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Abstract. Cirrus clouds remain one of the key uncertain-
ties in atmospheric research. To better understand the prop-
erties and physical processes of cirrus clouds, accurate large-
scale observations from satellites are required. Artificial neu-
ral networks (ANNs) have proved to be a useful tool for cir-
rus cloud remote sensing. Since physics is not modelled ex-
plicitly in ANNs, a thorough characterisation of the networks
is necessary.

In this paper the CiPS (Cirrus Properties from SE-
VIRI) algorithm is characterised using the space-borne li-
dar CALIOP. CiPS is composed of a set of ANNs for the
cirrus cloud detection, opacity identification and the corre-
sponding cloud top height, ice optical thickness and ice wa-
ter path retrieval from the imager SEVIRI aboard the geo-
stationary Meteosat Second Generation satellites. First, the
retrieval accuracy is characterised with respect to different
land surface types. The retrieval works best over water and
vegetated surfaces, whereas a surface covered by permanent
snow and ice or barren reduces the cirrus detection ability
and increases the retrieval errors for the ice optical thickness
and ice water path if the cirrus cloud is thin (optical thickness
less than approx. 0.3). Second, the retrieval accuracy is char-
acterised with respect to the vertical arrangement of liquid,
ice clouds and aerosol layers as derived from CALIOP lidar
data. The CiPS retrievals show little interference from liq-
uid water clouds and aerosol layers below an observed cirrus
cloud. A liquid water cloud vertically close or adjacent to the
cirrus clearly increases the average retrieval errors for the op-
tical thickness and ice water path, respectively, only for thin
cirrus clouds with an optical thickness below 0.3 or ice wa-
ter path below 5.0 g m−2. For the cloud top height retrieval,
only aerosol layers affect the retrieval error, with an increased
positive bias when the cirrus is at low altitudes. Third, the

CiPS retrieval error is characterised with respect to the prop-
erties of the investigated cirrus cloud (ice optical thickness
and cloud top height). On average CiPS can retrieve the cir-
rus cloud top height with a relative error around 8 % and no
bias and the ice optical thickness with a relative error around
50 % and bias around ±10 % for the most common combi-
nations of cloud top height and ice optical thickness. Simi-
larities with physically based retrieval methods are evident,
which implies that even though the retrieval methods differ
in the implementation of physics in the model, the retrievals
behave similarly due to physical constraints. Finally, we also
show that the ANN retrievals have a low sensitivity to radio-
metric noise in the SEVIRI observations. For optical thick-
ness and ice water path the relative uncertainty due to noise
is less than 10 % down to sub-visual cirrus. For the cloud top
height retrieval the uncertainty due to noise is around 100 m
for all cloud top heights.

1 Introduction

Cirrus clouds remain one of the key uncertainties in atmo-
spheric research (e.g. Waliser et al., 2009; Eliasson et al.,
2011; Stevens and Bony, 2013). In particular, the net ra-
diative forcing of cirrus clouds strongly depends on opti-
cal thickness, which mainly determines top-of-atmosphere
(TOA) reflected shortwave radiation, and cloud height, which
together with optical thickness defines the outgoing long-
wave flux (Meerkötter et al., 1999). To monitor and under-
stand the properties of cirrus clouds, accurate and quantita-
tive large-scale observations from satellites are required. Dif-
ferent satellite sensors used for cloud remote sensing have
their individual strengths and weaknesses. Imaging radiome-
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ters like SEVIRI (Spinning Enhanced Visible InfraRed Im-
ager; Schmetz et al., 2002), ABI (Advanced Baseline Im-
ager; Schmit et al., 2015), MODIS (Moderate Resolution
Imaging Spectroradiometer; King et al., 1992) and AVHRR
(Advanced Very High Resolution Radiometer; Hastings and
Emery, 1992) measure the longwave radiation emitted by
the Earth and the reflected solar radiation leaving the Earth–
atmosphere system at TOA. Imaging radiometers typically
view an area large enough (by scanning or otherwise) to
observe complete cloud systems, but a passive infrared im-
ager cannot resolve vertical cloud features and has a lim-
ited sensitivity to thin and sub-visual (visible optical thick-
ness < 0.03) cirrus clouds. Active sensors like CALIOP
(Cloud-Aerosol Lidar with Orthogonal Polarization; Winker
et al., 2003, 2009) and CPR (Cloud Profiling Radar; Stephens
et al., 2002) emit visible (CALIOP) and microwave radiation
(CPR) and measure the radiation backscattered by clouds
and aerosols. This allows for vertical profiling of clouds and
aerosols along the satellite track with a high sensitivity to
thin cirrus clouds (using the lidar). However, those sensors
have a small footprint and observe only at nadir, which leads
to a poor spatial coverage.

Observations from different satellite orbits generate ad-
ditional advantages and limitations. Sensors observing the
Earth from polar orbits (e.g. MODIS, AVHRR, CALIOP and
CPR) have a near-global coverage and high spatial resolu-
tion but a low to poor temporal resolution, depending on the
swath width/spatial coverage. In contrast, a geostationary im-
ager like SEVIRI lacks a global coverage but has a constant
large field of view, which allows for a high temporal res-
olution of 15 min (Schmetz et al., 2002) required to study
the temporal evolution, life cycle and physical processes of
clouds.

The advantages of individual instruments can be combined
to enhance cloud retrievals if two or more complementary
satellite sensors operate aboard the same satellite platform
(e.g. the synergistic retrievals for the IIR thermal camera
and CALIOP aboard CALIPSO (Cloud-Aerosol Lidar and
Infrared Pathfinder Satellite Observations) by Garnier et al.,
2012, 2013, 2015) or fly in a satellite constellation like the A-
train (e.g. the synergistic retrievals for CALIOP and CPR or
CALIOP, CPR and MODIS by Donovan and van Lammeren,
2001; Deng et al., 2010; Ceccaldi et al., 2013; Delanoë and
Hogan, 2008, 2010).

Combining the advantages of satellite sensors operating
in different orbits is more challenging, as they observe given
scenes at different times from possibly different perspectives.
Nevertheless, the information from available sensor colloca-
tions can be used to learn relationships between different sets
of observations, e.g. through machine learning. For cloud re-
mote sensing, artificial neural networks (ANNs) have proven
to be a powerful tool for this (Kox et al., 2014; Holl et al.,
2014; Minnis et al., 2016; Strandgren et al., 2017). Kox et al.
(2014) developed an ANN-based algorithm trained with co-
incident SEVIRI thermal observations and CALIOP prod-

ucts for the cloud top height (CTH) and ice optical thickness
(IOT) determination of cirrus clouds from SEVIRI. Strand-
gren et al. (2017) exploit the main idea of Kox et al. (2014)
and combine four ANNs trained with SEVIRI thermal ob-
servations, model data and CALIOP products for the de-
tection of thin cirrus clouds and the retrieval of the corre-
sponding CTH, IOT and ice water path (IWP) along with
an additional opacity information. Holl et al. (2014) utilise
ANNs trained with coincident CALIOP, CPR, AVHRR and
MHS (Microwave Humidity Sounder) retrievals for the de-
tection and IWP determination of ice clouds from AVHRR
and MHS observations. Minnis et al. (2016) estimate the op-
tical thickness of opaque ice clouds at night using an ANN
trained with collocated MODIS IR observations and CPR
retrievals. The ultimate goal with these approaches is to re-
trieve, respectively, CALIOP-, CALIOP/CPR- and CPR-like
cloud properties from SEVIRI, AVHRR/MHS and MODIS
observations alone. Although ANNs are a powerful alterna-
tive to physically based cloud retrievals (e.g. Platnick et al.,
2003; Bugliaro et al., 2011; Minnis et al., 2011; Stengel et al.,
2014; Heidinger et al., 2015; Wang et al., 2016; Iwabuchi
et al., 2016), they are trained to learn patterns and model re-
lationships, and physical principles are not imposed for the
scenes being investigated. Consequently, it is difficult to pre-
dict how sensitive the retrievals are to different land surface
types and the wealth of natural atmospheric situations and
if there are physical conditions where the ANNs are inca-
pable of retrieving meaningful results. This might be due to
a number of reasons. On one hand, the channels of the im-
ager possess a limited vertical resolution expressed by the
channel weighting functions as a result of the wavelength-
and temperature-dependent absorption, emission and scatter-
ing interactions with gas, cloud and aerosol layers in the at-
mosphere. On the other hand, ANNs will in general perform
better for retrieval scenes that occur more frequently in the
training dataset as those scenes will have a stronger weight
during the training. This, together with the fact that ANNs
provide no direct uncertainty estimates, highlights the im-
portance of properly characterising the ANN retrievals.

In this paper we address those aspects by characterising
the CiPS (Cirrus Properties from SEVIRI; Strandgren et al.,
2017) algorithm in order to increase the understanding about
the functionality, performance and robustness of the corre-
sponding ANNs under different, sometimes challenging, re-
trieval conditions. SEVIRI and CALIOP, the main input and
output training data sources used for CiPS, represent very
different instruments. The active CALIOP lidar provides ver-
tical profiles of ice cloud extinction and makes use of po-
larisation to distinguish between liquid water and ice. The
CiPS algorithm finally exploits the brightness temperatures
of the Earth sensed by the passive imager SEVIRI to detect
ice clouds and derive their optical and physical properties.
Although the physics underlying the two retrievals have sim-
ilarities, like the fact that both instruments saturate at rela-
tively low IOTs (between 3 and 5), the measurement types
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are very different. Thus, one shall evaluate in detail how ef-
fective the combination of these two instruments is in reality
and whether there are situations where their different charac-
teristics lead to unreliable results.

