphere, which mainly depends on water va-
por absorption and Rayleigh scattering (Gueymard, 2012).
Since only cloud optical properties are derived from SE-
VIRI, aerosols are neglected while atmospheric transmis-
sion is mimicked with exp(−τg/cos(θ0)) and a typical value
τg = 0.292 for a midlatitude summer standard atmosphere
(Anderson et al., 1986). For the term τcld, we use the cloud
optical thickness at 550 nm τcld,550 nm that is output of the
cloud retrievals APICS and COCS since the difference is
very small (< 1 % as revealed by radiative transfer compu-
tations).

Figure 10 depicts the total cloud optical thickness pro-
vided by adding up lower and upper layer’s values (left)

for the same scene as in Fig. 3 and the computed DNI
(right). The values range from 0 W m−2 for areas with thick
clouds (black) to around 900 W m−2 for cloud-free areas.
Thin clouds reduce the DNI according to Eq. (6), as can be
seen in the lower right corner.

4 Validation

For a validation of cloud and DNI forecasts two time peri-
ods, 4–31 March 2013 and 12–31 July 2013, were examined.
These 2 months were chosen due to the appearance of dif-
ferent cloud types. The domain considered is the central part
(marked in red in Fig. 6) of the area investigated in Sect. 3.3
with a size of 751× 501 pixels. For March primarily ad-
vective clouds are present in this domain with an increasing
amount of convective clouds in July. During daytime (solar
zenith angle< 80◦) a forecast is started each full hour with a
forecast horizon of 2 h and a time step of 5 min. Forecasts are
compared to observations from SEVIRI. They represent the
best result that a forecast algorithm based on such data can
achieve. This is not an absolute validation of cloud cover and
DNI, but it does take into account that the forecast can only
be as good as the input quantities are.

4.1 Cloud masks

In order to quantitatively assess the performance of the fore-
cast algorithm, we evaluate its capability to predict clouds
and cloud-free pixels by examining the errors of the fore-
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Table 2. Contingency table.

Observation

Scenario Cloudy Cloud-free Total

Forecast
Cloudy a b a+ b

Cloud-free c d c+ d

Total a+ c b+ d N = a+ b+ c+ d

cast cloud mask against observed cloud masks from SEVIRI.
Observations and forecast are connected through the contin-
gency table (Table 2). Its four elements are the hits a, misses
c, false alarms b and correct negative events d . Hits represent
the number of pixels that are correctly forecasted as cloudy.
Misses are the number of pixels that have been falsely pre-
dicted as cloud free although the observation is cloudy. False
alarms are the number of pixels that are falsely predicted
as cloudy although observations classify them as cloud free.
Correct negatives are the number of pixels that are correctly
forecasted as cloud free. Figure 11 shows the four elements
(hits in red, false alarms (fa) in green, misses in blue and cor-
rect negatives (cn) in white) for upper (left) and lower (right)
cloud layers. Errors, especially for lower clouds, mainly oc-
cur at cloud edges or due to new developments or dissipating
clouds.

The calculated parameters of the contingency table for all
start times are averaged for every forecast time step up to
2 h (see beginning of Sect. 4 for the illustration of the fore-
cast data set evaluated here). In Fig. 12 (left) the forecast
errors (misses plus false alarms) for March (triangles) and
July (crosses) are shown in percent with respect to the to-
tal number of pixels in the scene for upper (red) and lower
(blue) clouds. For the upper cloud layer (but not for the lower
clouds, see below) errors for persistence are plotted for com-
parison. This comparison illustrates the benefit of the de-
veloped forecast algorithm. Forecasts errors are significantly
lower compared to persistence with the smallest values for
the 5 min forecasts (errors below 5 % for upper cloud layer).
At this time, persistence is still close to the observation, be-
cause clouds change only slightly during this time step. Af-
terwards, forecast errors increase smoothly with every time
step to a maximum after 2 h. The difference between per-
sistence and forecast increases also with time. For instance,
for the upper cloud layer errors reached by persistence after
about 1 h are reached by the forecast only after 2 h for March
and July. Compared to persistence, the forecast at least dou-
bles the lead time at a certain quality level. Most noticeable
are the differences between the two cloud layers. The per-
formance of the algorithm for the upper clouds shows much
better results than for lower clouds. The reasons are

