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Abstract. Three-dimensional (3-D) radiative-transfer effects
are a major source of retrieval errors in satellite-based optical
remote sensing of clouds. The challenge is that 3-D effects
manifest themselves across multiple satellite pixels, which
traditional single-pixel approaches cannot capture. In this
study, we present two multi-pixel retrieval approaches based
on deep learning, a technique that is becoming increasingly
successful for complex problems in engineering and other
areas. Specifically, we use deep neural networks (DNNs) to
obtain multi-pixel estimates of cloud optical thickness and
column-mean cloud droplet effective radius from multispec-
tral, multi-pixel radiances. The first DNN method corrects
traditional bispectral retrievals based on the plane-parallel
homogeneous cloud assumption using the reflectances at the
same two wavelengths. The other DNN method uses so-
called convolutional layers and retrieves cloud properties di-
rectly from the reflectances at four wavelengths. The DNN
methods are trained and tested on cloud fields from large-
eddy simulations used as input to a 3-D radiative-transfer
model to simulate upward radiances. The second DNN-based
retrieval, sidestepping the bispectral retrieval step through
convolutional layers, is shown to be more accurate. It reduces
3-D radiative-transfer effects that would otherwise affect the
radiance values and estimates cloud properties robustly even
for optically thick clouds.

1 Introduction

Clouds play an important role in determining the radia-
tion budget of the Earth. To understand how, it is neces-
sary to know the global distribution of cloud properties such
as optical thickness (COT) and cloud droplet effective ra-
dius (CDER). These particular cloud properties are retrieved
globally by optical remote sensing from various satellites. A
standard method for COT and CDER retrieval is the bispec-
tral method that is used to produce the Moderate Resolution
Imaging Spectroradiometer (MODIS) cloud product (Naka-
jima and King, 1990; Platnick et al., 2003). This method
uses solar reflection measurements at two wavelengths, one
with and the other without absorption by water droplets. The
non-absorbing wavelength is selected in the visible or near-
infrared part of the spectrum, whereas the absorbing one is
in the shortwave infrared (SWIR) part, typically around 1.6,
2.1, or 3.7 µm. The method is based on the independent
pixel approximation (IPA) assuming plane-parallel, horizon-
tally and vertically homogeneous cloud for each pixel of
the satellite image because of high computational cost for
simulation of three-dimensional (3-D) radiative transfer. The
observed cloud radiances result from 3-D radiative transfer
in the cloud field, which means that the radiances are af-
fected not only by the vertical cloud structure but also by
net horizontal radiative transport in inhomogeneous cloud
fields. Previous studies have pointed out that cloud inhomo-
geneities and 3-D radiative effects produce large errors in
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the retrieved cloud properties (Iwabuchi and Hayasaka, 2002,
2003; Zhang and Platnick, 2011; Zhang et al., 2012). Studies
using observational data have confirmed the dependency of
such retrieval errors on both the cloud horizontal and vertical
inhomogeneity and the sun–cloud–satellite viewing geome-
try (Liang et al., 2009; Liang and Girolamo, 2013; Grosvenor
and Wood, 2014).

Satellite image data with relatively coarse resolution
do not contain sufficient information about in-pixel inho-
mogeneity. Although statistical bias correction is possible
(Iwabuchi and Hayasaka, 2002), it is still difficult to perform
error correction on each pixel, especially if unresolved in-
pixel inhomogeneity is the major source of error. Zhang et al.
(2016) recently described a novel method to correct the effect
of in-pixel cloud inhomogeneity using subpixel reflectance
variability. For finer-resolution imagery, by contrast, retrieval
errors from inter-pixel horizontal radiative transport become
more important. The radiance observed at each pixel is deter-
mined by the spatial arrangement of cloud water in the pixel
of interest (target pixel) and its neighbors. The 3-D radia-
tive effects operate on horizontal scales that are determined
mainly by cloud thickness and solar zenith angle. When the
sun is oblique (i.e., with a solar zenith angle of 60◦ or larger),
the maximum horizontal scale for 3-D radiative effects is
roughly 15–20 times larger than cloud thickness (Marshak
and Davis, 2005). This necessitates consideration of the ad-
jacent cloud effects when estimating the cloud properties at
the target pixel. Iwabuchi and Hayasaka (2003) attempted to
correct the horizontal transport effect by using multispectral,
multi-pixel radiances for retrieving COT and CDER. They
fitted a polynomial function of the multispectral radiances at
the target and adjacent pixels to the IPA radiances at the tar-
get pixel. Since 3-D radiative effects vary with COT, CDER,
cloud geometrical thickness, cloud-top roughness, and sun–
cloud–satellite geometry, Iwabuchi and Hayasaka (2003) had
to construct different sets of fitting coefficients, thus limit-
ing the applicability of the technique in practice. In addition,
their method was based on linear regression, which is not
flexible to account for any nonlinear 3-D radiative-transfer
effects.