In Sect. 2 the satellite sensors and data used for the char-
acterisation are briefly introduced. The CiPS algorithm is de-
scribed in Sect. 3. The relative importance of the input vari-
ables used by CiPS is estimated in Sect. 4.2. This information
is valuable for further ANN developments within the field of
(cirrus) cloud remote sensing. In Sect. 4.3 the CiPS retrieval
accuracy is characterised as a function of the underlying sur-
face type, using a set of five surface type classes extracted
from MODIS L3 data. In Sect. 4.4 we compare the retrieval
accuracy of CiPS for scenes with clear air, aerosol layers and
high and low liquid water clouds below the cirrus, using ver-
tical characteristics of aerosol and cloud layers derived from
CALIOP L2 data. Furthermore, we analyse the retrieval er-
rors of CiPS as a function of IOT and CTH in Sect. 4.5, in
order to quantify the retrieval error for different types of cir-
rus. This provides valuable information about the retrieval
errors that is not obtained by looking at the errors averaged
across all CTH and/or IOT. In Sect. 4.6 the noise sensitiv-
ity of CiPS is quantified by comparing the standard retrieval
of CiPS with randomly perturbed SEVIRI input data. Finally
the results are summarised and discussed in the concluding
section. A list of abbreviations is available in Appendix A.

2 Instruments and data

2.1 SEVIRI

The SEVIRI imager operates aboard the geostationary Me-
teosat Second Generation (MSG) satellites. SEVIRI mea-
sures the up-welling radiation within 12 wavelength intervals
(channels) in the visible to thermal infrared spectrum, from
which the radiances, equivalent black body brightness tem-
peratures and reflectances can be derived. SEVIRI has a spa-
tial coverage from approx. 80◦W to 80◦ E and 80◦ S to 80◦ N
(from now on referred to as the SEVIRI disc) and a temporal
resolution of 15 min. The spatial coverage of SEVIRI can be
seen in Fig. 2. Limiting the spatial coverage to latitudes north
of approx. 15◦ N, the temporal resolution can be increased to
5 min using the rapid scanning service. The spatial sampling
of SEVIRI is 3 km at nadir for all channels except the high-
resolution visible channel that has a spatial sampling of 1 km
(Schmetz et al., 2002).

Estimates of the radiometric noise levels of the SEVIRI
thermal channels can be derived from measurements of the
internal black body calibration target and are reported as
noise-equivalent temperature differences (NE1T ) at given
reference temperatures in EUMETSAT (2007) and sum-
marised in Table 1 (second column) for all channels (first col-
umn) used by CiPS (see Sect. 3.2). As the reference tempera-
tures reported by EUMETSAT are higher than typical bright-

Table 1. Radiometric noise estimates of MSG-2/SEVIRI thermal
channels (first column, including the channel centre wavelength
λc) at the reported reference brightness temperatures (second col-
umn; EUMETSAT, 2007) and at typical brightness temperatures
observed for cirrus cloud retrievals (third column, see Sect. 4.6.1)

λc (µm) NE1T (K)

6.2 0.05 @ 250 K 0.11 @ 225 K
7.3 0.05 @ 250 K 0.07 @ 237 K
8.7 0.075 @ 300 K 0.15 @ 252 K
10.8 0.07 @ 300 K 0.12 @ 253 K
12.0 0.10 @ 300 K 0.16 @ 251 K
13.4 0.205 @ 270 K 0.27 @ 239 K

ness temperatures observed by SEVIRI for cirrus-covered
pixels, the third column shows the estimated radiometric
noise scaled to reference brightness temperatures represent-
ing typical cirrus cloud retrievals (see Sect. 4.6.1). Please
note that the reported noise levels are estimators/indicators
and not necessarily representative for any given SEVIRI ob-
servation. For a statistical analysis, however, those estimates
are sufficient.

2.2 CALIOP

The CALIOP lidar observes the Earth from a polar orbit
aboard CALIPSO. CALIOP emits 20 laser pulses per sec-
ond and measures curtains of attenuated backscatter profiles
along the satellite track with a vertical resolution of up to
30 m (Winker et al., 2009). In this study we use the version 3
(V3) CALIOP L2 cloud and aerosol layer data at a spatial
resolution of 5 km (CAL_LID_L2_05kmC|ALay-Prov-V3-
0X; CALIPSO Science Team, 2015a, b, c, d). The layer prod-
ucts provide the vertical position of cloud and aerosol layers
in the atmosphere, as well as cloud phase, optical thickness,
partial column ice water path and opacity. The opacity is re-
ported as a binary flag and tells whether CALIOP was able
to fully penetrate the layer (transparent) or not (opaque).

2.3 Collocation dataset

For this study (Sect. 4.3–4.6) we use a dataset of collocated
CiPS input data (SEVIRI, ECMWF and auxiliary data; see
Sect. 3.2) and cirrus properties retrieved by CALIOP (CTH,
IOT, IWP and opacity information), allowing us to apply
CiPS and compare the retrievals with the corresponding ref-
erence retrievals by CALIOP. The cirrus properties retrieved
by CALIOP have been collocated with the SEVIRI obser-
vations from the pixel having the largest overlap with the
5 km CALIOP orbit segment. Due to the different viewing
geometries of SEVIRI and CALIOP, the latitude, longitude
and cloud top altitude from CALIOP were used to project
cirrus clouds to the SEVIRI grid (parallax correction). This
dataset was originally used to validate CiPS and contains 5
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million collocations collected over a time period of almost
6 years (April 2007 to January 2013). This represents a ran-
dom subset containing 10 % of all quality-screened colloca-
tions of CiPS input data and CALIOP cirrus cloud proper-
ties obtained during this time period. The remaining 90 % of
the collocations were used to develop and train CiPS. Hence,
the collocation dataset, as well as the training datasets used
to develop CiPS, does to some extent (limited by the syn-
synchronous orbit of CALIPSO) represent the natural dis-
tribution of cirrus clouds and cirrus cloud properties. A de-
tailed description of the collocation dataset can be found in
Strandgren et al. (2017), where it is referred to as the internal
validation dataset.

3 The CiPS algorithm

To improve the readability of the paper, ANNs and the CiPS
algorithm are shortly introduced.

3.1 Artificial neural networks

An ANN is a mathematical model that can be trained to
recognise patterns and model functions. A set of multilayer
perceptrons (MLPs), a feed-forward artificial neural network,
is used by CiPS for the remote sensing of cirrus clouds and is
thus shortly introduced here. The goal of an ANN is to model
the relationship between two sets of data, such that a vector
of output data can be accurately estimated using the infor-
mation from a vector of known input data. An MLP consists
of a number of neurons that exchange information with each
other. The neurons are distributed over three major units: (1)
the input layer that holds as many neurons as input variables,
(2) the output layer that holds as many neurons as output vari-
ables and (3) the hidden layers that hold an arbitrary number
of hidden neurons distributed over a number of hidden lay-
ers. The output value of a neuron is calculated by processing
the output from all neurons in the preceding layer connected
to that neuron and the corresponding numeric weights as-
signed to each neuron–neuron connection through an activa-
tion function. Hence the only information available to solve
a problem is the input data and all connection weights. Thus
it is crucial that the weights are assigned correct values.

The weights are tuned by training the ANN. Using the
back-propagation algorithm (Rumelhart et al., 1986), as is
the case for CiPS, the weights are tuned by looking at a large
number of training examples, where both the input data and
the corresponding output data are known. The ANN uses the
training input data and the current weights to calculate a vec-
tor of output data. The skill of the ANN is determined by
calculating the squared error between the vector of estimated
output data and the corresponding vector of known reference
output data. The squared error is then propagated backwards
through the ANN and each weight is tuned such that the error
is minimised. The training procedure is an iterative process

and continues until the error between estimation and refer-
ence is sufficiently low.

3.2 CiPS

The CiPS algorithm (details in Strandgren et al., 2017) de-
tects cirrus clouds, identifies opaque pixels and retrieves the
corresponding CTH, IOT and IWP. To this end a set of four
ANNs is used, trained with MSG-2/SEVIRI thermal obser-
vations, the surface skin temperature Tsurf (from ECMWF)
and auxiliary data as input and V3 CALIOP L2 layer data
(CALIPSO Science Team, 2015a, b, c, d) as reference out-
put data. CiPS uses one ANN to derive a cirrus cloud flag
(CCF) that classifies the SEVIRI pixels as either cirrus-free
or cirrus-covered. This ANN has been trained to identify pix-
els, in which CALIOP did detect icy cloud layers. A second
ANN is used for the CTH retrieval and a third ANN for the
IOT and IWP retrieval. The fourth ANN is used to derive an
opacity flag (OPF) that classifies the cirrus-covered pixels as
either transparent or opaque. As CALIOP becomes saturated
for optically thicker cirrus (IOT&3), the CiPS IOT and IWP
retrievals should not be trusted in such situations. Thus the
OPF is trained to distinguish between the cirrus clouds that
could be fully penetrated by CALIOP (transparent cirrus) and
those that could not (opaque cirrus).

CiPS input data selection is based on physical considera-
tions. CiPS works pixel by pixel and uses the single bright-
ness temperatures from the SEVIRI channels centred at 6.2,
7.3, 8.7, 10.8, 12.0 and 13.4 µm. Water vapour channels (cen-
tred at 6.2 and 7.3 µm) should help detecting ice clouds (see
e.g. Krebs et al., 2007), identifying opaque pixels as well as
determining its height, together with the CO2 channel cen-
tred at 13.4 µm (e.g. Menzel et al., 1983; Schmetz et al.,
1993). Window channels (8.7, 10.8, 12.0 µm) and especially
their brightness temperature differences are both useful for
detection (e.g. Inoue, 1985) and for the optical thickness de-
termination (e.g. Ackerman et al., 1990). Furthermore, CiPS
exploits the information from nearby SEVIRI pixels by util-
ising the regional maximum brightness temperature from the
window channels (for all ANNs, as a proxy for cirrus-free
conditions) and the regional average brightness temperature
from the water vapour channels (only for cirrus detection
and opacity classification, as a proxy for the smoothness of
the surroundings). The regional maximum brightness tem-
perature is defined as the maximum brightness temperature
within a 19× 19 pixels large box (corresponding to an area
of ≈ 57×57 km2 at nadir) centred at the pixel under consid-
eration. Similarly the regional average brightness tempera-
ture is defined as the boxcar average temperature within the
same box (inspired by Krebs et al., 2007). The modelled sur-
face temperature from ECMWF provides a cirrus-free char-
acterisation of the surface and should be useful in all ANNs.
Finally, CiPS uses the latitude, the viewing zenith angle of
SEVIRI, two surface type flags (seawater and permanent ice
and snow) and the day of the year (DOY, 1–365; to avoid
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a hard transition from 31 December to 1 January, two in-
put neurons are used for the DOY: sin(2π DOY/365) and
cos(2π DOY/365)). Latitude and day of year are selected
since the appearance of cirrus and their top height strongly
depends on general circulation and convection strength, with
higher clouds in the tropics and generally lower clouds to-
wards the polar regions and with stronger convection in sum-
mer with respect to spring/autumn and, of course, winter in
mid-latitudes. Viewing angle shall account for the path length
of radiation through the atmosphere, while the two selected
surface types identify on one side (sea) thermally quite ho-
mogeneous surfaces and on the other side (ice/snow) cold
surfaces with similar absorption properties as the ice clouds.
In total, 18 input variables are used for the cirrus detection
and opacity classification and 16 input variables for the CTH,
IOT and IWP retrieval (please see Table 2 in Strandgren
et al., 2017, for a tabular overview of all input variables). Al-
though the selection of input quantities is inspired by physi-
cal principles, the task of combining input variables is left to
the ANN.