1. the difficulty of a retrieval for lower clouds below thick
upper clouds, which leads to errors in the forecast when
not all clouds are detected in the initial images, a low

cloud layer disappears below a high one or low clouds
evolve into high clouds;

2. larger small-scale variability for lower clouds, which
cannot be resolved by SEVIRI (Wolters et al., 2010; Ko-
ren et al., 2008);

3. sub-pixel inhomogeneity, i.e., broken cumulus cloud
fields and rapidly changing small-scale convective
cloud fields with very short timescales but low advec-
tion speeds (Bley et al., 2016);

4. formation of new lower clouds that cannot be fore-
casted.

Errors are smaller in July compared to March because of the
low cloud cover of 22.1 % on average (62.7 % in March) dur-
ing this month (errors are relative to satellite scene size). For
water clouds, detection and forecast are hindered by the pres-
ence of upper clouds such that even a correct forecast might
be incorrectly classified. Thus, it is difficult to assess the real
accuracy of water cloud forecasts. For this reason, persis-
tence for water clouds has not been evaluated.

In addition to the evaluation of the errors as shown above,
we apply the Hanssen–Kuiper skill score (HK; Hanssen and
Kuipers, 1965) to our data set. This score has been widely
used for the evaluation of meteorological fields for many
years (Woodcock, 1976). It has been applied in particular to
precipitation forecasts (e.g., Doswell et al., 1990; Stephen-
son, 2000; Accadia et al., 2003; Tartaglione, 2010; Gsella
et al., 2014; Fekri and Yau, 2016) against observations but
also cloud retrieval algorithms (Reuter et al., 2009; Bugliaro
et al., 2011; Reuter and Fischer, 2014).

The HK, also called Hanssen–Kuiper discriminant, Peirce
skill score (Peirce, 1884), or true skill score (Flueck, 1987),
combines the four elements of the contingency table (Ta-
ble 2) in the following way:

HK=
ad − bc

(a+ c)(b+ d)

=
a

a+ c
+

d

b+ d
− 1 (7)

=
a

a+ c
−

b

b+ d
. (8)

It can be expressed as the sum of the accuracy for events, i.e.,
the accuracy of forecasted clouds (first term in Eq. 7, a

a+c
,

also called hit rate, H , or probability of detection, POD),
and the accuracy for non-events, i.e., the accuracy of fore-
casted cloud-free pixels (second term in Eq. 7, d

b+d
). The

subtraction of 1 in the end ensures that −1< HK< 1. The
HK can also be expressed as the difference between the hit
rate H = a

a+c
(first term in Eq. 8) and the false alarm rate,

F = b
b+d

, or probability of false detection (PODF; second
term in Eq. 8). Thus, HK is a measure of the hit rate rela-
tive to the false alarm rate and remains positive as long as
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Figure 11. Illustration of the elements of the contingency table for upper (left) and lower (right) clouds with regard to the 1 h forecast for
7 April 2013, 14:15 UTC: hits in red, false alarms (fa) in blue, misses in green and correct negatives (cn) in white.

Figure 12. (a) Forecast errors (misses plus false alarms) and (b) the Hanssen–Kuiper skill score for March (triangles) and July (crosses) in
percent for upper (red) and lower (blue) cloud layers and persistence for upper clouds (black).

H is larger than F , i.e., indicates the ability of the forecast
algorithm to produce correct cloud forecasts as well as to
avoid false alarms. A skill score of 1 denotes a perfect match
(all detected clouds have been forecasted, misses c and false
alarms b are zero), a score equal to −1 is related to a fore-
cast not matching at all (hits a and correct negatives d are
zero). Negative values are related to “inverse” forecasts and
could be turned into positive values by interchanging fore-
casted events and non-events. A score of 0 is produced, e.g.,
by a forecast of a fully cloudy or fully cloud-free scene, or
by a “random” forecast, i.e., when H and F are equal. In
this sense, the HK represents the accuracy of the forecast
in predicting the correct category with respect to the abil-
ity of a random selection. Furthermore, HK is independent
of the relative frequency of the observations and also works
with asymmetrical distributions; i.e., when more cloudy than
cloud-free pixels are present or vice versa. This is an im-
portant feature of this skill score since different geographi-
cal areas, different seasons and different times of the day are
characterized by different cloud amounts that can vary con-
siderably. In fact, if the cloud cover is low, i.e., if clear-sky
cover (b+ d) is large (a+ c� b+ d), it is easy to correctly
forecast (d) the largest part of it, as errors can only arise from
small edge areas of small cloud cover (the forecast proce-
dure does not account for cloud formation but rather shifts
and modifies the shape of existing clouds). Thus, the sec-

