Supplement of

Temperature dependence of the Brewer global UV measurements

Ilias Fountoulakis et al.

Correspondence to: Alberto Redondas (aredondasm@aemet.es)

The copyright of individual parts of the supplement might differ from the CC BY 3.0 License.
Temperature correction methodology

The corrected irradiance \(I(\lambda)\) at each wavelength \(\lambda\), is derived by dividing the measured signal \(I_m(\lambda)\) with the provided correction factor \(cf(\lambda)\):

\[
I(\lambda) = \frac{I_m(\lambda)}{cf(\lambda)}
\]

(S1)

For the three different TRs (TR1, TR2, TR3), different correction factors are used (\(cf_1(\lambda)\), \(cf_2(\lambda)\) and \(cf_3(\lambda)\) respectively). Assuming that the limit that separates TR1 from TR2 is \(T_{12}\) and the limit that separates TR2 from TR3 is \(T_{23}\), that the reference temperature \(T_r\) is above \(T_{12}\) and that the measured temperature is \(T\), the correction factor for each TR is calculated as follows:

If T is in TR3:

\[
 cf_3(\lambda) = 1 + c_3(\lambda) \cdot (T - T_r)
\]

(S2)

If T is in TR2

\[
 cf_2(\lambda) = 1 + c_2(\lambda) \cdot (T_{23} - T_r) + c_3(\lambda) \cdot (T - T_{23})
\]

(S3)

If T is in TR1

\[
 cf_1(\lambda) = 1 + c_2(\lambda) \cdot (T_{23} - T_r) + c_3(\lambda) \cdot (T_{12} - T_{23}) + c_3(\lambda) \cdot (T - T_{12})
\]

(S4)

The factors \(c_i\) represent the slopes of the linear fits that describe the change of the response relative to its mean value at 25°C. For TR1 and TR3 the slopes are considered to be equal, thus \(c_1 = c_3\). The slopes are calculated using the 2nd degree polynomials of the form:

\[
 c_i = a_0 + a_1 \cdot \lambda + a_2 \cdot \lambda^2
\]

(S5)

Where \(\lambda\) is in nm.

For each of the eight Brewers the coefficients \(a_i\) are listed in Table S1:

Table S1: Polynomial coefficients for the calculation of the factors \(c_i\)

<table>
<thead>
<tr>
<th>Brewer</th>
<th>(a_0)</th>
<th>(a_1)</th>
<th>(a_2)</th>
<th>(a_0)</th>
<th>(a_1)</th>
<th>(a_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B005</td>
<td>4.4893×10^{-1}</td>
<td>-2.9025×10^{-3}</td>
<td>4.7435×10^{6}</td>
<td>7.9069×10^{-3}</td>
<td>-9.5882×10^{-3}</td>
<td>2.3101×10^{-7}</td>
</tr>
<tr>
<td>B030</td>
<td>3.1543×10^{-2}</td>
<td>-1.3833×10^{-4}</td>
<td>1.3444×10^{-7}</td>
<td>3.6563×10^{-3}</td>
<td>-2.4422×10^{-3}</td>
<td>4.0561×10^{-6}</td>
</tr>
<tr>
<td>B037</td>
<td>6.5404×10^{-2}</td>
<td>-4.3741×10^{-4}</td>
<td>7.6786×10^{-7}</td>
<td>-1.1733×10^{-3}</td>
<td>6.8329×10^{-4}</td>
<td>-1.0034×10^{-6}</td>
</tr>
<tr>
<td>B078</td>
<td>-1.5890×10^{-1}</td>
<td>1.0147×10^{-3}</td>
<td>-1.6146×10^{-6}</td>
<td>-1.0490×10^{-1}</td>
<td>6.2536×10^{-4}</td>
<td>-9.4557×10^{-7}</td>
</tr>
<tr>
<td>B086</td>
<td>5.8431×10^{-4}</td>
<td>-4.0802×10^{-6}</td>
<td>2.6727×10^{-8}</td>
<td>5.0069×10^{-2}</td>
<td>-3.3678×10^{-4}</td>
<td>5.4584×10^{-7}</td>
</tr>
<tr>
<td>B107</td>
<td>1.2845×10^{-2}</td>
<td>-8.3061×10^{-5}</td>
<td>1.6346×10^{-7}</td>
<td>8.6595×10^{-3}</td>
<td>-9.6526×10^{-5}</td>
<td>2.1427×10^{-7}</td>
</tr>
<tr>
<td>B185</td>
<td>-1.7469×10^{-2}</td>
<td>1.1939×10^{-4}</td>
<td>-1.9244×10^{-7}</td>
<td>-1.8323×10^{-2}</td>
<td>1.1823×10^{-4}</td>
<td>-1.9286×10^{-7}</td>
</tr>
<tr>
<td>B214</td>
<td>-1.4689×10^{-2}</td>
<td>9.4794×10^{-5}</td>
<td>-1.4453×10^{-7}</td>
<td>2.7264×10^{-2}</td>
<td>-1.8451×10^{-4}</td>
<td>2.9582×10^{-7}</td>
</tr>
</tbody>
</table>