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Abstract. In this paper, an algorithm for the retrieval of
aerosol and land surface properties from airborne spectropo-
larimetric measurements – combining neural networks and
an iterative scheme based on Phillips–Tikhonov regulariza-
tion – is described. The algorithm – which is an extension of
a scheme previously designed for ground-based retrievals –
is applied to measurements from the Research Scanning Po-
larimeter (RSP) on board the NASA ER-2 aircraft. A neu-
ral network, trained on a large data set of synthetic mea-
surements, is applied to perform aerosol retrievals from real
RSP data, and the neural network retrievals are subsequently
used as a first guess for the Phillips–Tikhonov retrieval. The
resulting algorithm appears capable of accurately retriev-
ing aerosol optical thickness, fine-mode effective radius and
aerosol layer height from RSP data. Among the advantages
of using a neural network as initial guess for an iterative al-
gorithm are a decrease in processing time and an increase in
the number of converging retrievals.

1 Introduction

Multi-angular, multispectral measurements of intensity and
linear polarization parameters of scattered solar radiation are
a useful tool for the characterization of atmospheric aerosols
(Mishchenko and Travis, 1997; Hasekamp and Landgraf,
2007). The recognition of this has led to the development of
a number of remote sensing instruments with spectropolari-
metric capability (Kokhanovsky et al., 2015). The Polariza-
tion and Directionality of the Earth’s Reflectance (POLDER)

1, 2 and 3 satellite instruments (Deschamps et al., 1994),
mounted on board the Japanese satellite Advanced Earth Ob-
serving Satellite (ADEOS) and on the French satellite Polar-
ization & Anisotropy of Reflectances for Atmospheric Sci-
ences coupled with Observations from a Lidar (PARASOL),
have so far been the only instruments to perform in-orbit
multi-angle spectropolarimetric measurements. Decommis-
sioned in 2013, POLDER-3 will be followed by the Multi-
viewing Multi-channel Multi-polarization Imaging (3MI) in-
strument (Marbach et al., 2013), expected for launch on
board the EUMETSAT MetOp-SG satellite in 2021. While
no satellite multi-angle spectropolarimeters are currently op-
erating, research is being carried out in the development of
innovative spectropolarimetric instruments, which are cur-
rently operated on aircrafts, in view of future satellite mis-
sions. These include the Research Scanning Polarimeter
(RSP, Cairns et al., 1999), the Airborne Multi-angle Spec-
troPolarimetric Imager (AirMSPI, Diner et al., 2013) and the
Dutch instrument SPEX (van Amerongen et al., 2016). Ad-
ditional spectropolarimetric missions under development are
the CubeSat HyperAngular Rainbow Polarimeter (HARP)
mission (Martins et al., 2014) and the Ukrainian project
Aerosol-UA (Milinevsky et al., 2016).

The aerosol properties are retrieved from multi-angle spec-
tropolarimetric measurements by comparing these measure-
ments to forward model simulations. Retrieval methods de-
veloped so far include look-up tables (LUTs, Deuzé et al.,
2000, 2001) and iterative methods based on accurate for-
ward modelling (Waquet et al., 2009; Dubovik et al., 2011;
Hasekamp et al., 2011; Knobelspiesse et al., 2011; Wu et al.,
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2015). In most of these methods a LUT is used to generate
a first guess for the retrieved quantities, and an iterative al-
gorithm (e.g. maximum a posteriori, Phillips–Tikhonov reg-
ularization) is then used in order to generate solutions that fit
the measurements better than the first guess.

In an experiment performed on ground-based spectropo-
larimetric measurements, it has been shown (Di Noia et al.,
2015) that the final result of an iterative aerosol retrieval may
depend on the choice of the first guess, and that replacing a
LUT-based first guess with a neural network algorithm may
be beneficial for the algorithm convergence and computa-
tion time, as it is relatively simple to design neural networks
that provide quicker and more accurate first guess retrievals
than reasonably sized LUTs with modest computational ef-
fort. Extending this approach to aircraft and satellite mea-
surements is possible, in principle, once a method is devised
for taking the variability of the observation geometry into
account when a training set for the neural network is gener-
ated. This problem is less important – possibly absent – when
working with ground-based observations. In such a case, in
fact, care may be taken so that a spectropolarimeter is op-
erated only in the principal plane and at a predefined set of
viewing angles. In this way, the solar zenith angle is the only
variable determining the measurement geometry, and this can
be easily taken into account in the neural network design pro-
cess. When dealing with an airborne or satellite instrument,
it is not possible to assume that the observation geometry
will always be the same. This is especially true for instru-
ments that have a swath (e.g. POLDER, AirMSPI), in which
each pixel is observed at a different set of viewing zenith and
azimuth angles, whereas instruments that do not possess a
swath, such as the RSP, represent a situation of intermediate
complexity. While it is safe to assume that an RSP measure-
ment is always made at the same set of viewing zenith an-
gles, the azimuth angles at which the scene is observed will
be variable, and this needs to be taken into account when de-
signing a neural network algorithm for processing this type
of measurement.

In this paper we show an application of neural network
retrievals to RSP measurements. We trained a neural net-
work on a large set of simulated RSP measurements gener-
ated for a large number of combinations of aerosol and sur-
face parameters and observation geometries. We then used
the neural network retrievals as a first guess for an itera-
tive algorithm based on the Phillips–Tikhonov method, de-
scribed in Wu et al. (2015), to perform aerosol retrievals from
RSP measurements acquired during the Polarimeter Defini-
tion Experiment (PODEX) and Studies of Emission and At-
mospheric Composition, Clouds and Climate Coupling by
Regional Surveys (SEAC4RS) measurement campaigns.