In the following, all quantities referring to CiPS will be de-
noted as CCFCiPS, OPFCiPS, CTHCiPS, IOTCiPS and IWPCiPS,
while all quantities referring to CALIOP will be denoted as
CTHCALIOP, IOTCALIOP and IWPCALIOP

4 Characterisation of CiPS

Strandgren et al. (2017) present the CiPS retrieval accuracy
for cirrus detection, opacity classification and for the deriva-
tion of the physical and optical properties CTH, IOT and
IWP with respect to CALIOP. In the present paper, a more
differentiated investigation is performed that aims at char-
acterising the ANNs according to various aspects. First, de-
spite the fact that CiPS input quantities have been selected
according to physical principles (see Sect. 3.2), it is un-
clear which importance the single input variables have been
assigned by the ANNs. This a posteriori examination also
gives hints about the ability of the ANNs to model phys-
ical relationships among the variables. Second, the combi-
nation of cirrus products from visible backscattered verti-
cally resolved “monochromatic” lidar radiation (CALIOP)
and thermal “columnar” narrowband brightness temperatures
from imager channels (SEVIRI) is supported by the knowl-
edge that cirrus clouds leave their mark on both measure-
ments types in a “similar” way: for instance, both meth-
ods are sensitive to visible ice optical thickness up to ca. 5
(e.g. DeSlover et al., 1999). Nevertheless, CALIOP’s possi-
bility of discerning vertical features (ice clouds, liquid water
clouds, aerosols) is not shared by SEVIRI, which poses the
question whether the proposed CALIOP–SEVIRI synergy is
always meaningful. To clarify this aspect, the CiPS perfor-
mance is investigated for various vertical arrangements of
cloud and aerosol layers and for various surface types. Fur-
thermore, cirrus clouds are classified according to their IOT

Table 2. Contingency table for the cirrus detection from CALIOP
and CiPS.

CALIOP

Cirrus No cirrus

CiPS
Cirrus NTP NFP
No cirrus NFN NTN

and CTH to provide a better understanding of the CiPS re-
trieval errors (magnitude and bias). Finally, the sensitivity to
radiometric noise in the SEVIRI data is quantified.

4.1 Validation metrics

First of all, the validation metrics used in the following are
presented.

The probability of detection (POD) is used to measure how
efficiently CiPS detects cirrus clouds and is given by

POD=
NTP

NTP+NFN
, (1)

where the number of true positives, NTP, are all points cor-
rectly classified as cirrus and the number of false negatives,
NFN, all cirrus clouds that remain undetected. The denom-
inator, NTP+NFN, is thus the total number of points with
a reference cirrus cloud. The false alarm rate (FAR) measures
the fraction of cirrus-free points that are falsely classified as
being cirrus clouds and is given by

FAR=
NFP

NFP+NTN
, (2)

where the number of false positives, NFP, are all points
falsely classified as cirrus (false alarms) and the number of
true negatives, NTN, all points correctly identified as cirrus-
free. The denominator, NFP+NTN, is thus the total number
of points with no reference cirrus cloud. The corresponding
CALIOP data are used as a reference when calculating the
POD and FAR. Table 2 clarifies the quantities used to calcu-
late the POD and FAR.

The mean absolute percentage error (MAPE) and mean
percentage error (MPE) are defined as

MAPE=
100%
N

N∑
i=1

∣∣∣∣Ei −OiOi

∣∣∣∣ , (3a)

MPE=
100%
N

N∑
i=1

Ei −Oi

Oi
, (3b)

where Oi is the observed reference value retrieved by
CALIOP andEi the estimated value by CiPS. The sum spans
over all samples i = 1, . . .,N used for the evaluation. The
MAPE gives information about the average magnitude of the
CiPS retrieval errors relative to the expected reference value
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retrieved by CALIOP. The MPE gives information about the
direction of the deviations, i.e. whether CiPS tends to overes-
timate (positive MPE) or underestimate (negative MPE) the
values with respect to CALIOP (bias). When calculating the
MPE, over- and underestimates can cancel out each other, po-
tentially leading to zero MPE/bias even if the magnitude of
the errors is large. Therefore the MAPE has been considered
as well.

4.2 Relative importance of the CiPS input data

To understand, improve and extend CiPS and similar ANN-
based retrieval algorithms, it is valuable to understand what
input data have essential contributions to the solution of
a given problem. Important input variables are identified
by the ANN and given a strong weight during the training.
Similarly, less important input variables are given a weaker
weight and thus a smaller role in retrieving the output data.

The importance of an input variable can be estimated as
the euclidean length of the vector holding all weights that
connect that input neuron with the hidden neurons in the
first hidden layer (LeCun et al., 1990). The importance (or
total weight) of an input variable i is thus calculated as

Wi =

√
w2
i,1+w

2
i,2+ . . .+w

2
i,N , where wi,1 to wi,N are the

single weights connecting input variable i with the N neu-
rons in the first hidden layer. Figure 1 shows the relative
importance of the 18 input variables used by CiPS. The
relative importance of all input variables is calculated as
W ∗i = 100%×Wi/(W1+W2+ . . .+W18) for the respective
ANNs such that the sum of the relative importance across
all input variables adds up to 100 % for each ANN. The four
columns represent the four ANNs. No relative importance of
the regional average brightness temperatures is reported for
the CTHCiPS, IOTCiPS and IWPCiPS retrievals since those are
used exclusively for the cirrus detection and opacity classifi-
cation (see Sect. 3.2).

It is clear that the window channels of SEVIRI are es-
sential for the detection and opacity classification of cir-
rus clouds as well as for the determination of IOTCiPS and
IWPCiPS. This reflects the importance of these channels in
physically based retrievals (e.g. Ewald et al., 2013; Heidinger
et al., 2015; Iwabuchi et al., 2016). For the CTHCiPS retrieval,
the latitude is the dominant input variable, followed by the
water vapour channels. Similarly the DOY has a comparably
strong importance for the CTHCiPS retrieval. The relative im-
portance of BT13.4 µm is surprisingly low for the CTHCiPS re-
trieval, although observations from around 13.4 µm are com-
monly used by the CO2-slicing method for CTH retrievals
(e.g. Menzel et al., 2008). This is a hint that the ANN may
model a statistical, rather than physical, relationship between
the input and output variables, as the CTH has an annual
cycle and a clear latitude dependency (Stubenrauch et al.,
2013). It might also be that the 13.4 µm brightness temper-
ature only provides redundant information with respect to
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Figure 1. Relative importance of the CiPS input variables (verti-
cal axis) for the four ANNs (horizontal axis). The blue shades fur-
ther highlight the magnitude of the relative importance with fad-
ing colours for decreasing importance. BT is brightness tempera-
ture, regavg is regional average, regmax is regional maximum and
VZA is viewing zenith angle. DOYSIN = sin(2π DOY/365) and
DOYCOS = cos(2π DOY/365).

cloud top height since also water vapour channels and sur-
face skin temperatures are available to the ANN (see discus-
sion about the physical motivation of the input variables in
Sect. 3.2). For the CCFCiPS, OPFCiPS, IOTCiPS and IWPCiPS
retrievals, the DOY has a very low importance and conse-
quently a minor contribution to the retrievals. The surface
temperature from the model is clearly helpful for determin-
ing the CTHCiPS, IOTCiPS and IWPCiPS. The information
about whether the Earth’s surface is covered by permanent
ice or snow is valuable for the cirrus detection as well as
the IOTCiPS and IWPCiPS retrievals, whereas the surface wa-
ter flag has a comparably small contribution to the retrievals.
Exploiting the information from nearby SEVIRI pixels us-
ing the regional maximum and regional average tempera-
tures is clearly helpful in all aspects; their relative impor-
tance is comparable to the relative importance of Tsurf for the
CTHCiPS, IOTCiPS and IWPCiPS retrievals, for example.
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4.3 The CiPS retrieval accuracy for different surface
types

In this section the performance of CiPS is characterised with
respect to a set of five surface type classes extracted from
MODIS L3 data. For this section as well as for the remain-
der of this paper (except the noise sensitivity analysis in
Sect. 4.6) the performance of CiPS is always evaluated with
respect to the cirrus cloud retrievals by CALIOP.

4.3.1 Surface type classes from MODIS

The International Geosphere-Biosphere Programme (IGBP;
Loveland and Belward, 1997) has defined 17 land surface
types including 11 natural vegetation classes, 3 developed
and mosaicked land classes and 3 non-vegetated land classes.
The MODIS L3 product MCD12C1 (Friedl et al., 2010) pro-
vides the majority land cover type at a resolution of 0.05◦

according to the IGBP classification. The MCD12C1 V051
dataset for 2012 has first been reprojected to the SEVIRI grid
using the nearest neighbour method. Then, for the character-
isation of CiPS with respect to the underlying surface type,
the different surface classes have been grouped into the five
following classes: (1) water including ocean, lakes, rivers
and wetlands; (2) barren including surfaces covered by soil,
sand and rocks with a maximum vegetation of 10 %; (3) per-
manent ice and snow including surfaces permanently covered
by ice and/or snow; (4) forest including all surfaces domi-
nated by trees (canopy cover> 60 %); and (5) vegetation ex-
cluding forest including all surfaces with other types of veg-
etation i.e. shrublands, savannahs, grasslands and croplands.
Detailed information about the IGBP surface types can be
found in Loveland and Belward (1997). These surface types
are expected to have different spectral properties and humid-
ity contents that might affect the thermal SEVIRI channels
(Sect. 3.2) and therefore the CiPS ANNs. The geographical
coverage of the five surface classes used in this study is visu-
alised in Fig. 2. Please note that the barren class is composed
mostly of bright desert surfaces in the SEVIRI disc. Hence
the results presented for barren in this section are mostly rep-
resentative for retrievals over desert and only to a very lim-
ited extent for retrievals over other types of barren present in
e.g. the Andes and Iceland. Permanent ice and snow is only
found in Greenland, Antarctica, and to a limited extent in
high mountain ranges.

