

Supplement of

Temperature dependence of the Brewer global UV measurements

Ilias Fountoulakis et al.

Correspondence to: Alberto Redondas (aredondasm@aemet.es)

The copyright of individual parts of the supplement might differ from the CC BY 3.0 License.

Temperature correction methodology

The corrected irradiance $I(\lambda)$ at each wavelength λ , is derived by dividing the measured signal $I_m(\lambda)$ with the provided correction factor $cf(\lambda)$:

$$I(\lambda) = I_{m}(\lambda)/cf(\lambda)$$
(S1)

For the three different TRs (TR1, TR2, TR3), different correction factors are used ($cf_1(\lambda)$, $cf_2(\lambda)$ and $cf_3(\lambda)$ respectively). Assuming that the limit that separates TR1 from TR2 is T_{12} and the limit that separates TR2 from TR3 is T_{23} , that the reference temperature T_r is above T_{12} and that the measured temperature is T, the correction factor for each TR is calculated as follows:

If T is in TR3:

$$cf_3(\lambda) = 1 + c_3(\lambda) \cdot (T - T_r)$$
(S2)

If T is in TR2

 $cf_2(\lambda) = 1 + c_3(\lambda) \cdot (T_{23} - T_r) + c_2(\lambda) \cdot (T - T_{23})$ (S3)

If T is in TR1

$$cf_{1}(\lambda) = 1 + c_{3}(\lambda) \cdot (T_{23} - T_{r}) + c_{2}(\lambda) \cdot (T_{12} - T_{23}) + c_{3}(\lambda) \cdot (T - T_{12})$$
(S4)

The factors c_i represent the slopes of the linear fits that describe the change of the response relative to its mean value at 25°C. For TR1 and TR3 the slopes are considered to be equal, thus $c_1=c_3$. The slopes are calculated using the 2nd degree polynomials of the form:

$$\mathbf{c}_{i} = \mathbf{a}_{0} + \mathbf{a}_{1} \cdot \boldsymbol{\lambda} + \mathbf{a}_{2} \cdot \boldsymbol{\lambda}^{2} \tag{S5}$$

Where λ is in nm.

For each of the eight Brewers the coefficients a_i are listed in Table S1:

Table S1: Polynomial coefficients for the calculation of the factors c_i

		c ₂			c ₃	
	a_0	a_1	a_2	a_0	a_1	a_2
B005	$4.4893 \cdot 10^{-1}$	$-2.9025 \cdot 10^{-3}$	$4.7435 \cdot 10^{-6}$	$7.9069 \cdot 10^{-3}$	-9.5882·10 ⁻⁵	$2.3101 \cdot 10^{-7}$
B030	$3.1543 \cdot 10^{-2}$	$-1.3833 \cdot 10^{-4}$	$1.3444 \cdot 10^{-7}$	$3.6563 \cdot 10^{-1}$	$-2.4422 \cdot 10^{-3}$	$4.0561 \cdot 10^{-6}$
B037	$6.5404 \cdot 10^{-2}$	$-4.3741 \cdot 10^{-4}$	$7.6786 \cdot 10^{-7}$	$-1.1733 \cdot 10^{-1}$	$6.8329 \cdot 10^{-4}$	$-1.0034 \cdot 10^{-6}$
B078	$-1.5890 \cdot 10^{-1}$	$1.0147 \cdot 10^{-3}$	-1.6146·10 ⁻⁶	$-1.0490 \cdot 10^{-1}$	$6.2536 \cdot 10^{-4}$	-9.4557·10 ⁻⁷
B086	$5.8431 \cdot 10^{-4}$	$-4.0802 \cdot 10^{-6}$	$2.6727 \cdot 10^{-8}$	$5.0069 \cdot 10^{-2}$	$-3.3678 \cdot 10^{-4}$	$5.4584 \cdot 10^{-7}$
B107	$1.2845 \cdot 10^{-2}$	$-8.3061 \cdot 10^{-5}$	$1.6346 \cdot 10^{-7}$	$8.6595 \cdot 10^{-3}$	$-9.6526 \cdot 10^{-5}$	$2.1427 \cdot 10^{-7}$
B185	$-1.7469 \cdot 10^{-2}$	$1.1939 \cdot 10^{-4}$	$-1.9244 \cdot 10^{-7}$	$-1.8323 \cdot 10^{-2}$	$1.1823 \cdot 10^{-4}$	-1.9286·10 ⁻⁷
B214	$-1.4689 \cdot 10^{-2}$	$9.4794 \cdot 10^{-5}$	$-1.4453 \cdot 10^{-7}$	$2.7264 \cdot 10^{-2}$	$-1.8451 \cdot 10^{-4}$	$2.9582 \cdot 10^{-7}$