This paper is structured as follows. In Sect. 2 a brief de-
scription of the RSP instrument is given. In Sect. 3 some the-
oretical background is given on the use of neural networks
as parameter estimation methods. Section 4 describes the de-
sign of the neural network algorithm for RSP and its valida-

tion on synthetic data. Section 5 describes the application of
the Phillips–Tikhonov algorithm with neural-network-based
initialization to a sample of synthetic data. In Sect. 6 the re-
sults of the application of the algorithm to real RSP measure-
ments are discussed. In particular, the results of comparisons
between RSP retrievals and correlative data from the Aerosol
Robotic Network (AERONET, Holben et al., 1998) and from
the Cloud Physics Lidar (CPL, McGill et al., 2002) are pre-
sented. Finally, in Sect. 7 conclusions are drawn.

2 The NASA Research Scanning Polarimeter

The Research Scanning Polarimeter (RSP) is an airborne
multi-angle spectropolarimeter initially designed as a pro-
totype for the Aerosol Polarimetry Sensor (APS) to be
launched on the Glory satellite mission (Mishchenko et al.,
2007) in 2011, aiming to observe aerosols and clouds with
unprecedented accuracy by measuring intensity and linear
polarization parameters of backscattered sunlight at a very
high number of viewing angles (approximately 250) and in
nine spectral bands (from 410 to 2250 nm). While the APS
instrument has ultimately not reached its orbit as a conse-
quence of the failure of the Glory satellite launch, the RSP
instrument is still being operated on board the NASA ER-
2 high-altitude aircraft. RSP performs its measurements at
152 viewing angles, at the same nine spectral bands as APS
(410, 470, 550, 670, 865, 960, 1590, 1880 and 2250 nm).
The bands from 410 to 875 nm are particularly sensitive to
aerosols. The 960 and 1880 nm channels are used to charac-
terize water vapour and cirrus clouds respectively, whereas
the 1590 and 2250 nm channels can be used to characterize
land surface and coarse-mode aerosols (Wu et al., 2015). RSP
can cover an angular range from −60 to 60◦ with respect to
the aircraft vertical, where the minus sign indicates viewing
directions pointed aftward with respect to the aircraft. How-
ever, because of the position of the instrument with respect
to the aircraft, parts of the forward viewing directions from
40 to 60◦ are blocked by the aircraft body. The ground pixel
size of an RSP measurement at nadir is 277 m. The radio-
metric uncertainty of RSP measurements is approximately
2 % and its polarimetric uncertainty is around 0.5 % (Cairns
et al., 1999).

3 Neural network retrievals and their relationship to
conventional retrievals

The retrieval of a vector of geophysical parameters x (state
vector) from a vector of measurements y relies on the as-
sumption that the measurements are related to the state vec-
tor by means of a forward model y = F (x,b)+ ε, where F
is a vector-valued deterministic function, b is a vector of pa-
rameters of F that are not included in x (e.g. observation
angles, non-retrieved meteorological variables, etc.), and ε is
the measurement noise, which is often treated as a multivari-
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ate Gaussian variable with zero mean and covariance matrix
Sε .

The conventional way of retrieving x from y consists of
finding the value of x that yields the best agreement between
y and F (x,b). To this aim, a cost function depending on
the discrepancy between y and F (x,b) is defined and min-
imized with respect to x. Because of the presence of mea-
surement noise, the cost function is usually minimized in the
least-square sense. Furthermore, given the non-uniqueness of
the solution due to the fact that F is – in most cases – not a
biunivocal relationship, the cost function may contain some
regularization terms chosen in such a way to penalize solu-
tions that are unphysical or unlikely (Rodgers, 2000). In gen-
eral, the solution to a retrieval problem can be chosen as

x̂ = argmin
x
J (x,y,b,c), (1)

where J is the chosen cost function and c is a vector of pa-
rameters of the cost function (e.g. regularization parameters,
regularization matrix, a priori error, etc.).

An alternative approach to the retrieval is based on the fact
that, because of noise and non-uniqueness, an inverse rela-
tionship between x and y can be defined only in a statisti-
cal sense, and the conditional expectation E[x|y,b] can be
used as an estimator for x. This conditional expectation is
a function of y and b, but its functional form is not known
in advance. However, under the reasonable assumption that
such a function is smooth, it can be estimated by collecting a
number of coincidences between x, y and b (e.g. by multiple
runs of a forward model) and using them to fit some smooth
function g(y,b,w), where w is a set of parameters of the
chosen function g that must be determined during the fitting
phase. If it reasonable to assume that the sought relationship
is linear, the problem simply reduces to a linear regression
of x on y and b, an approach that is quite common – for in-
stance – in atmospheric profile retrievals from infrared and
microwave measurements (Smith et al., 1970; Jackson et al.,
2006). If, instead, a linear relationship between E[x|y,b] and
the other quantities cannot be assumed, a more general form
for g must be chosen. For this purpose, neural network mod-
els are usually a good choice, for at least two reasons: (i) neu-
ral network functions with at least a non-linear hidden layer
can approximate any continuous function on a compact set
to an arbitrary accuracy (Hornik et al., 1989; Leshno et al.,
1993); (ii) as the dimension of the training set tends to in-
finity, a neural network trained with the sum of squares error
cost function tends to approximate the conditional expecta-
tion of the target quantity given the input vector, provided
that the training samples are independent and identically dis-
tributed (Bishop, 1995a).

The latter concept can be used as a guiding principle when
deciding which quantities should be used as inputs to a neu-
ral network method aimed at retrieving a certain set of geo-
physical parameters. These quantities do not only include the
measurement vector y, but they also include the known pa-

Figure 1. Idealized viewing geometry assumed to model the angu-
lar dependence of RSP measurements. Each dot in the polar plot
represents a single angular measurement. Forward-viewing mea-
surements are represented in red, aftward-viewing measurements in
blue.

rameters b affecting the value of y. For instance, in the case
of a spectropolarimetric retrieval, y is a vector of reflectances
and degrees of linear polarization (or eventually polarized re-
flectances, or Stokes parameters) measured at a number of
angles and wavelengths. The value of each measurement is
not only affected by the geophysical parameters we are try-
ing to retrieve but is also affected by quantities such as the
solar zenith angle, the viewing zenith angle and the relative
azimuth angle (or, equivalently, the scattering angle). When
the goal is to design a neural network capable of working
for several combinations of these parameters, they should in
principle be used as input quantities for the network. For-
mally, in this way the training set will be a sample drawn
from the joint probability distribution of y and b, and the
neural network retrieval will actually be a non-linear regres-
sion of the state vector x on y and b.