4.3.2 Cirrus cloud detection

The CCFCiPS is evaluated as a function of the underlying
surface type using the POD (Eq. 1) and the FAR (Eq. 2).
To avoid the presence of (liquid water cloud/aerosol) layers
between cirrus and surface that would shield radiation emit-
ted by the surface, the CALIOP L2 data are used to identify
and include only those profiles with clear air (at most a faint
aerosol layer with aerosol optical thickness AOT≤ 0.2) be-

Figure 2. Visualisation of the geographical coverage of the five sur-
face type classes across the SEVIRI disc.

low a possible transparent cirrus cloud in the analysis (see
class C1 (for POD) and class C7 (for FAR) in Sect. 4.4.1
and Fig. 5). In total approx. 600 000 such collocations are
available in the collocation dataset, with the largest number
of occurrences over water (360 000) and the smallest number
over barren (36 000). The goal of the OPF retrieved by CiPS
is to detect cirrus clouds that are opaque, i.e. where the verti-
cal structure below the cirrus is unknown for CiPS/CALIOP.
Consequently, the OPF of CiPS is not characterised for the
different surface types as it cannot be ruled out that there
are no liquid water clouds or aerosol layers with AOT> 0.2
below an opaque cirrus. Please note that the more accurate
OPF of CALIOP is used to identify profiles with opaque cir-
rus clouds that are excluded from the analysis as explained
in Sect. 4.4.1. Also note that the terms “transparent” and
“opaque” in this context are solely related to the saturation of
the CALIOP laser beam and tell whether it was able to fully
penetrate the cirrus cloud (transparent cirrus) or not (opaque
cirrus).

Figure 3 shows the POD of CiPS for the five surface type
classes. The POD is presented as a function of IOTCALIOP.
For a better visualisation of thin cirrus, the scale is logarith-
mic for IOTCALIOP < 1.0 and linear for IOTCALIOP ≥ 1.0. As
a reference, the average POD for all surface types is included
(black line). We require a lower limit of 10 samples for the
statistics, so no POD over barren is available for thicker cir-
rus clouds (IOTCALIOP &3.0). The same is done for the re-
mainder of this paper.
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Figure 3. The cirrus POD of CiPS as a function of the IOT re-
trieved by CALIOP for the five surface type classes. Note that the
line colours correspond to the colours used in Fig. 2.

CiPS has a clearly lower POD over barren and permanent
ice and snow for cirrus clouds with IOTCALIOP .0.5: up to
20 % less cirrus clouds are detected than on average. Both
are known to be difficult (cirrus) cloud retrieval conditions
(Frey et al., 2008; Holz et al., 2008). Over ice and snow
the radiative contrast between the cirrus and the cold surface
is reduced, making the cirrus cloud detection more difficult.
Furthermore, mixed-phase clouds or supercooled liquid wa-
ter layers above ice layers in the polar regions (Mioche et al.,
2015; Verlinde et al., 2007; Shupe et al., 2006) may also re-
duce the POD as CiPS requires the water to be frozen to be
classified as a cirrus. Moreover, temperature inversions, fre-
quent in these areas (Wetzel and Brümmer, 2011), can make
the cloud top of low ice clouds (Devasthale et al., 2011) ap-
pear warmer than the snow/ice-covered surface and thus re-
duce their detection (Wilson et al., 1993; Gao et al., 1998).
Finally, the retrieval conditions over Greenland and Antarc-
tica are the least favourable ones for SEVIRI, with the largest
viewing zenith angles and pixel sizes. The FAR over perma-
nent ice and snow is 4.3 %, which is higher than the aver-
age FAR of 3.2 % over all surface types. Barren is to a large
extent made up by deserts, where cirrus clouds rarely form,
yet they can be found there when they drift towards mid-
latitudes after formation in the Intertropical Convergence
Zone (ITCZ). The ANN is likely to learn such a pattern of
low occurrence frequency and thus miss more thin cirrus in
those regions. This is supported by the fact that the FAR is
lowest over barren, where only 1.1 % of the cirrus-free cases
are falsely classified as cirrus. The highest POD is observed
over forest: up to 15 % more than on average for IOTCALIOP
up to 0.5. This is due to the high cirrus cloud occurrence
over the tropical rainforests that increases the POD in a sim-

ilar manner as the POD is reduced over barren. Again this
is supported by the highest FAR of 7.1 % over forest. Simi-
lar trends could be seen in Fig. 5 in Strandgren et al. (2017),
with the minimum FAR over the Sahara and the maximum
FAR above the African and South American rainforests. Wa-
ter and other vegetation (vegetation excluding forest) have
similar POD, but the cirrus detection is slightly better over
homogeneous water surfaces than over vegetation excluding
forest. The corresponding FARs are 3.1 % over water and
3.5 % over vegetation excluding forest. Notice finally that
due to their large number over the SEVIRI disc the water
pixels dominate the average curve.

4.3.3 Cirrus cloud properties

Figure 4 shows the MAPE and MPE for the (a) CTHCiPS, (b)
IOTCiPS and (c) IWPCiPS retrievals as functions of the cor-
responding reference retrievals by CALIOP and the five sur-
face type classes. Within each CTHCALIOP, IOTCALIOP and
IWPCALIOP interval in Fig. 4, the MAPE and MPE given by
Eq. (3a) and (3b) is calculated. Please note that the results
are presented with a logarithmic scale for IOTCALIOP < 1.0
and IWPCALIOP < 10.0 gm−2 and with a linear scale for
IOTCALIOP ≥ 1.0 and IWPCALIOP ≥ 10.0 gm−2. The average
MAPE and MPE (bias) over all surface type classes are in-
cluded as reference. Again, we only consider profiles with
clear air (no liquid water clouds and AOT≤ 0.2) below the
cirrus cloud.

Mostly the same patterns of the MAPE and MPE are
observed as in Strandgren et al. (2017), namely that CiPS
tends to overestimate the CTH for low cirrus/ice clouds and
slightly underestimate the CTH for high cirrus. Similarly the
IOT and IWP is predominantly over- and underestimated for
the lower and upper extreme values respectively.

Overall, the CTHCiPS retrieval is mostly insensitive
to the underlying surface type for CTHCALIOP > 8.0 km.
A stronger underestimation of CTHCALIOP (20–40 %) is,
however, observed over permanent ice and snow for high
cirrus clouds (CTHCALIOP > 12 km). Those are cirrus/ice
clouds that extend into the stratosphere. We observe
a stronger tendency for underestimations also for lower
clouds over permanent ice and snow. For the lowermost cir-
rus clouds, the CTHCiPS retrieval is best over permanent ice
and snow. This is most likely due to the fact that the aver-
age CTH is lowest in the polar regions, making it easier for
the ANN to model and estimate the CTH for low cirrus/ice
clouds there. In contrast, barren, forest and vegetation ex-
cluding forest do, to a large extent, cover regions where the
CTH is typically higher, making it more difficult to model
and estimate the CTH for low cirrus. Over desert, where the
air is dry, it is plausible that the signal from the water vapour
channels (which were shown to have strong relative impor-
tance for the CTHCiPS retrieval in Sect. 4.2) peak at lower
altitudes in the atmosphere compared to more moist regions,
resulting in biases for the CTH retrieval over barren. On av-
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Figure 4. The MAPE (solid) and MPE (dash) of the CTHCiPS (a),
IOTCiPS (b) and IWPCiPS (c) retrievals as functions of the corre-
sponding reference retrievals from CALIOP. The retrieval errors of
CiPS are presented for the five surface type classes introduced in
Sect. 4.3.1.

erage the CTH is estimated with the lowest MAPE and bias
over homogeneous water surfaces.

The underlying surface type has a similar effect on
the IOTCiPS retrieval as on the IWPCiPS retrieval. This
is expected since the IWPCALIOP used to train CiPS
is parametrised from the CALIOP extinction coefficients
(Heymsfield et al., 2005) from which IOTCALIOP is di-
rectly derived. For IOTCALIOP > 0.5 and IWPCALIOP >

10.0 gm−2, the underlying surface type has no effect on the
IOTCiPS/IWPCiPS retrievals; i.e. already for these low val-
ues of IOTCALIOP/IWPCALIOP are the characteristics of sur-
face radiation negligible. For thinner cirrus clouds the re-
trieval errors increase substantially over permanent ice and
snow. This should be related to the effects discussed above,
namely the reduced radiative contrast of the cirrus above cold
snow and ice and the unfavourable conditions for SEVIRI
in the polar regions. IOTCiPS/IWPCiPS retrievals over bar-
ren are also less certain for thin cirrus clouds. Deserts are
characterised by a lower emissivity at 8.7 µm than at 10.8
or 12.0 µm (e.g. Hulley et al., 2015; De Paepe and Dewitte,
2009; Trigo et al., 2008). It is possible that this induces larger
IOTCiPS/IWPCiPS retrieval errors because the ANN cannot
localise desert regions unambiguously using only latitude
and viewing zenith angle. The retrieval errors over vegeta-
tion excluding forest are close or identical to the average
performance for all IOTCALIOP and IWPCALIOP. The lowest
IOTCiPS and IWPCiPS retrieval errors are again obtained over
homogeneous water surfaces as well as over forest.