ond term in Eq. (7) is large, i.e., the second term in Eq. (8)
is small (few false alarms). This tendency towards large HK
contributions due to high non-event accuracy (high accuracy
of cloud-free pixels) is balanced by the first term of the HK
both in Eqs. (7) and (8). There the same error potential (mis-
placed cloud edges) leads to large cloud errors (a) compared
to the small cloud cover (a+ b). A low score contribution
from events, i.e., a low hit rate, is the result. This way the
direct effect of cloud cover on the skill score is minimized.

The resulting HK (Fig. 12, right) has been determined for
upper (red) and lower (blue) clouds for both months with
high values above 0.9 for the first time steps except for lower
clouds in March (0.8) and a decrease to 0.55–0.7 after 2 h. As
shown before the forecasts for upper clouds perform better
than for lower clouds. The HK for persistence for the upper
clouds (black lines) is significantly lower than the respective
forecasts (red lines) especially for July (black triangles vs.
red triangles). Here, persistence already shows a lower skill
for a 5 min forecast. This is mainly due to the lower hit rate
of the persistence method with respect to the forecast in a sit-
uation where few clouds are present in the area under study
(July has low cloud cover, see above): already a small dis-
placement of the clouds can lead to significantly lower hit
rates H in this situation (see discussion of the HK presented
above). Differences of the accuracy of persistence for upper
clouds between March and July are evident: the two black
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Figure 13. Two-dimensional histogram of the forecasted optical thickness of the upper cloud layer compared to the real optical thickness
with forecasts starting at 13:00 UTC every day: for a 15 min forecast (a) 1 h forecast (b) and 2 h forecast (c) in March and July respectively
(d, e, f). Colors denote the total number of occurrences. The number in the upper left corner of all images is the correlation coefficient. The
white contour line denotes the 90 % percentile.

Figure 14. Two-dimensional histogram of the forecasted optical thickness for the lower cloud layer compared to the real optical thickness
with forecasts starting at 13:00 UTC every day: for a 15 min forecast (a), 1 h forecast (b) and 2 h forecast (c) in March and July respectively
(d, e, f). Colors denote the total number of occurrences. The number in the upper left corner of all images is the correlation coefficient. The
white contour line denotes the 90 % percentile.

lines in Fig. 12 (right) diverge with time, a hint that upper
cloud forecasts for July are more difficult than for March due
to the predominantly convective nature of clouds in July and
to the inability of the matcher to forecast convective initiation
and phase transition from liquid to solid during the convec-
tive process. However, the red curves in Fig. 12 (right) show
that the HK of the upper cloud forecast becomes lower for
July than for March for lead times larger than 40 min. The
faster score decrease in July is due to the newly developing
convective clouds for which the forecast becomes inaccurate

within a short period of time. The resulting larger cloud er-
rors lead to lower values for July in the first term in Eq. (7)
while the second term shows constantly high values due to
the low cloud cover. The higher values in July for the first
40 min in the HK originate from the score contributions due
to high cloud-free pixels (non-events) accuracy (first term in
Eq. 7). Nevertheless, the benefit in skill of the forecast com-
pared to persistence can again be expressed as more than a
doubling of lead times for a given score level. For the lower
cloud layer (blue curves in Fig. 12, right) the performance is
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better in July (blue triangles) than in March (blue crosses).
This arises from the combination of (1) a higher hit rate in
March than in July, due to the larger lower cloud extent in
March than in July and to the usually larger lower cloud
sizes in March than in July (think of the frequent appear-
ance of scattered cumuli in July) that makes it easier to fore-
cast lower clouds in March, and (2) a higher false alarm rate
in March than in July mainly due to the higher upper cloud
coverage in March and the associated lower detection accu-
racy of lower clouds. The second effect outweighs the first
one such that lower cloud forecasts in July are more accurate
than in March.