Several examples of application of neural networks in pa-
rameter retrieval algorithms from remotely sensed measure-
ments exist (Krasnopolsky, 2007). The advantages of neural
networks over traditional linear regression in statistical re-
trievals are discussed in Del Frate and Schiavon (1998a, b).
Applications to aerosol retrievals are presented, for instance,
in Radosavljevic et al. (2010), Taylor et al. (2014) and Chi-
mot et al. (2017).

4 Neural network retrieval scheme for RSP: design
and performance on synthetic data

The procedure followed in the neural network retrieval
scheme builds further on the work described in Di Noia
et al. (2015) for groundSPEX measurements. The main dif-
ferences are that in the algorithm presented in this paper sur-
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Table 1. Details of the statistical distributions of the aerosol and surface parameters used to generate the training data set. Please refer to
Figs. 2 and 3 for the histograms of the distributions indicated as “empirical”.

Parameter Min Max Mean SD Distribution

Effective radius (µm) – fine 0.05 0.46 0.15 0.04 Empirical
Effective variance – fine 0.1 0.3 0.2 0.06 Uniform
Refractive index (real) – fine 1.3 1.7 1.49 0.10 Uniform
Log. refractive index (im.) – fine −11.5 −0.5 −5.75 3.03 Uniform
AOT (550 nm) – fine 0.0 4.58 0.13 0.18 Empirical
Effective radius (µm) – coarse 0.92 6.12 2.16 0.45 Empirical
Effective variance – coarse 0.4 0.6 0.5 0.06 Uniform
Refractive index (real) – coarse 1.3 1.7 1.49 0.1 Uniform
Log. refractive index (im.) – coarse −11.5 −0.5 −5.75 3.03 Uniform
AOT (550 nm) – coarse 0.0 3.95 0.06 0.11 Empirical
Spherical fraction – coarse 0.0 1.0 0.5 0.29 Uniform
Aerosol layer height (m) 250.0 8000.0 4125.0 2237.84 Uniform
Li-sparse BRDF parameter 0.0 0.25 0.12 0.07 Uniform
Ross-thick BRDF parameter 0.0 1.5 0.75 0.43 Uniform
Maignan BPDF parameter 0.02 10.0 4.83 2.86 Uniform
Isotropic scattering coefficient (410 nm) 0.0 0.89 0.04 0.04 Empirical
Isotropic scattering coefficient (470 nm) 0.0 0.90 0.07 0.05 Empirical
Isotropic scattering coefficient (550 nm) 0.0 0.90 0.11 0.07 Empirical
Isotropic scattering coefficient (670 nm) 0.0 0.87 0.16 0.11 Empirical
Isotropic scattering coefficient (865 nm) 0.0 0.80 0.28 0.11 Empirical

Figure 2. Histograms of the statistical distribution of fine- and coarse-mode AOT and effective radius used to generate the training data set.
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Figure 3. Histograms of the statistical distribution of the fiso coefficient in the Ross–Li model at all the wavelengths used to generate the
training data set and the correlation matrix between the values of the coefficient at the used wavelengths.

face properties and additional aerosol parameters (fine- and
coarse-mode effective variance, fraction of spherical parti-
cles for coarse mode, aerosol layer height) have been in-
cluded in the retrieval state vector, and the variability of RSP
observing conditions has been taken into account in the input
vector.

As mentioned in Sect. 2, the viewing zenith angle (VZA)
range of RSP measurements goes from 60◦ aftward to 40◦

forward. This asymmetry is due to the blockage of part of the
forward viewing directions by the ER-2 aircraft structure. In
order to simplify the generation of a training set for the neu-
ral network scheme, we decided to use a symmetrical VZA
range, going from 40◦ aftward to 40◦ forward. The remain-
ing part of the VZA range is used, instead, in the iterative
retrieval that uses the neural network output as a first guess,

as explained in Sect. 6. As for the relative azimuth angles
of RSP measurements we have assumed that, for each multi-
angular observation, the measurements at forward-viewing
angles are made with a common relative azimuth angle ϕ and
the corresponding aftward-viewing measurements are made
at an angle ϕ+ 180◦ (see Fig. 1), with ϕ depending on the
particular flight leg. We observed from real data that this is a
good approximation for most RSP measurements. As a result
of this assumption, the scalar value ϕ is the only variable we
used in order to characterize the RSP viewing geometry in
the neural network input vector. In order to avoid the issue
of characterizing water vapour absorption in the training set,
we only used the first five RSP channels (410, 470, 550, 670,
865 nm). We assumed the Ross-thick – Li-sparse reciprocal
combination, hereinafter referred to as the “Ross–Li model”
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Figure 4. Neural network retrieved versus true fine- and coarse-
mode AOT from synthetic test data.

(Maignan et al., 2004, and references therein), for the sur-
face bidirectional reflectance distribution function (BRDF)
and the model by Maignan et al. (2009) for the bidirectional
polarization distribution function (BPDF).

In the Ross–Li model, the surface BRDF R is expressed
by means of the following linear combination (Lucht et al.,
2000):

R(θs,θv,ϕ,λ)= fiso(λ)+ fvol(λ)Kvol(θs,θv,ϕ)

+ fgeo(λ)Kgeo(θs,θv,ϕ), (2)

where λ is the wavelength, θs and θv are the solar and view-
ing zenith angles respectively, and ϕ is the relative azimuth
angle. In Eq. (2), Kvol and Kgeo are the Ross-thick and Li-
sparse kernels respectively. These are functions of the view-
ing and solar geometry describing the angular dependence
of the surface reflectance and are controlled by the leaf area
index (LAI) of the underlying vegetation and by the surface
roughness respectively (Roujean et al., 1992; Wanner et al.,
1995). The wavelength-dependent coefficients fvol and fgeo
determine the relative weight of the two kernels, whereas
the coefficient fiso is an additional term describing isotropic
scattering, i.e. scattering with a directionally constant ampli-
tude.