4.4 The CiPS retrieval accuracy for different vertical
cloud–aerosol structures

In this section the performance of CiPS is characterised with
respect to a set of seven vertical cloud–aerosol structure
classes derived from the V3 CALIOP L2 layer products. This
is important in order to understand the accuracy of the re-
trievals for different scattering and absorbing atmospheres.
Although the OPF already yields quality information indicat-
ing when the IOTCiPS and IWPCiPS retrievals can be trusted,
there is still the chance that the passive instrument SEVIRI
is not able to deal with all possible vertical arrangements of
clouds and aerosols as the active instrument CALIOP does,
since SEVIRI lacks the vertical resolution.

The characterisation is performed for all surface types
combined. Although the retrieval accuracy shows a depen-
dency on the underlying surface type (Sect. 4.3), the effect of
liquid water clouds and aerosol layers below the cirrus cloud
has a similar effect on the cirrus cloud retrieval over all un-
derlying surface types (not shown here). The patterns and re-
sults obtained for all surface types combined (presented here)
are consequently to a large extent representative for the sin-
gle surface types as well. Due to the large coverage of oceans
on the SEVIRI disc (see Fig. 2), the results presented here
are, however, more representative for retrievals over water.
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Again, only the CiPS quantities CCFCiPS, CTHCiPS,
IOTCiPS and IWPCiPS are characterised for the different verti-
cal cloud–aerosol structures. The OPFCiPS is excluded from
the analysis since its goal is to detect cirrus clouds where
the vertical structure below the cirrus cannot be resolved by
CALIOP. Opaque cirrus clouds are identified and excluded
using the OPF of CALIOP as described in the following sec-
tion.

4.4.1 Vertical cloud–aerosol structures from CALIOP

The collocation dataset presented in Sect. 2.3 and first devel-
oped in Strandgren et al. (2017) is extended to characterise
the entire atmospheric column observed by CALIOP (and
SEVIRI). The column optical thickness and the correspond-
ing top and base heights for aerosol layers, cirrus clouds
and liquid water clouds are derived from the CALIOP cloud
and aerosol layer products (see Sect. 2.2). The column AOT
is read from the “Column_Optical_Depth_Aerosols_532”
product contained in the L2 aerosol layer products. The cor-
responding top and base heights of the upper and lowermost
aerosol layers are read from the “Layer_Base_Altitude” and
“Layer_Top_Altitude” products. Finally the opacity informa-
tion is retrieved from the “Opacity_Flag”. For clouds, the
column optical thickness is reported for liquid water and ice
clouds combined. The cloud properties, including IOT, liq-
uid water optical thickness, the corresponding top and base
heights and the opacity information, are instead derived us-
ing the same approach used to derive the cirrus cloud proper-
ties in Strandgren et al. (2017). In particular, one has to take
into account the spatial resolution at which cloud and aerosol
layers are detected as well as the possible vertical overlap be-
tween layers detected at different spatial resolutions. Notice
as well that mixed-phase clouds, i.e. layers where ice and su-
percooled liquid water coexist, are classified as either liquid,
ice or unknown phase clouds by CALIOP. The high confi-
dence criteria imposed to the CALIOP cloud phase (see be-
low) shall, however, constrain the selected cloud and cloud
profiles to high confidence liquid and high confidence ice
clouds. Nevertheless, especially at high latitudes, an uncer-
tainty remains due to the difficult cloud phase determination
(Cesana et al., 2016).

The dataset is carefully quality screened and does only in-
clude CALIOP profiles where all feature types and phases
were determined with high confidence (QA_flag= 3). Fur-
thermore, the quality assessment from Strandgren et al.
(2017) is adopted not only for ice clouds but also for liq-
uid water clouds and, especially, for aerosol layers: only con-
strained or unconstrained retrievals where the initial lidar ra-
tio remained unchanged during the solution process are in-
cluded (Strandgren et al., 2017).

Using the vertical position, optical thickness and opac-
ity information of all clouds and aerosol layers, the seven
vertical cloud–aerosol structure classes listed below are cre-
ated. In this study we are interested in the effect of thicker

aerosol layers on the cirrus cloud retrieval by CiPS. There-
fore we only acknowledge aerosol layers with an AOT> 0.2.
These aerosols come mainly from desert dust (Weinzierl
et al., 2011; Groß et al., 2015) but also from biomass burning
(Rosário et al., 2011; Ten Hoeve et al., 2012) or, sometimes,
sea salt (Toth et al., 2013). We assume that AOT≤ 0.2 is
a good approximation for the AOT of typical aerosol loads.
In comparison, the rural aerosol model by Shettle (1989) in
the boundary layer for spring–summer conditions and a visi-
bility of 50 km together with background aerosol above 2 km
represent an AOT of 0.162.

C1 Profiles where only transparent cirrus clouds (and possi-
ble aerosols with AOT≤ 0.2) are observed.

C2 Profiles where cirrus clouds are observed over an aerosol
layer with AOT> 0.2.

C3 Profiles where cirrus clouds are observed above a low
opaque liquid water cloud. To ensure that the cirrus is
well separated from the water cloud, the vertical dis-
tance between the two has to be 4.0 km or more. This
class aims to capture scenes with cirrus clouds over low-
level clouds. The threshold of 4 km was chosen such that
it is applicable both in the tropical regions as well as at
higher latitudes, where the vertical separation between
high-level cirrus clouds and low-level clouds is smaller.

C4 Profiles where cirrus clouds are observed vertically close
or adjacent to an opaque liquid water cloud. To ensure
that the cirrus is close to the water cloud, the vertical
distance between the two has to be 0.5 km or less. This
spatial separation value enables to neglect small cloud
gaps due to turbulence, evaporation, sedimentation or
wind shear inside clouds. This class aims to capture
mainly convective clouds with a cirrus shield/anvil.

C5 Profiles where only opaque liquid water clouds are ob-
served. No cirrus clouds are present.

C6 Profiles where only an aerosol layer with AOT> 0.2 is
observed. No clouds are present.

C7 Profiles where only clear sky or aerosols with AOT≤ 0.2
are observed. No clouds are present.

Please note that all liquid water clouds were opaque for
the CALIOP lidar. Hence there is the possibility of having
a thicker aerosol layer below the liquid water clouds. The
effect of the aerosol layer is, however, assumed to be negli-
gible due to the use of observations in the infrared spectrum
where the liquid cloud is also opaque. This vertical cloud–
aerosol structure information is extracted and appended to
the corresponding collocations contained in the collocation
dataset (Sect. 2.3). For a graphical interpretation of the ver-
tical cloud–aerosol structure classification, all classes are vi-
sualised in Fig. 5. The number of samples for each class is
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Figure 5. Visualisation of the seven vertical cloud–aerosol structure classes. Classes C1–C4 contain transparent cirrus clouds and are used to
characterise the CiPS cirrus cloud detection (probability of detection) together with the CTHCiPS, IOTCiPS and IWPCiPS retrievals. Classes
C5–C7 contain no cirrus clouds and are used to characterise the false alarm rate of the CiPS cirrus cloud detection.
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Figure 6. The cirrus POD of CiPS as a function of the IOT retrieved
by CALIOP for the vertical cloud–aerosol structure classes C1–C4
along with the average POD over the full collocation dataset.

also indicated; class C7 with more the 1.7 million samples is
the most common situation, while C4 with less than 14 000
samples the most seldom.

Some CALIOP profiles do not fit into one of the seven
classes, for example if the cirrus cloud is opaque or if the ver-
tical distance between a cirrus cloud and an underlying liq-
uid water cloud is between 0.5 and 4.0 km. Furthermore, all
CALIOP retrievals used for the validation of CiPS in Strand-
gren et al. (2017) do not necessarily pass the quality screen-
ing, since liquid water clouds and aerosols are included as
well. In total, 75 % of the CALIOP retrievals contained in the

collocation dataset passed the quality screening and could be
grouped into one of the seven classes. The remaining 25 %
were excluded from the present analysis. Please remember
that the terms “transparent” and “opaque” in this context are
solely related to the saturation of the CALIOP laser beam and
indicate whether it was able to fully penetrate a cirrus cloud
(transparent cirrus) or not (opaque cirrus).

4.4.2 Cirrus cloud detection

Figure 6 shows the POD of CiPS for the vertical cloud–
aerosol structure classes C1–C4, i.e. those classes defined
in Sect. 4.4.1 that contain cirrus clouds. The POD is pre-
sented as a function of IOTCALIOP. For a better visualisation
the scale is again logarithmic for IOTCALIOP < 1.0 and lin-
ear for IOTCALIOP ≥ 1.0. As a reference, the average POD
for all cirrus clouds in the dataset, including those that did
not fit any of the four classes C1–C4, is included.

The cirrus cloud detection by CiPS shows little interfer-
ence with different vertical cloud–aerosol structures. It is,
however, considerably easier for CiPS to detect a thin cir-
rus cloud when a liquid water cloud is present vertically
close to the base altitude of the cirrus (C4). Even for sub-
visual cirrus the POD is close to 60 % in such situations. If
the vertical separation between the cirrus cloud and the liq-
uid water cloud is larger (≥ 4.0 km, C3), only a marginal in-
crease in POD with respect to profiles with no liquid water
cloud below the cirrus is observed. For thicker cirrus clouds
with IOTCALIOP > 1.0, the POD is close to 100 % with a liq-
uid water cloud below the cirrus (C3 and C4), compared to
95 % for scenes with only a transparent cirrus cloud (C1).
An aerosol layer has a small effect on the CiPS cirrus detec-
tion in general, but for cirrus clouds with IOTCALIOP < 0.08
an aerosol layer appears to attenuate the radiative contrast of
the cirrus, leading to a slightly lower POD.
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Figure 7. The FAR of CiPS for scenes with liquid water clouds (C5)
as a function of the corresponding top temperature of the liquid wa-
ter clouds. Along with the FAR, the relative frequency of occurrence
of the different liquid water cloud top temperatures is shown.

