

Supplement of

New-generation NASA Aura Ozone Monitoring Instrument (OMI) volcanic SO₂ dataset: algorithm description, initial results, and continuation with the Suomi-NPP Ozone Mapping and Profiler Suite (OMPS)

Can Li et al.

Correspondence to: Can Li (can.li@nasa.gov)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

Supplemental Information

Figure S1. (a) The absolute value of correlation coefficients between a normalized SO₂ Jacobians spectrum and PCs (No. 4-20) derived from two OMIs rows, one with pixels inside the Kasatochi plume (Row #07, orbit 21635) and the other outside of the plume (Row #21). Only PC No. 5 from Row #07 is correlated with the Jacobians at the 95% confidence level. As a result, only the first 4 PCs were used in the first step fitting for initial SO₂ estimates for Row #07, whereas for Row #21, all 20 PCs could be used (with 6 being used in the actual first step fitting). (b) A comparison between the SO₂ Jacobians and PC No. 5 from Row #07 reveals SO₂ absorption signature in the PC, particularly for wavelengths < 318 nm.

Figure S2. SLER at 342.5 nm derived from (a) OMI orbit 21635 on August 8, 2008 and (b) orbit 21636 on August 9, 2008, for the volcanic plume from the Kasatochi eruption.

Figure S3. The left edge of the fitting window used in STL retrievals for (a) OMI orbit 21635 on August 8, 2008 and (b) orbit 21636 on August 9, 2008.

Figure S4. The GDP 4.7 (GOME Data Processor) operational GOME-2A SO₂ retrievals for the Kasatochi plume on August 9, 2008 assuming (a) a plume height of 15 km and (b) a plume height of 6 km. The estimated maximum SO₂ (115 DU for 15-km retrievals and 131 DU for 6-km retrievals) is much smaller than both OMI PCA (260 DU) and LF (246) STL retrievals for the same day. But this is expected given the larger pixel size of GOME-2 ($80 \times 40 \text{ km}^2$). The overall SO₂ loading from the GOME-2A 15-km retrievals is greater than OMI PCA STL (18-km) retrievals and smaller than PCA TRU (13-km) retrievals. The SO₂ mass estimated from GOME-2A 6-km retrievals, on the other hand, is only slight greater than that from 15-km retrievals. This weak dependence on assumed plume height is similar to the OMI LF retrievals and may be due to signal saturation at shorter wavelengths.

Figure S5. SO₂ Jacobians calculated with VLIDORT for typical conditions within the Kasatochi volcanic plume ($O_3 = 325 \text{ DU}$, SO₂ = 250 DU, SZA = 35°, VZA = 50°, RAZ = 60°, constant SLER = 0.4) assuming STL (black line) and TRU (red line) SO₂ profiles.

Figure S6. For relatively small SO₂ sources such as power plants and degassing volcanoes, typical SO₂ signal (in N value) for OMI (black line) is much smaller as compared with the signal for Rayleigh scattering and O₃ absorption (the insert). The calculation for the Rayleigh and O₃ only case assumes a mid-latitude O₃ profile with O₃ = 325 DU, surface pressure = 1012.35 hPa, SZA = 30°, VZA = 0°, RAZ = 90°, R = 0.05. The calculation for SO₂ assumes the same conditions, but includes 2 DU of SO₂ in the PBL. For this particular case, the coarser spectral resolution of OMPS leads to about ~10% reduction in SO₂ signal (red line, with SO₂ = 2 DU). If the SO₂ plume is isolated and has the size of an OMI pixel, the several times larger OMPS pixel may lead to even greater reduction in the expected SO₂ signal (blue line, assuming average SO₂ = 0.25 DU in the OMPS pixel).

Figure S7. (Insert) Typical OMPS footprints overlaid on the OMI PCA STL retrievals of the Kasatochi plume on August 8, 2008 (orbit 21635), indicating substantial variability in OMI SO₂ within a single OMPS pixel, had the plume also been observed by OMPS. For a hypothetical case in which the average SO₂ loading in an OMPS pixel is 200 DU while OMI SO₂ ranges from 150 DU to 250 DU, the SO₂ Jacobians for OMPS (red line) and OMI (black lines) have very different shapes, particularly for wavelengths < 315 nm. As a result, the saturation issue will have different effects on OMI and OMPS retrievals and needs to be properly treated for both instruments.

Figure S8. OMPS pixels (gray lines) overlaid on OMI retrieved volcanic SO₂ plume from the Kelut eruption on February 14, 2014. For the part of the plume with relatively large OMI SO₂ loading (near 8.5°N, 105.5°E), there are typically several OMI pixels within each OMPS pixel. OMI SO₂ amounts also change substantially within each OMPS pixel, from ~20 DU to nearly 70 DU. The maximum SO₂ retrieved from OMPS would therefore be smaller than OMI, even if the measurements had been made at the same time by the two instruments.