In the Maignan model, the polarized reflectance Rp of a
surface is expressed by the equation

Rp(θs,θv,ϕ)=
Ce−νe− tan(2/2)Fp(

2
2 ,n)

4(cosθs+ cosθv)
, (3)

where 2 is the scattering angle, Fp is a function of the scat-
tering angle and of the refractive index n (Maignan et al.,
2009), and C and ν are two fitting parameters.

The neural network retrieves 20 quantities: 12 describing
aerosols and 8 describing surface properties. The retrieved
aerosol parameters are effective radius, effective variance,
complex refractive index (assumed wavelength-independent)
and aerosol optical thickness (AOT) at 550 nm for fine and
coarse mode; fraction of spherical particles (FSP) for the
coarse mode; and aerosol layer height, defined as the peak
height of an assumed Gaussian aerosol profile. The fine-
mode FSP and the full width at half maximum (FWHM)
of the aerosol profile are not retrieved but are kept fixed at
100 % and 2 km respectively. The retrieved surface parame-
ters are the fiso coefficient of Eq. (2) at each of the five input
wavelengths, the Ross-thick and Li-sparse coefficients fvol
and fgeo (assumed wavelength-independent), and the C pa-
rameter of the Maignan et al. (2009) BPDF model described
in Eq. (3), whereas the ν parameter of the Maignan model has
been set to 0.1. The input quantities of the neural network are
the reflectance and the degree of linear polarization (DoLP)
measured at 33 angles (from 0 to 40◦ with a step of 2.5◦

forward and aftward) and at the 5 wavelengths mentioned
above, plus the solar zenith angle, the relative azimuth an-
gle ϕ described above and the surface pressure. The radiance
and DoLP measurements were compressed using a princi-
pal component analysis (PCA) as explained in Di Noia et al.
(2015). Twenty-five principal components were retained for
radiance and 33 for DoLP.

Approximately one million data have been used to train
the neural network. The data have been created by generat-
ing random combinations of the 20 retrieved quantities, so-
lar zenith angle, relative azimuth angle and surface pressure
and using these combinations as inputs for radiative trans-
fer simulations, using a radiative transfer model described
in Hasekamp and Landgraf (2002, 2005). During the train-
ing process, the synthetic measurements have been perturbed
with additive Gaussian noise with zero mean and standard
deviation of 2 % for reflectance and 0.2 % for DoLP. The
angular correlation of noise in RSP measurements (Knobel-
spiesse et al., 2012) has not been taken into account.

In order to generate statistical distributions that are as re-
alistic as possible for most of the quantities to be retrieved,
we have generated global data sets of fine- and coarse-mode
AOT and effective radius by collecting data from all the
AERONET stations located over land, and we have randomly
sampled the MODIS MCD43C3 product (Schaaf and Wang,
2015) in order to generate a global data set for the fiso coeffi-
cient in Eq. (2). For all the other parameters we have assumed
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Table 2. Error statistics on the aerosol and surface parameters retrieved by the neural network, computed on a set of data not used during the
training phase.

Parameter Bias RMSE MAE Corr.

Effective radius (µm) – fine −0.002 0.02 0.013 0.86
Effective variance – fine −0.005 0.04 0.036 0.63
Refractive index (real) – fine 0.006 0.06 0.043 0.84
Refractive index (im.) – fine −0.006 0.05 0.023 0.89
AOT (550 nm) – fine −0.003 0.07 0.029 0.93
Effective radius (µm) – coarse −0.043 0.45 0.364 0.13
Effective variance – coarse −0.001 0.06 0.050 0.02
Refractive index (real) – coarse 0.009 0.08 0.061 0.71
Refractive index (im.) – coarse −0.022 0.09 0.038 0.63
AOT (550 nm) – coarse −0.008 0.06 0.030 0.82
Spherical fraction – coarse −0.016 0.25 0.207 0.50
Aerosol layer height (m) 42.424 1225.19 963.06 0.84
Li-sparse BRDF parameter −0.002 0.02 0.015 0.95
Ross-thick BRDF parameter −0.008 0.13 0.079 0.96
Maignan BPDF parameter −0.086 0.79 0.46 0.96
Isotropic scattering coefficient (410 nm) −0.001 0.01 0.006 0.96
Isotropic scattering coefficient (470 nm) −0.001 0.01 0.006 0.98
Isotropic scattering coefficient (550 nm) −0.001 0.02 0.009 0.98
Isotropic scattering coefficient (670 nm) −0.001 0.02 0.010 0.99
Isotropic scattering coefficient (865 nm) −0.001 0.02 0.014 0.98

Table 3. Rms error and correlation coefficient between true and retrieved parameters for the neural network retrieval alone (NN) and for the
combined NN–Phillips–Tikhonov algorithm (NN–PT).

NN NN–PT
Parameter RMSE Corr. RMSE Corr.