For scenes with clear sky (C7) or thicker aerosol layers
(C6) CiPS has a FAR of 3.2 %, meaning that it correctly clas-
sifies close to 97 % of such scenes as cirrus-free (not further
shown here). An increased average FAR of 5.5 % is obtained
when a liquid water cloud is present (C5). This is a result
of CiPS falsely classifying some high liquid water clouds as
cirrus clouds. Figure 7 shows the FAR for scenes with liq-
uid water clouds (C5) as a function of the liquid water cloud
top temperature along with the relative frequency of occur-
rence of the different cloud top temperatures. It is clear that
the colder (higher up) the liquid water cloud is, the higher
is the risk of falsely classifying it as a cirrus cloud. At tem-
peratures below −30 ◦C, the FAR is approx. 35–65 %. The
relative frequency of such supercooled liquid water clouds
is, however, low. Most liquid water clouds have a top tem-
perature between −15 and +15 ◦C and thus a clearly lower
FAR of less than 5.0 %.

4.4.3 Cirrus cloud properties

Figure 8 shows the MAPE and MPE for the (a) CTHCiPS, (b)
IOTCiPS and (c) IWPCiPS retrievals as functions of the cor-
responding reference retrievals by CALIOP and the vertical
cloud–aerosol structure.

Within each CTHCALIOP, IOTCALIOP and IWPCALIOP in-
terval in Fig. 8, the MAPE and MPE given by Eq. (3a)
and (3b) are calculated. Again the results are presented with
a logarithmic scale for IOTCALIOP < 1.0 and IWPCALIOP <

10.0 gm−2 and with a linear scale for IOTCALIOP ≥ 1.0 and
IWPCALIOP ≥ 10.0 gm−2. The average retrieval errors for all
vertical cloud–aerosol structures are included as a reference
and stem from Strandgren et al. (2017).

The presence of liquid water clouds (C3 and C4) has a neg-
ligible effect on the CTHCiPS retrieval. An aerosol layer be-

Figure 8. The MAPE (solid) and MPE (dash) of the CTHCiPS (a),
IOTCiPS (b) and IWPCiPS (c) retrievals as functions of the corre-
sponding reference retrievals from CALIOP. The retrieval errors
of CiPS are presented for the four vertical cloud–aerosol structure
classes C1–C4 (see Sect. 4.4.1), representing common cloud remote
sensing situations, as well as the average retrieval errors for the full
collocation dataset.
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low the cirrus cloud introduces a stronger positive bias (posi-
tive MPE), with a MAPE and MPE of up to 70 % for the low-
ermost cirrus clouds. This is not necessarily an effect of the
aerosol layer itself, and it is likely to be related to the fact that
most aerosol layers with AOT> 0.2 are found in the tropical
regions (not shown here), where CTHs are typically higher
leading to a stronger tendency of overestimating comparably
low CTHs. This effect is seen to diminish with increasing
CTHCALIOP. At CTHCALIOP = 9.0 km the MAPE introduced
by an underlying aerosol layer is approx. 5 % larger com-
pared to retrievals without an aerosol layer. Above 13 km,
the aerosol layer has no effect on the CTHCiPS retrieval error.

The presence of a low liquid water cloud below the cir-
rus (C3) has a negligible effect on the IOTCiPS and IWPCiPS
retrievals, with the same MPE and MAPE as for situations
with solely clear sky or background aerosols below the cir-
rus cloud (C1). If the liquid water cloud is located verti-
cally close or adjacent to the cirrus (C4), the retrieval er-
ror clearly increases for thin cirrus clouds. The increase in
error for those retrievals is seen for IOTCALIOP .0.5 and
IWPCALIOP .10.0 gm−2 and increases rapidly with decreas-
ing IOTCALIOP and IWPCALIOP. At IOTCALIOP ≈ 0.08 and
IWPCALIOP ≈ 2.0 g m−2, the MAPE is 200 % for class C4,
which is about twice the error of the IOTCiPS/IWPCiPS re-
trievals for situations with solely clear sky or background
aerosols below the cirrus cloud (C1). This pattern is to be ex-
pected as it is impossible for a radiometer to know where the
transition between ice and liquid water occurs when the two
clouds are not vertically well separated, especially since the
liquid water cloud is thick and thus opaque to infrared radi-
ation. Furthermore, it is more difficult to extract information
about the cirrus from the brightness temperature differences,
also utilising the regional maximum brightness temperatures,
if the vertical separation, and hence the radiative contrast be-
tween the cirrus cloud and the underlying liquid water cloud,
is small. A corresponding increase is observed for the MPE,
meaning that the increased MAPE is a result of larger over-
estimations of IOTCiPS and IWPCiPS.

Opposite to the CTHCiPS retrieval, an aerosol layer below
the cirrus cloud (C2) reduces the IOTCiPS and IWPCiPS re-
trieval errors for thin cirrus clouds. This does not imply that
it is easier to retrieve the IOTCiPS and IWPCiPS of thin cirrus
clouds when an aerosol layer is present below the cirrus. It
is rather related to the fact that CiPS predominantly overes-
timate IOTCALIOP and IWPCALIOP for thin cirrus, an effect
that is reduced if an aerosol layer is present below the cirrus.

4.5 The CiPS retrieval errors as a function of optical
thickness and cloud top height

In this section we investigate the retrieval errors of CiPS as
a function of IOTCALIOP and CTHCALIOP. This gives infor-
mation about typical errors of CiPS for different types of
cirrus clouds (e.g. low and thick or high and thin cirrus).
To remove any effects from different vertical cloud–aerosol

structures, again only those profiles with transparent cirrus
clouds and possible faint aerosols (AOT≤ 0.2) as defined
by CALIOP L2 data are used (class C1 in Sect. 4.4.1). In
other words, this shows typical CiPS retrieval errors for all
transparent cirrus clouds occurring in the collocation dataset.
This distribution is depicted in Fig. 9c, which represents
a 2-D histogram with IOTCALIOP on the horizontal axis and
CTHCALIOP on the vertical axis. The colour map shows the
number of occurrences for each combination of IOTCALIOP
and CTHCALIOP in the collocation dataset. As mentioned
in Sect. 2.3, both the collocation dataset and the training
datasets used to train CiPS consist of a random subset of
CALIOP data collected over a time period of almost 6 years
and do to some extent (limited by the sun-synchronous orbit
of CALIPSO) represent the natural distribution of IOT and
CTH frequencies and their combinations. The occurrences in
Fig. 9c are thus to a large extent representative for the cor-
responding occurrences in the dataset used to train CiPS as
well. The highest occurrences of cirrus clouds in Fig. 9c are
between 9 and 17 km, with tropical cirrus covering the high-
altitude cirrus fraction and mid- to low-latitude cirrus cov-
ering the low-altitude cirrus fraction. Low cirrus clouds are
thicker than high cirrus, with an occurrence peak for cirrus
with CTHCALIOP between 10.5 and 12.5 km and IOTCALIOP
between 0.3 and 1.0.

Figure 9a and b show two 2-D histograms with the
IOTCALIOP and CTHCALIOP on the horizontal and vertical
axes respectively. The colour maps show the MAPE and
MPE of the CTHCiPS retrievals with respect to the reference
CALIOP data (Eq. 3).

The CTHCiPS retrieval shows a stable performance with
a MAPE between 5 and 15 % for most combinations of top
height and optical thickness. To accurately retrieve the CTH
(and IOT/IWP) from the satellite, a clear radiative contrast
between the cirrus cloud and the Earth’s surface or low liquid
water clouds is favourable. For optically thin cirrus clouds,
radiation from below has a larger contribution to the observed
brightness temperatures, which reduces the radiative contrast
between the cirrus cloud and the underlying surface. Sim-
ilarly, the radiative contrast decreases if the cirrus cloud is
located further down in the atmosphere at warmer temper-
atures, with more water vapour above the cirrus cloud that
makes the interpretation of window channel brightness tem-
peratures and brightness temperature differences more diffi-
cult. These effects can be seen in the retrieval errors, with
generally decreasing MAPE for increasing CTHCALIOP and
IOTCALIOP. It is clear that the combination of low and op-
tically thin cirrus induce the maximum CTHCiPS retrieval
errors (MAPE&25 %) while high and optically thick cir-
rus induce the minimum CTHCiPS retrieval errors (MAPE≈
5 %). The lowest retrieval errors are observed at high alti-
tudes (CTHCALIOP ∈ [15,17] km), where the CTHCiPS can
be retrieved with a small error also for sub-visual cirrus.
Similar features are observed using an optimal estimation
method in Iwabuchi et al. (2016). For thin to sub-visual cirrus
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Figure 9. (a) Two-dimensional histogram showing the MAPE of the CTHCiPS retrievals as a function of the reference retrieval quantities
IOTCALIOP and CTHCALIOP. (b) Two-dimensional histogram showing the MPE of the CTHCiPS retrievals as a function of IOTCALIOP and
CTHCALIOP. (c) Two-dimensional histogram showing the number of occurrences for different combinations of IOTCALIOP and CTHCALIOP.
(d) The MAPE of the CTHCiPS retrievals for the different IOTCALIOP/CTHCALIOP combinations as a function of the number of occurrences
(each diamond represents two corresponding grid boxes in a and c).

clouds, CiPS is more likely to overestimate the CTH (pos-
itive MPE). With increasing IOTCALIOP the bias weakens,
and for IOTCALIOP > 0.05 and CTHCALIOP > 8 km CiPS is
mostly unbiased (MPE≈ 0). As already discussed in Strand-
gren et al. (2017), the extreme high and low CTHCALIOP are
primarily under- and overestimated though, irrespective of
IOTCALIOP.