4.2 Cloud optical thickness

In order to test the performance of the algorithm with regard
to the optical thickness a comparison of the forecasted optical
thickness with the optical thickness observed from SEVIRI
is done via a 2-D histogram separated into upper (Fig. 13)
and lower cloud layers (Fig. 14). The color bar denotes the
total number of occurrences. We select the forecast starting
at 13:00 UTC on each day in March (Figs. 13 and 14a, b,
c) and July (Figs. 13 and 14d, e, f) and compare forecast
steps with the actual SEVIRI data measured. Comparisons
of optical thickness for a 15 min, 1 h and 2 h forecast with
observed optical thickness are shown separately in Fig. 13
for the higher and in Fig. 14 for the lower cloud layer.

For the upper cloud layer the algorithm shows an overall
good performance with only small differences for most of
the pixels for the 15 min forecast (Fig. 13a, d) and an in-
crease of spread for the 1 h forecast (Fig. 13b, e) and 2 h
forecast (Fig. 13c, f), which is illustrated by the 90 % per-
centile (white contour line). The fact that the COCS algo-
rithm produces results of either 0 or the range [0.1,2.5] cre-
ates the narrow line without values between 0 and 0.1. Larger
deviations mainly occur for observed or forecasted optical
thickness equal to zero, where clouds have been forecasted
but not observed and vice versa (false alarms and misses).
Remarkable is the existence of two maxima in good agree-
ment for small optical thickness around 0.25 and large val-
ues around 1.5. These reflect the two types of high clouds
mostly occurring: thin cirrus clouds and optical thick upper
parts of deep clouds. The corresponding correlation coeffi-
cients (> 0.9) are also shown and they confirm the good per-
formance of the algorithm for the upper clouds for the first
forecast time steps. In analogy to the analysis of the HK, the
correlation coefficients show higher values in March than in
July, in particular for later time steps. This is most likely a
consequence of the high frequency of convective clouds in
July.

For the lower cloud layer (Fig. 14) the distribution is
broader due to the mentioned limitations of detection of
lower clouds below higher ones. This is particularly true for
March (Fig. 14a, b, c) and obvious in the mismatch for ob-
served optical thickness at the largest values of optical thick-

ness. This seems to be more difficult for March than for July,
most likely because of multilayered clouds around frontal
systems.

The corresponding correlation coefficients show high val-
ues above 0.74 for the first time steps despite the lack in skill
for cloud detection of lower clouds. Its deteriorating influ-
ence is apparent in the sharp decrease of the correlation co-
efficients for the 1 and 2 h forecast.

To judge the quality of the forecast algorithm, histograms
of the persistence method for the upper cloud layer are shown
in Fig. 15. Compared to forecasts in Figure 13, deviation dis-
tributions are much broader and correlation coefficients sig-
nificantly lower.

4.3 Direct normal irradiance

Figure 16 illustrates the comparison of forecasted and ob-
served DNI (Sect. 3.5) analogous to Figs. 13 and 14. Two
maxima can be observed: (1) for low DNI in case of thick
clouds and (2) for high DNI around 800 W m−2 for March
(Fig. 16a, b, c) and 900 W m−2 for July (Fig. 16d, e, f) for
cloud-free cases with varying solar zenith angle. In analogy
to the comparison of optical thickness, high deviations arise
from cloud cover false alarms and misses and because of the
difficulties of detecting multilayer clouds. Remarkable is the
sharply defined region at high DNI values (> 600 W m−2)
showing a clear deficit of cases close to the 1 : 1 line. This
is due to the fact that COCS does not provide measured val-
ues of optical thickness below 0.1. Thus large DNI values are
missing in the “observation”, while the forecast can produce
these optical thickness and DNI values.