Effective radius (µm) – fine 0.018 0.86 0.013 0.93
Effective variance – fine 0.047 0.59 0.044 0.67
Refractive index (real) – fine 0.059 0.83 0.050 0.88
Refractive index (im.) – fine 0.054 0.89 0.053 0.90
AOT (550 nm) – fine 0.062 0.94 0.032 0.98
Effective radius (µm) – coarse 0.440 0.07 0.447 0.42
Effective variance – coarse 0.056 0.09 0.091 0.14
Refractive index (real) – coarse 0.083 0.69 0.074 0.76
Refractive index (im.) – coarse 0.093 0.66 0.091 0.67
AOT (550 nm) – coarse 0.057 0.82 0.039 0.92
Spherical fraction – coarse 0.254 0.46 0.230 0.62
Aerosol layer height (m) 1217.82 0.84 1135.06 0.86
SSA (410 nm) 0.054 0.94 0.034 0.97
Li-sparse BRDF parameter 0.027 0.93 0.021 0.96
Ross-thick BRDF parameter 0.137 0.95 0.101 0.97
Maignan BPDF parameter 0.843 0.96 0.597 0.98
Isotropic scattering coefficient (410 nm) 0.010 0.96 0.005 0.99
Isotropic scattering coefficient (470 nm) 0.010 0.98 0.006 0.99
Isotropic scattering coefficient (550 nm) 0.014 0.98 0.008 0.99
Isotropic scattering coefficient (670 nm) 0.017 0.99 0.011 0.99
Isotropic scattering coefficient (865 nm) 0.022 0.99 0.016 0.99
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Figure 5. Neural network retrieved versus true fine-mode effective
radius from synthetic test data. Only cases with fine-mode AOT
larger than 0.1 are shown.

Figure 6. Neural network retrieved versus true real and imaginary
part of the refractive index, weighted by mode AOT. Synthetic data.
Only cases with total AOT larger than 0.1 are shown.

a uniform statistical distribution. The main features (maxi-
mum, minimum, mean and standard deviation and type of
distribution) of the statistical distributions of all the aerosol

Table 4. List of the AERONET stations used for validation in this
study.

Station name Lat. Lon.

Baskin 32.28 −91.74
Bozeman 45.66 −111.04
Caldwell Parish HS 32.06 −92.10
CART Site 36.61 −97.49
DRAGON Aldine 29.90 −95.33
DRAGON Arvin 35.24 −118.79
DRAGON Bakersfield 35.33 −119.00
DRAGON Channel View 29.80 −95.13
DRAGON Clinton 29.73 −95.26
DRAGON Clovis 36.82 −119.72
DRAGON Conroe 30.35 −95.43
DRAGON Corcoran 36.10 −119.57
DRAGON Deer Park 29.67 −95.13
DRAGON Drummond 36.71 −119.74
DRAGON Garland 36.78 −119.77
DRAGON Hanford 36.32 −119.64
DRAGON Huron 36.21 −120.11
DRAGON Madera City 36.95 −120.03
DRAGON ManvelCroix 29.52 −95.39
DRAGON NW Harris Co. 30.04 −95.67
DRAGON Parlier 36.60 −119.50
DRAGON Porterville 36.03 −119.06
DRAGON Shafter 35.50 −119.27
DRAGON Tranquility 36.63 −120.38
DRAGON UH W Liberty 30.06 −94.98
DRAGON Visalia 36.31 −119.39
DRAGON West Houston 29.83 −95.66
Fresno−2 36.78 −119.77
IMPROVE−MammothCave 37.13 −86.15
Leland HS 33.40 −90.89
Mingo 36.97 −90.14
Railroad Valley 38.50 −115.96
SEARCH Centreville 32.90 −87.25
SEARCH Centreville2 32.90 −87.25
University of Houston 29.72 −95.34
Upper Buffalo 35.83 −93.20

and surface parameters used to generate the training set are
summarized in Table 1. The distributions of fine- and coarse-
mode AOT and effective radius and those of the fiso coeffi-
cient at RSP wavelengths are indicated in the table with the
term “empirical”. Histograms of such empirical distributions
are shown in Figs. 2 and 3 for aerosol and surface parameters
respectively. It must be noted that the fiso coefficients at the
five RSP wavelengths are not statistically independent. Their
correlation matrix is also plotted in Fig. 3. The decision to
keep the spectral correlation of fiso during the sampling of
the MODIS data set was made consciously, with the aim of
introducing a constraint in the neural network retrieval. In
addition to the quantities listed in Table 1, solar zenith an-
gle, relative azimuth angle and surface pressure for the ra-
diative transfer simulations have also been chosen randomly,
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Figure 7. Neural network retrieved versus true Ross-thick and Li-
sparse BRDF parameters and Maignan BPDF parameter from syn-
thetic test data.

by assuming uniform distributions in the intervals 20–85◦, 0–
60◦ and 850–1050 hPa respectively. A constant flight altitude
of 19 km has been assumed in the simulations, as the actual
flight altitude of the ER-2 aircraft hosting RSP is usually not
far from this value.

The adopted neural network model is a multilayer percep-
tron (Werbos, 1974) with three hidden layers of 40 neurons
each, which is the same as the groundSPEX network pre-
sented in Di Noia et al. (2015), and the training was carried

out using the standard backpropagation algorithm (Rumel-
hart et al., 1986) regularized through learning rate annealing
(Bös and Amari, 1999) and noise injection during training
(Bishop, 1995b).

The trained neural network has been tested on about 2×
105 random simulated data not included in the training data
set. In Table 2 the mean error (bias), the root mean square
(rms) error, the mean absolute error (MAE) and the Pearson
correlation coefficient are reported for each of the retrieved
aerosol and surface parameters. The statistics for the fine-
mode microphysical parameters are computed using the test
data for which the fine-mode AOT was larger than 0.1, and
the same holds for the coarse-mode parameters. The aerosol
layer height error statistics are computed only on the cases
with total (fine plus coarse mode) AOT larger than 0.1. Fine-
mode AOT and effective radius appear to be the most accu-
rately retrieved aerosol parameters. Good accuracies are also
observed for coarse mode AOT and for aerosol layer height.
The surface parameters are also generally well retrieved. The
retrieval accuracy for fiso is about 0.01, which is not suffi-
cient for land applications but appears to be within the re-
quirements for use in climate models (Wang et al., 2004; He
et al., 2014, and references therein). Coarse-mode effective
radius and effective variance appear to be the most problem-
atic parameters, and it can be said that no retrieval capability
is displayed by the neural network for these two parameters.
In general, the retrieval accuracy for coarse-mode aerosol pa-
rameters seems worse than for fine-mode parameters. This is
possibly due to the particular choice of the statistical distri-
bution of the training data, in which coarse-mode-dominated
scenarios are underrepresented with respect to fine-mode-
dominated cases. The prevalence of cases with a small total
aerosol load in the training set also explains the good retrieval
capability of the neural network for surface BRDF and BPDF
parameters.