A correlation between higher MAPE and a low number of
occurrences is evident. For the region of low optically thin
cirrus, where the MAPE of the CTHCiPS retrieval is highest,
there are only few points. This is further clarified in Fig. 9d,
showing the MAPE of the CTHCiPS retrieval as a function
of the number of occurrences. Each diamond in Fig. 9d rep-
resents one pair of grid boxes in Fig. 9a and c (708 pairs of
boxes with valid data are represented). It is clear that the high
MAPEs rarely occur and that most CTHCiPS retrievals have
comparably low MAPEs. This gives us primarily three pieces

of information. (1) The learning of the ANNs is sensitive to
the distribution of the training dataset, leading to difficulties
to accurately retrieve the cirrus properties for comparably
rare situations. An effort was made to balance the training
datasets for CiPS by adding duplicates for some rare situa-
tions (Sect. 3.4.2 in Strandgren et al., 2017) to increase their
weight during the training. This approach does not, however,
introduce any new information that the ANNs can learn from.
Nevertheless, not even a perfectly balanced dataset is likely
to result in an ANN that performs equally good for all kinds
of cirrus clouds and retrieval conditions, as certain retrieval
conditions have physical limitations, as discussed above for
low and optically thin cirrus clouds. We also see that CiPS
can retrieve the CTH for high sub-visual cirrus clouds with
a low MAPE despite a low number occurrences. (2) With
comparably few occurrences, the high MAPEs of CiPS have
a small effect for the average usage of CiPS, as the MAPE for
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Figure 10. (a) Two-dimensional histogram showing the MAPE of the IOTCiPS retrievals as a function of the reference retrieval quantities
IOTCALIOP and CTHCALIOP. (b) Two-dimensional histogram showing the MPE of the IOTCiPS retrievals as a function of IOTCALIOP and
CTHCALIOP. (c) Two-dimensional histogram showing the number of occurrences for different combinations of IOTCALIOP and CTHCALIOP.
(d) The MAPE of the IOTCiPS retrievals for the different IOTCALIOP/CTHCALIOP combinations as a function of the number of occurrences
(each diamond represents two corresponding grid boxes in a and c).

the comparably common situations is low. (3) Due to their
few occurrences, the high MAPEs of CiPS have a low sta-
tistical value such that these values have to be treated with
caution.

On average CiPS can retrieve the CTH with a MAPE
around 8 % and zero bias (MPE) for the most common com-
binations of CTHCALIOP and IOTCALIOP. Taking the number
of occurrences into account, which represents the natural dis-
tribution of transparent cirrus clouds observed by CALIOP,
37 % of all CTHCiPS retrievals have a MAPE of 5 % or less.
Another 27 and 16 % of all retrievals have a MAPE between
5 and 10 and between 10 and 15 % respectively.

Figure 10 is similar to Fig. 9, but here the IOTCiPS retrieval
errors are in focus. Figure 10a–c again show 2-D histograms
with IOTCALIOP on the horizontal axes and CTHCALIOP on
the vertical axes. The colour maps show (a) the MAPE and
(b) the MPE of the IOTCiPS retrievals with respect to the
CALIOP reference retrievals and (c) the corresponding num-

ber of occurrences for the different IOTCALIOP/CTHCALIOP
combinations. Figure 10c is consequently a duplicate of
Fig. 9c but is included twice for the reader’s convenience.
Please note that the retrieval errors are significantly larger for
IOTCiPS compared to CTHCiPS and the axes for the MAPE
and MPE now range from 0 to 500 % and from −500 to
500 % respectively. The MAPE of the IOTCiPS retrievals
as a function of the number of occurrences is shown in
Fig. 10d. Similarly to the CTHCiPS retrievals, the IOTCiPS
retrieval errors show clear patterns across the IOTCALIOP and
CTHCALIOP domains. The large retrieval errors for thin cirrus
clouds already shown in Strandgren et al. (2017) are evident
but are seen to decrease with increasing CTHCALIOP. Above
14 km CiPS can estimate the IOT with a MAPE (Fig. 10a)
of 30–120 % down to sub-visual cirrus clouds. Again, the
combination of low (CTHCALIOP < 8km) and optically thin
(IOTCALIOP < 0.1) cirrus induces the largest IOTCiPS re-
trieval errors (MAPE> 150 %), while high (CTHCALIOP >

www.atmos-meas-tech.net/10/4317/2017/ Atmos. Meas. Tech., 10, 4317–4339, 2017



4332 J. Strandgren et al.: Characterisation of CiPS for geostationary cirrus cloud remote sensing

13 km) and optically thicker (IOTCALIOP > 0.06) cirrus in-
duce the smallest retrieval errors (MAPE between 30 and
80 % and MPE close to zero). Furthermore, there is a band
with IOTCALIOP between 0.2 and 0.5 at 4 km height that ex-
pands with CTHCALIOP to reach IOTCALIOP between 0.1 and
1.0 at 16 km where the MAPE is smaller than 50 %. The
smallest bias (MPE, Fig. 10b) is observed where the MAPE
is lowest and increases slightly with decreasing CTHCALIOP.
For IOTCALIOP > 0.3, the IOTCiPS retrieval has a negative or
zero bias on average (MPE between −80 and 0 %), whereas
for IOTCALIOP < 0.3 the IOTCiPS retrieval has no or a posi-
tive (up to 400 % or more) bias.

Again an evident correlation between low MAPEs and
a high number of occurrences is observed (Fig. 10d). Even
though high MAPEs of 800 % are possible, the large ma-
jority of the IOTCiPS retrievals have MAPEs between 50
and 150 %. Please also note that a 800 % MAPE observed
at IOTCALIOP = 0.01 translates into a small absolute error
(0.08). Similar optical thickness retrieval errors are shown
for the optimal estimation retrieval by Iwabuchi et al. (2016),
demonstrating that the large errors are not an artefact of the
ANN but rather due to physical constraints discussed above.
There are approx. 250 points/diamonds with less than 200
occurrences and low MAPE (< 100 %). Those points repre-
sent cirrus clouds with a comparably high optical thickness
(IOTCALIOP &1.5). In this region CiPS predominantly under-
estimates IOTCALIOP, meaning that the MAPE of the IOTCiPS
retrieval is bounded above by 100 %.

On average CiPS can retrieve the IOT with a MAPE
around 50 % and bias around ±10 % for the most com-
mon combinations of CTHCALIOP and IOTCALIOP. Taking
the number of occurrences into account, again representing
the natural distribution of transparent cirrus clouds observed
by CALIOP, 55 % of all IOTCiPS retrievals have a MAPE of
50 % or less. Another 28 % of the retrievals have a MAPE be-
tween 50 and 100 %, meaning that only 17 % of the retrievals
have a MAPE larger than 100 %.

The corresponding results for the IWPCiPS retrieval are
similar to those of the IOTCiPS and are therefore not further
presented here.

4.6 Noise sensitivity analysis of CiPS

In this section the effect of small noisy perturbations in the
input data from SEVIRI propagating through the ANNs is
quantified. The noise sensitivity analysis is performed for
the CTHCiPS, IOTCiPS and IWPCiPS retrievals. The colloca-
tion dataset described in Sect. 2.3 is used for this purpose
in order to have a large temporal and spatial coverage. CiPS
classifies 1.3 million points in the collocation dataset as icy,
for which the CTHCiPS, IOTCiPS and IWPCiPS is retrieved.
Along with the standard CiPS retrieval using the observed
SEVIRI brightness temperatures, another 100 retrievals for
every point are performed where the SEVIRI brightness tem-

peratures are randomly perturbed within the respective radio-
metric noise estimate ranges.

4.6.1 Perturbing the SEVIRI brightness temperatures

The estimated SEVIRI NE1T reported at reference temper-
atures as given in EUMETSAT (2007) (see the second col-
umn of Table 1) are smaller than 0.1 K for SEVIRI win-
dow and water vapour channels and smaller than 0.2 K for
the CO2 channel. However, these reference temperatures are
higher than for typical cirrus cloud retrievals. Therefore, the
reported noise levels are scaled to the respective cirrus cloud
brightness temperatures observed by SEVIRI. In a first step
the NE1T are converted to NE1R (noise-equivalent radi-
ance differences) using the derivative of Planck’s law (with
respect to temperature, T ) at the reported reference temper-
atures and respective wavelengths (the centre channel wave-
length in the first column of Table 1 is used for this purpose).
In a second step the NE1R are converted back to NE1T
at the brightness temperature of the corresponding cirrus
cloud retrievals (P. Schöbel-Pattiselanno, EUMETSAT, per-
sonal communication, 2017). This results in an individual
noise level estimate for all brightness temperatures observed
by SEVIRI and used for the standard CiPS retrieval. So with
1.3 million cirrus cloud retrievals in the collocation dataset
and 9 SEVIRI brightness temperatures as input (6 bright-
ness temperatures and 3 regional maximum temperatures,
Sect. 3.2), a total of 9×1.3×106 individual radiometric noise
level estimates are obtained. Please note that those are not
metrologically traceable per-pixel noise estimates; instead all
noise estimates are directly related via the observed bright-
ness temperatures to the overall noise estimates of the single
channels reported in the second column in Table 1.

When the radiometric noise in the respective channels is
scaled to the observed brightness temperatures, colder cir-
rus cloud observations get higher radiometric noise levels
compared to warmer observations. The third column in Ta-
ble 1 shows the radiometric noise levels for the six SEVIRI
channels used by CiPS at reference brightness temperatures
given by typical cirrus cloud observations. Those reference
temperatures constitute the average brightness temperatures
observed by the respective channels across all CiPS cirrus
clouds retrievals in the collocation dataset. It is clear that
the noise level estimates of the cirrus cloud observations are
higher compared to the noise levels at the warmer reference
brightness temperatures reported by EUMETSAT (2007).

Each of the 9×1.3×106 brightness temperature observa-
tions in the collocation dataset is associated with a Gaussian
distribution with zero mean and standard deviation provided
by the 9× 1.3× 106 individual radiometric noise level esti-
mates produced above. Each Gaussian distribution is finally
sampled randomly 100 times yielding 9× 1.3× 106

× 100
uncorrelated noise perturbations across the different SEVIRI
input brightness temperatures. Hence, a set of 100 randomly
perturbed retrievals is obtained for each cirrus cloud retrieval
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in the collocation dataset that can be directly compared to the
corresponding standard (unperturbed) retrieval of CiPS.

4.6.2 Noise sensitivity of CiPS

The noise sensitivity of the CTHCiPS, IOTCiPS and IWPCiPS
retrievals is determined by calculating the root-mean-square
deviation (RMSD) between the standard retrievals and the
corresponding 100 perturbed retrievals for the 1.3 million icy
collocations. The RMSD is defined as

RMSD=

√√√√ 1
100

100∑
i=1
(S−Pi)

2, (4)

where S is the standard CiPS retrieval and Pi are the per-
turbed retrievals (i = 1, . . .,100). The sum spans over all 100
perturbed retrievals.