The correlation coefficients for DNI are mostly higher than
the values of both cloud types, especially for long forecasts,
with lower values in July. This is due to the fact that forecasts
are better for cloud areas with small optical thickness values
than for optically thick clouds. Derivation of DNI empha-
sizes the relevance of these thin clouds for DNI predictions,
while errors in the forecast of thick opaque clouds (e.g., new
convective developments) are less detrimental.

5 Conclusions

Based on an optical flow method deriving cloud motion be-
tween two consecutive images, an algorithm for the forecast
of cloud optical thickness and DNI has been developed for
input data from the imager SEVIRI aboard the geostation-
ary MSG satellite. The algorithms COCS and APICS provide
cloud detection and cloud optical thickness for two vertically
separated layers. Because of different velocities and motion
directions these low and high level clouds are forecasted sep-
arately for a time step of 5 min with a forecast horizon up to
2 h. To deal with the small-scale fluctuations of the motion
field derived for the two levels, which would spoil forecasts
of more than 15 or 30 min, an object classification is applied
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Figure 15. Two-dimensional histogram of the observed optical thickness of the upper cloud layer compared to the persistence optical
thickness for a time difference of 15 min (a), 1 h (b) and 2 h (c) in March and July respectively (d, e, f). Colors denote the total number of
occurrences. The white contour line denotes the 90 % percentile.

Figure 16. Two-dimensional histogram of the forecasted DNI compared to the observed DNI with forecasts starting at 13:00 UTC every
day: for a 15 min forecast (a), 1 h forecast (b) and 2 h forecast (c) in March and July respectively (d, e, f). Colors denote the total number of
occurrences.

to the cloud layers and cloud-free background motion is in-
terpolated. An intensity correction for decaying convective
cells is implemented.

Using the satellite observations, the forecasts for March
and July 2013 have been quantitatively validated. As far as
cloud detection is concerned, the largest inaccuracy consists
in the difficulty to retrieve clouds below optically thick ice
clouds. Consequently, forecast errors for the lower cloud
layer are considerably higher than for high clouds. The fore-
cast accuracy also differs for the two time periods because of
different cloud coverage and cloud types. In March mainly
fronts with many advective multilayer clouds dominate in

contrast to a high amount of shorter-lived convective clouds
in July.

Convective clouds during July cause the forecast skill to
decay quicker with forecast horizon than during March. For
any given forecast quality requirement, over all cloud (or
weather) types and for both cloud layers, a doubling of lead
time is found comparing the developed forecast to a non-
forecast, i.e., persistence.

The impact of weather situation also becomes apparent in
the comparison of observed and forecasted optical thickness.
The distribution of deviations, analyzed by means of 2-D
histograms, as well as the correlation between forecast and
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observation show better results for March, especially for a
longer forecast. The wider scatter of deviations as well as
lower correlation coefficients confirm the limitations of the
forecast quality for low clouds compared to high clouds. Al-
though much effort was invested in the identification of mul-
tilayer clouds and their differential motion, this still remains
a main source of uncertainty for satellite-based nowcasting.
An additional source of uncertainty is sub-pixel inhomogene-
ity, i.e., broken cumulus cloud fields and rapidly changing
small-scale convective cloud fields with very short timescales
but low advection speeds (Bley et al., 2016).

Finally, DNI forecast verification shows that most correct
forecasts are, of course, found for the expected clear-sky DNI
and no direct irradiance below thick clouds. However, the
overall correlation between the 2 h forecast and the observa-
tion is still around 0.7.

As a next step comparisons to ground-based irradiance
measurements shall be conducted. To this end, the DNI
model should be extended to consider varying trace gas con-
centrations and aerosol loads, e.g., water vapor from numer-
ical weather models and aerosol information from ground-
based networks (e.g., AERONET).

An extension of the forecast horizon up to 5–6 h could be
performed, which is indeed useful for CSP operators. For
longer forecast horizons forecasting methods of NWP mod-
els have a higher accuracy compared to satellite-based meth-
ods (Perez et al., 2013; Lorenz et al., 2012) and are therefore
used by operators.

6 Data availability

The MSG/SEVIRI level 1.5 data are available at
http://www.eumetsat.int/website/home/Data/DataDelivery/
OnlineDataAccess/index.html. The processed data are
available from the author upon request.
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