Scatter plots of the fine- and coarse-mode AOT and of the
fine-mode effective radius are shown in Figs. 4 and 5. Fig-
ure 6 depicts scatter plots showing an average between fine-
and coarse-mode complex refractive index weighted by the
AOTs of the two modes. The plots are computed including
data with total AOT larger than 0.1. Figures 7 and 8 show
scatter plots of retrieved versus true BRDF and BPDF pa-
rameters and fiso coefficients at all wavelengths respectively.

5 Use of the neural network outputs in a
Phillips–Tikhonov retrieval scheme

The Phillips–Tikhonov retrieval scheme performs an iterative
minimization of the following cost function:

C(x)= [y−F (x)]T S−1
ε [y−F (x)] + γ (x− xa)H (x− xa). (4)

In Eq. (4), x is the state vector, xa is an a priori state vec-
tor, y is the measurement vector, F (x) is the simulated
measurement vector corresponding to the state x, Sε is the
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Figure 8. Neural network retrieved versus true fiso coefficients from synthetic test data, at the five wavelengths considered in this study.

measurement error covariance matrix, H is a regularization
matrix and γ is a regularization parameter, which is de-
termined using the L-curve method (Hansen and O’Leary,
1993). The metric used to evaluate the convergence of a
Phillips–Tikhonov retrieval is the so-called goodness-of-fit
parameter

χ2
=

1
m

m∑
i=1

[yi −Fi(x)]
2

σ 2
i

, (5)

where m is the dimension of the measurement vector, yi and
Fi(x) are the ith components of y and F (x) respectively,
and σi is the standard deviation of the measurement error for
yi (i = 1, . . .,m). We empirically found that a retrieval can be

said to have converged successfully if it achieves a goodness-
of-fit parameter smaller than 2.

In order to test the effect of updating the neural network
retrievals through a Phillips–Tikhonov iterative scheme, we
applied the combined algorithm to a sample of 5000 data,
randomly picked from the approximately 2×105 data used to
test the neural network alone. The choice of using a subset of
the data was made because applying the combined retrieval
to the entire test data set would have required a much longer
processing time. Out of the 5000 synthetic retrievals, 4798
converged to a χ2 parameter smaller than 2.

The statistics of the comparison between the neural net-
work retrieval and the combined neural network-Phillips–
Tikhonov retrieval are shown in Table 3. It can be seen that
the combined retrieval produces an appreciable improvement
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Figure 9. Plots of retrieved versus true fine-mode AOT (a), coarse mode AOT (b), SSA at 410 nm (c) and aerosol layer height (d) for the
neural network (NN) and the Phillips–Tikhonov algorithm using the neural network results as a first guess (NN–PT), on a sample of 4798
synthetic test cases. Statistics are given in Table 3.

Figure 10. Map of the RSP data used in this study. The red thin lines
indicate RSP flights, the red crosses indicate the availability of CPL
data and the blue triangles indicate the locations of the AERONET
stations.

over the neural network retrieval on parameters such as the
AOT, the single scattering albedo (SSA) and the fiso coeffi-
cients, especially at the three shortest wavelengths. For these
parameters, a reduction in the rms error by almost a factor
two is observed. A noticeable improvement in the correla-
tion coefficient is present for the fine-mode effective radius

and the coarse-mode FSP. For parameters such as aerosol
refractive indices and aerosol layer height the improvement
brought by the Phillips–Tikhonov retrieval appears less sig-
nificant. Plots of retrieved versus true fine- and coarse-mode
AOT, SSA and aerosol layer height are shown in Fig. 9 as
examples.

6 Application to RSP measurements

The neural network scheme described in Sect. 4 has been
used as initial guess for a Phillips–Tikhonov retrieval scheme
described in Wu et al. (2015) in order to process a collection
of RSP measurements carried out during the PODEX and
SEAC4RS campaigns, which took place in 2012 and 2013
over several areas of the United States and part of Canada.
A total of 7770 measurements have been collected, and the
data of 36 AERONET stations have been used for valida-
tion. Furthermore, data from the Cloud Physics Lidar (CPL,
McGill et al., 2002), hosted on the NASA ER-2 aircraft to-
gether with RSP, have been used to validate aerosol layer
height retrievals and perform cloud screening. A map of the
considered flights and AERONET stations used for valida-
tion is shown in Fig. 10 and the full list of AERONET sta-
tions providing validation data is given in Table 4.
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In order to reduce the angular oscillations in RSP measure-
ments due to imperfect co-registration, two preprocessing
steps have been applied to RSP measurements before the ap-
plication of the retrieval algorithm. First, the measurements
have been averaged over a 5 km box, as in Wu et al. (2015).
Second, each horizontally averaged multi-angular RSP mea-
surement has been convolved with a moving-average Black-
man filter of length 5. As explained in Sect. 3, only the mea-
surements made at VZAs between 40◦ aftward and 40◦ for-
ward have been used as input for the neural network. The
measurement vector for the Phillips–Tikhonov retrieval de-
scribed in Sect. 5, instead, covers the entire VZA range of
RSP. The Phillips–Tikhonov scheme uses nine viewing an-
gles, selected on a measurement-by-measurement basis in or-
der to cover a scattering angle range that is as broad as pos-
sible, thereby maximizing the sensitivity of the spectropo-
larimetric measurements to the aerosol properties (Wu et al.,
2015).