Figure 11 shows the RMSD for (a) CTHCiPS, (b) IOTCiPS
and (c) IWPCiPS as functions of the respective quantities. For
IOTCiPS and IWPCiPS only retrievals classified as transpar-
ent by CiPS (OPFCiPS = 0) are included. This reduces the
number of samples from 1.3 to approx. 1 million. Please
note that again the results are presented with a logarithmic
scale for IOTCALIOP < 1.0 and IWPCALIOP < 10.0 gm−2 and
with a linear scale for IOTCALIOP ≥ 1.0 and IWPCALIOP ≥

10.0 gm−2. The surface type and the vertical cloud–aerosol
structures are not taken into account for the noise sensitivity
analysis and the reported results represent the average sensi-
tivity to radiometric noise across all retrieval conditions.

The CTHCiPS retrieval is clearly robust with a low sensitiv-
ity to noise in the SEVIRI input data. The RMSD is around
100 m throughout the whole CTHCiPS range.

The IOTCiPS and IWPCiPS retrievals have similar noise
sensitivities. The RMSD is less than 10 % of the correspond-
ing IOTCiPS/IWPCiPS throughout most of the IOTCiPS and
IWPCiPS ranges. Only for sub-visual cirrus the RMSD of
CiPS is higher. For thicker cirrus, the IOTCiPS and IWPCiPS
retrievals become more robust to SEVIRI noise as the respec-
tive curves flatten towards a constant sensitivity around 1.5
and 30 gm−2 for IOTCiPS and IWPCiPS respectively. For thin
cirrus clouds, a small change in IOT/IWP induces a compara-
bly large change in the cloud radiative properties. Similarly,
a small change in the cloud radiative properties has a larger
effect on the IOT and IWP for thin cirrus clouds compared
to thicker cirrus where the IOT and IWP is higher. Conse-
quently a small noisy perturbation applied to the SEVIRI
input data has a larger impact on the IOTCiPS and IWPCiPS
retrievals for thin cirrus clouds, leading to higher relative
RMSD for thin cirrus and decreasing relative RMSD for
thicker cirrus.

A noise sensitivity of 0.001 at a retrieved optical thickness
of 0.01 is low and one may expect noise to have a stronger
impact on the retrievals for such faint cirrus. The reported ra-
diometric noise estimates of SEVIRI are, however, very low.
Even for cold cirrus cloud retrievals, the radiometric noise

Figure 11. The noise sensitivity of the CTHCiPS (a), IOTCiPS (b)
and IWPCiPS (c) retrievals. The noise sensitivity is reported as
the RMSD between the CiPS standard retrieval and 100 retrievals
where the SEVIRI input data are randomly perturbed within the ra-
diometric noise range of SEVIRI.

level is between 0.07 and 0.27 K on average for the six SE-
VIRI channels (see third column in Table 1), which corre-
sponds to 0.3–1.1 ‰ of the observed average brightness tem-
peratures. Furthermore, the noise is assumed to be Gaussian
and peaks at zero across all perturbed retrievals and the indi-
vidual SEVIRI input variables.

In Sect. 4.5 the retrieval error of CiPS is assessed to 5–
15 and 50–150 % for the CTHCiPS and IOTCiPS/IWPCiPS re-
trievals respectively. In this section the radiometric noise of
SEVIRI is shown to have a minor contribution to the retrieval
error. Thus it is clear that the major part of the retrieval error
stems from the clearly different characteristics and sensitivi-
ties of SEVIRI and CALIOP.

5 Conclusions

The CiPS algorithm (Strandgren et al., 2017) utilises a set of
four artificial neural networks for the geostationary remote
sensing of cirrus clouds with MSG/SEVIRI. In Strandgren
et al. (2017) the retrieval accuracy was evaluated over all un-
derlying surfaces types, vertical cloud–aerosol structures and
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IOT–CTH combinations combined. In this paper we perform
a thorough characterisation of CiPS with respect to several
aspects in order to (1) learn more about the CiPS retrieval
accuracy under various retrieval conditions, (2) learn more
about the ANN method for (cirrus) cloud remote sensing,
and (3) learn more about potential and limitations of the syn-
ergistic use of the two, in many aspects very different, instru-
ments, CALIOP and SEVIRI.

Over vegetated surfaces, CiPS retrieves the CTH, IOT
and IWP with similar retrieval errors as over homoge-
neous water (ocean, lakes, rivers and wetlands). Over per-
manent snow and ice and barren (mostly desert), sur-
face types that are known to induce difficult (cirrus)
cloud remote sensing conditions (Frey et al., 2008; Holz
et al., 2008), the IOTCiPS/IWPCiPS retrieval errors clearly
increase only for thin cirrus clouds (IOTCALIOP .0.3,
IWPCALIOP .5.0 g m−2) with respect to retrievals over wa-
ter. Liquid water clouds below the observed cirrus have only
a small or no effect on the CTHCiPS retrieval with respect
to cirrus retrievals with no interfering cloud or aerosol lay-
ers below the cirrus. The IOTCiPS/IWPCiPS retrieval errors
are clearly increased only if (1) the cirrus cloud is thin
and (2) the liquid water cloud is vertically close or adja-
cent to the cirrus cloud. A liquid water cloud well sepa-
rated (> 4.0 km) from the cirrus cloud has no or small ef-
fect on the IOTCiPS/IWPCiPS retrieval errors, even for sub-
visual cirrus clouds. This shows that the limited vertical res-
olution of the thermal channels is sufficient to separate the
contributions from these objects. This clearly differentiates
CiPS from solar-channel-based Nakajima–King (Nakajima
and King, 1990) retrievals (e.g. Platnick et al., 2003; Bugliaro
et al., 2011; Stengel et al., 2014) that are only able to pro-
vide the optical thickness of the entire atmospheric column
if no additional a priori information is used. The retrieval er-
rors are further shown to decrease with increasing top height
and optical thickness. For the most common combinations
of CTHCALIOP and IOTCALIOP, CiPS can retrieve the CTH
with a MAPE around of 8 % and no bias (MPE= 0) and
the IOT with a MAPE of around 50 % and a bias of around
±10 % on average. Above 14 km, IOTCiPS is retrieved with
a MAPE between 30 and 120 % down to sub-visual cirrus.
Similar to physically based retrieval methods (e.g. Iwabuchi
et al., 2016), CiPS struggles for low and optically thin cir-
rus clouds, where the radiative contrast between the cirrus
clouds and the underlying surface is weaker. This implies
that although CiPS (and ANNs in general) lacks the ex-
plicit implementation of physical principles, the CiPS cirrus
cloud retrievals have similar limitations as physically based
retrievals where the physical principles are explicitly imple-
mented. We have shown that there are few conditions where
CiPS can not retrieve meaningful results. And although sig-
nificant retrieval errors are possible, we show that most of
those conditions are rarely observed by SEVIRI, e.g. cirrus
clouds over permanent snow and ice (see Fig. 2), transparent
cirrus clouds (as seen by CiPS/CALIOP) vertically close or

adjacent to liquid water clouds (see Fig. 5) and optically thin
and low cirrus clouds (see Figs. 9c/10c).

The main limiting factors for the retrievals are shown to
be physical constraints induced by for example low and opti-
cally thin cirrus clouds that have a weak radiative contrast to
underlying liquid water clouds or land surfaces as seen from
space. Only a small fraction of the retrieval errors (≈ 10%) is
estimated to stem from radiometric noise in the SEVIRI data.
So even though the physical principles are not modelled ex-
plicitly in CiPS, the characterisation shows that the ANNs to
a large extent could model the physical relationships between
the input and output data. There are situations where lim-
iting factors of the ANN method become apparent as well.
For example CiPS underestimates the cirrus presence over
desert due to the naturally low probability of cirrus cloud oc-
currence. Similarly, it overestimates the cirrus presence over
tropical rainforests due to the naturally high probability of
cirrus cloud occurrence. Likewise, CiPS is more likely to un-
derestimate high CTHCALIOP in regions where cirrus clouds
are typically found at low altitudes. We also see that lati-
tude has a considerably stronger relative importance than the
brightness temperature at 13.4 µm for CTH, indicating that
CiPS in that case modelled a statistical, rather than physi-
cal, relationship between input and output data. In general,
auxiliary data like surface type flags and day of the year are
shown to have a comparably small relative importance and
for future developments within this field, surface emissivities
as well as vertical humidity and temperature profiles would
probably prove more useful. Using vertical profiles as input
data would increase the computational costs though.

With this paper we have shown that the CiPS retrievals
to a large extent show little interference with the underlying
land surface type, the vertical cloud–aerosol structure below
the cirrus and provide accurate results for common combi-
nations of IOT and CTH. The idea of combining SEVIRI
brightness temperature observations at a spatial resolution of
9 km2 or more with vertically resolved CALIOP lidar point
measurements averaged over 5 km via a set of ANNs turns
out to be very successful despite the different measurement
principles and sensitivities. There are some conditions where
increased retrieval errors are clearly observed, however. This
proves the importance of such characterisations in order to
more efficiently identify limitations and better understand the
retrievals under different retrieval conditions. As we see that
retrieval limitations to a large extent stem from physical con-
straints, this conclusion is not restricted to retrievals utilising
ANNs.
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Appendix A: List of abbreviations

ANN Artificial neural network
AOT Aerosol optical thickness
BT Brightness temperature
CCF Cirrus cloud flag
CTH Cloud top height
DOY Day of year
FAR False alarm rate
IOT Ice optical thickness
ITCZ Intertropical Convergence Zone
IWP Ice water path
MAPE Mean absolute percentage error
MLP Multilayer perceptron
MPE Mean percentage error
NE1T Noise-equivalent temperature difference
NE1R Noise-equivalent radiance difference
OPF Opacity flag
POD Probability of detection
RMSD Root-mean-square deviation
TOA Top of atmosphere
VZA Viewing zenith angle
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Data availability. CALIOP data products are available at
CALIPSO Science Team (2015a, b, c, d). The MCD12C1
data product used to derive the land surface type classes
is available at https://lpdaac.usgs.gov/data_access/data_pool.
MSG/SEVIRI L1.5 data used as input for CiPS are
available at https://www.eumetsat.int/website/home/Data/
DataDelivery/OnlineDataAccess/index.html. The surface
skin temperature product from the ECMWF ERA Interim
reanalysis dataset used as input for CiPS is available at
http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/.
CiPS data are available from the authors upon request.
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