For the purpose of validating AOT retrievals, we con-
sidered each RSP measurement to be co-located with an
AERONET measurement if the distance between the RSP
and AERONET was not larger than 5 km and the measure-
ments were taken no longer than 1 h apart. For the valida-
tion of aerosol properties other than AOT we had to relax
the co-location criterion by allowing for a threshold of 20 km
in distance and 1 day in time. This was necessary to en-
sure the availability of an adequate number of data points.
Additional criteria imposed for validation were the follow-
ing: (i) a minimum scattering angle of RSP measurements
not larger than 85◦, (ii) only RSP measurements flagged as
cloud-free from CPL (cloud flag equal to 0) were consid-
ered, (iii) thresholds on AOT (explained later in this section)
were applied when validating aerosol properties other than
the AOT. Out of the original data set consisting of 7770 mea-
surements, 2327 measurements satisfied the screening crite-
ria (i) and (ii).

In total we found 95 AOT retrievals fulfilling the co-
location criteria with a distance threshold set to 5 km and
825 retrievals with the looser threshold of 20 km. Twenty-
five co-located retrievals satisfied the goodness-of-fit crite-
rion mentioned earlier in this section (χ2 < 2) with the 5 km
threshold, whereas 103 retrievals met the same criterion with
the 20 km threshold. The total number of converging re-
trievals (i.e. including non-co-located retrievals) was 223 out
of 2327 retrievals which satisfy the criteria mentioned above
on CPL cloud flag and minimum scattering angle. Thus, to
summarize, approximately 10 % of the retrievals achieved a
χ2 smaller than 2. A histogram of the χ2 of all the retrievals
is shown in Fig. 11. Approximately 75 % of the retrievals
reached a χ2 less than 10, which is the convergence thresh-
old used in Wu et al. (2015). Retrievals with a larger χ2,
which form the tail of the distribution, are probably due to
measurements that are still affected by angular oscillations
after the filtering described earlier in this section.

Scatter plots of the retrieved AOTs versus those provided
by the AERONET level 2 product based on the direct-sun
algorithm (Holben et al., 1998) at four AERONET wave-
lengths are shown in Fig. 12. The results of the neural net-
work alone as well as those of the Phillips–Tikhonov re-
trieval scheme are shown. The rms errors of neural network
retrievals range between approximately 0.04 at 870 nm and
0.07 at 440 nm. The application of the Phillips–Tikhonov re-
trievals brings the rms error down to about 0.045 at all wave-
lengths (see Table 6). Looking at the plots, it appears that
the Phillips–Tikhonov retrieval brings an improvement over
the neural network retrieval in cases with AOT at 440 nm
around 0.3 and larger. The neural network seems to un-
derestimate the AOT in these cases, whereas the Phillips–
Tikhonov seems to bring the retrieved values closer to the
AERONET values. It is worth noting that the error statistics
seem to depend critically on the distance threshold chosen
for co-location, as shown in Table 5, from which a steady in-
crease in the rms error is evident as the co-location criterion
is relaxed.

A comparison between the RSP and AERONET 440–
675 nm Ångström exponents, restricted to cases with re-
trieved AOT at 440 nm larger than 0.1, is shown in Fig. 13.
From the figure it is evident that RSP retrieves systematically
lower Ångström exponents than indicated by AERONET,
which means that our retrieval algorithm may have a ten-
dency to overestimate the size of aerosol particles.

A good agreement between the RSP and AERONET is
observed for the fine-mode effective radius derived from
the level 2 almucantar product (Dubovik and King, 2000;
Dubovik et al., 2000). The results of the comparison – which
is limited to cases with retrieved AOT at 440 nm larger than
0.2 – are shown in Fig. 14. The rms errors are slightly lower
than 0.03 µm for both the neural network retrieval and the
final retrieval. As mentioned before, the presence of an ad-
ditional filter on AOT required us to relax the co-location
distance to 20 km in order to obtain a reasonable amount of
data points. For this co-location criterion we obtained 46 data
points, whereas by adopting a stricter criterion of 10 km the
number of data would drastically drop to 16. Comparisons
for complex refractive index and SSA are not shown because
no AERONET data points satisfying the quality assurance
criteria for level 2 products (Holben et al., 2006) were found.

A comparison between the retrieved aerosol layer heights
and CPL measurements has been made by taking into ac-
count all the cases in which the retrieved AOT at 440 nm was
larger than 0.1. In Fig. 15 a plot of retrieved aerosol heights
versus coincident CPL measurements is shown, with 141 co-
incident retrievals that passed the convergence and the other
screening criteria. It is possible to see that the neural net-
work retrievals alone are already in good agreement with the
CPL, with a rms error around 1670 m and a correlation coeffi-
cient of 0.76. No clear improvement is observed over the neu-
ral network retrieval after the Phillips–Tikhonov algorithm is
applied. On the contrary, a slight degradation of the valida-
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Table 5. Rms difference between RSP and AERONET in the AOTs retrieved using the Phillips–Tikhonov scheme initialized by neural
network at four wavelengths, as a function of the maximum tolerated distance for co-location.

Max. distance N. data 440 nm 500 nm 675 nm 870 nm

5 km 25 0.044 0.044 0.045 0.045
10 km 46 0.047 0.047 0.051 0.052
15 km 71 0.067 0.068 0.070 0.069
20 km 103 0.071 0.072 0.074 0.074

Table 6. Error statistics from the comparisons shown from Figs. 12 to 15. for the neural network (NN) and for the Phillips–Tikhonov retrieval
initialized using the neural network (NN–PT). N. data is the number of data points from which the reported statistics are computed.

NN NN–PT
Parameter N.data Bias RMSE Corr. Bias RMSE Corr.

AOT (440 nm) 25 −0.02 0.07 0.51 0.01 0.04 0.82
AOT (500 nm) 25 −0.01 0.06 0.48 0.02 0.04 0.80
AOT (675 nm) 25 0.01 0.05 0.35 0.02 0.04 0.69
AOT (870 nm) 25 0.01 0.04 0.18 0.02 0.04 0.50
Ångström exp. (440–675 nm) 20 −0.50 0.68 0.11 −0.44 0.61 0.14
Fine-mode effective radius (µm) 46 −0.02 0.03 0.66 −0.01 0.03 0.76
Aerosol layer height (km) 141 0.45 1.67 0.76 0.58 1.73 0.75

Figure 11. Histogram of the goodness-of-fit parameter (χ2) of all
the available retrievals.

tion statistics is observed (rms difference around 1735 m and
correlation coefficient around 0.75), but it is doubtful that
these differences bear any statistical significance. The results
of the comparison also seem consistent with those shown in
Wu et al. (2016), where an iterative algorithm with multiple
LUT-based initializations was adopted.

The full statistics regarding bias, rms error and correlation
coefficient for the comparisons shown in Figs. 12 to 15 are
shown in Table 6.

Compared to the traditional algorithm initialized by a LUT
(Hasekamp et al., 2011; Wu et al., 2015), the algorithm ini-
tialized by means of the neural network is characterized by
a larger number of converging retrievals and a lower pro-
cessing time. By applying the LUT-based algorithm to the

data set used in this study, we obtained in total 47 con-
verging retrievals (223 with the neural network). The time
required in order to process the entire data set can be re-
duced by roughly a factor of 2 when using the neural net-
work algorithm to provide the first guess. The differences in
the retrieved aerosol parameters between the LUT-based and
the NN-based algorithm do not seem significant. The same
tendency to overestimate coarse-mode aerosol loads is also
observed in LUT-based retrievals. Plots of retrieved versus
AERONET (or CPL) aerosol parameters for the LUT-based
algorithm are given in the Supplement.

7 Conclusions

In this paper we have demonstrated the application of neu-
ral networks to aerosol retrievals from the RSP instrument.
First, we trained a neural network to retrieve aerosol and sur-
face properties from simulated multi-angle spectropolarimet-
ric measurements, with an observation geometry that sim-
ulates that of RSP. Then we applied the neural network to
real RSP measurements carried out over the United States
in 2012 and 2013 and used the neural network retrieval as a
first guess for an iterative algorithm based on the Phillips–
Tikhonov method.

In order to assess the quality of our retrievals, we com-
pared the retrieved aerosol parameters and aerosol layer
heights to co-located AERONET and CPL lidar measure-
ments respectively. We observed good retrieval capability for
AOT (although with a possible overestimation of the coarse
mode), fine-mode effective radius and aerosol layer height. A
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Figure 12. RSP versus AERONET total AOT at the four AERONET wavelengths lying inside the spectral range of the RSP measurements
used in this study. Black crosses: neural network retrievals. Red crosses: Phillips–Tikhonov with neural network first guess. Statistics shown
in Table 6.

Figure 13. RSP versus AERONET 440–675 nm Ångström ex-
ponent. Black crosses: neural network retrievals. Red crosses:
Phillips–Tikhonov with neural network first guess. Statistics shown
in Table 6.

comparison of the retrieval results with those obtained using
an iterative algorithm initialized using a LUT confirms the
finding that replacing the LUT with a neural network gener-
ally leads to a higher number of converging retrievals and to
a reduced processing time.

Figure 14. RSP versus AERONET fine-mode effective radius.
Black crosses: neural network retrievals. Red crosses: Phillips–
Tikhonov with neural network first guess. Statistics shown in Ta-
ble 6.

Out of 2327 RSP measurements which passed screening
criteria based on scattering angle and cloudiness, the ap-
plication of the combined neural network/Phillips–Tikhonov
scheme led to 223 retrievals which converged to a goodness-
of-fit indicator lower than 2. Forty-two converging re-
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Figure 15. RSP versus CPL aerosol layer height. Black crosses:
neural network retrievals. Red crosses: Phillips–Tikhonov with neu-
ral network first guess. Statistics shown in Table 6.

trievals were obtained instead, using the previous version
of the retrieval scheme, in which a LUT was used instead
of the neural network to provide the first guess for the
Phillips–Tikhonov algorithm. Thus, even with the neural
network/Phillips–Tikhonov retrieval scheme, about 10 % of
the retrievals satisfied the convergence criterion, which, in
absolute terms, is a relatively low percentage. This behaviour
may be due to several factors, ranging from residual co-
registration errors in RSP to inadequacies in the assumptions
in the surface model.

Training a neural network algorithm for multi-parameter
aerosol retrievals from airborne or satellite multi-angle spec-
tropolarimetric measurements remains challenging. In our
case, for example, the use of a training set encompass-
ing mostly fine-mode-dominated cases with moderate-to-low
aerosol loads resulted in better retrieval capabilities for the
fine-mode aerosol parameters than for the coarse-mode pa-
rameters and in good retrieval capabilities for all the sur-
face parameters. Choosing a mixture of training cases for a
single neural network that allows equal performances to be
achieved for all the aerosol and surface parameters on fine
mode as well as on coarse-mode-dominated situations, or
with low as well as with high aerosol loads, may be a chal-
lenging task. A possible improvement on the present work
may involve training multiple neural networks, each cover-
ing a certain range of situations, with possibly an additional
neural network that performs a preliminary classification,
thereby deciding which of the lower-level networks should
be used for retrieval. Approaches of this kind have been al-
ready applied to simple inverse scattering problems involv-
ing spheres and spheroids (Ulanowski et al., 1998; Berdnik
et al., 2004), and may be as well investigated – with due
adaptations – for more complex retrievals. The aforemen-
tioned approach may be also useful for extending the method

presented in this paper to multi-angle spectropolarimeters in
which the angular dependence of the measurements is more
complicated, such as POLDER, AirMSPi and the forthcom-
ing 3MI, where it is not possible to assume that all the mea-
surements are made at the same relative azimuth angle apart
from shifts of 180◦.
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