To consider adjacency effects in a generalized manner,
neural networks (NNs) (also known as multilayer percep-
trons) are useful, and they have thus been applied to cloud
detection and retrieval. Minnis et al. (2016) used an NN
recently to estimate the COT of ice clouds from MODIS
multispectral infrared radiances. An NN is expected to im-
prove cloud retrieval accuracy in presence of 3-D radiative
effects because of the complexity of the problem. Therefore,
a few studies have already applied such applications to the
problem of 3-D clouds. Faure et al. (2001) demonstrated
the feasibility of NNs to retrieve mean optical thickness,
mean effective radius, fractional cloud cover, and subpixel-
scale cloud inhomogeneity from multispectral radiance data
at wavelengths of 0.64, 1.6, 2.2, and 3.7 µm for a pixel reso-
lution of 0.8 km× 0.8 km. Faure et al. (2002) improved NN

cloud property retrievals of one-dimensional inhomogeneous
clouds by considering multispectral radiance (at 0.64, 1.6,
2.2, and 3.7 µm) from a collection of pixels adjacent to the
pixel of interest. Cornet et al. (2004) used NNs to retrieve
cloud properties (i.e., mean optical thickness, mean effective
radius, fractional cloud cover, inhomogeneity parameters of
optical thickness and effective radius, and cloud-top temper-
ature) from multispectral and multiscale radiance data. They
used horizontal resolutions of 0.25 km× 0.25 km at wave-
lengths of 0.544, 1.6, and 2.15 µm and 1 km× 1 km at wave-
lengths of 0.544, 1.6, 2.15, 3.65, and 10.8 µm. Their method
was adapted to MODIS in Cornet et al. (2005). Evans et al.
(2008) used an NN to estimate mean and standard deviations
of COT from multi-angular reflectances of boundary-layer
clouds.

More recently, deep learning (a machine-learning tech-
nique), which uses deep neural networks (DNNs), has be-
come a useful tool in various applications. Deep learning in-
volves training a DNN that has three or more layers with a
network structure that is more complex than that used pre-
viously. An advantage of deep learning is automatic feature
extraction: features in training datasets are learned hierar-
chically in the DNNs, although it is not easy to trace how
the features emerge. Nevertheless, DNNs extend the appli-
cability of NN to more complex problems. In addition, in-
put and output parameters can easily be added, and struc-
tures can be modified – another advantage of deep learning.
In combination, these advantages make DNNs more flex-
ible under varying conditions. They are more suitable for
approximating complex nonlinear functions of many vari-
ables because the degree of nonlinearity increases with the
number of layers, and the ability to approximate a func-
tion generally improves for a deeper NN. Recent advances
in computer technology, such as multi-core central process-
ing units (CPUs) and general-purpose graphics processing
units (GPGPUs), have facilitated calculations involving the
large training datasets that are required for DNNs. In addi-
tion, a number of DNN optimization algorithms have been
proposed in the past few years.

The present study is aimed at using a DNN approach to
retrieve the COT and CDER of inhomogeneous clouds and
at testing the feasibility of a multispectral, multi-pixel ap-
proach based on DNNs. For training and testing, we use 3-D
cloud-field data generated by large-eddy simulation (LES)
and radiances generated by a 3-D radiative-transfer model.
The outline of this paper is as follows. Section 2 explains
the cloud-field data and radiative-transfer simulations that
are used to generate the training and test datasets. Section 3
describes the designs and configurations of our DNNs and
the preprocessing methods. Section 4 presents results of per-
formance comparisons for cloud retrieval using DNNs, IPA-
based look-up table (LUT), and a simple NN. Finally, Sec-
tion 5 concludes the paper with a discussion on the merits of
DNN-based cloud retrieval.
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Figure 1. Examples of cloud properties in (a, c, e) closed-cell and (b, d, f) open-cell cases, taken from the 30th timestep of SCALE-LES
simulation data. (a, b) Horizontal distributions of COT, (c, d) vertical cross sections of extinction coefficients, and (e, f) vertical cross sections
of CDER.

2 Data

2.1 SCALE-LES cloud-field data

Three-dimensional cloud-field data are generated using a
LES model known as SCALE-LES (Sato et al., 2014, 2015;
Nishizawa et al., 2015). A double-moment bulk scheme is
used for the cloud microphysics. The cloud liquid-water
mass mixing ratio and number density are obtained at each
grid point in the domain. Figure 1 shows examples of
such cloud-field data for two types of boundary-layer cloud:
closed cell and open cell. These cloud types are simulated
for polluted (closed) and clean (open) aerosol conditions
(Sato et al., 2014). Clouds are optically thick in the closed
case, whereas they are optically thin with large precipitation
rates in the open case. Each case consists of 60 time steps
at 1 min intervals. The horizontal size of the LES scenes is
28 km× 28 km. The resolution for the x and y axis of the
cloud field is originally 35 m, but the resolution is coarsened

to be 280 m in this study. For simplicity, subpixel clouds are
not considered in this study. For the z axis, the original reso-
lution is 5 m at the bottom of the atmosphere, and it is coarse
(less than 60 m) for the upper layers. The vertical resolution
is also coarsened by averaging to obtain the finest resolution
of 40 m for z axis. The CDER is calculated as

re =
1
χ

(
3

4π
LWC
ρbN

) 1
3
, (1)

where χ is a constant depending on width of the droplet size
distribution, LWC is the liquid-water content, ρb is the den-
sity of water, and N is the droplet number density.

As shown in Fig. 1, the extinction coefficient and CDER
in both cases tend to increase with height from the cloud base
toward the cloud top, although the IPA retrieval usually as-
sumes a homogeneous cloud. The CDER has a particularly
inhomogeneous vertical structure in the closed-cell case. In
the open-cell case, the CDER spatial variability is high in
general, particularly so in the uppermost core parts of cells.
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There is no community consensus on a single definition of
CDER that is representative of the full column in the case of a
vertically inhomogeneous cloud. Nevertheless, this study in-
troduces the retrieval of such a representative CDER, where
the vertically averaged LWC and number density are used to
define the column-mean effective radius Re:

Re =
1
χ

(
3

4π
< LWC>
ρb <N >

) 1
3
, (2)

where < . > denotes the mean over cloud column. Note the
similarity between the definition of Re in Eq. (2) and that
of re in Eq. (1). Re represents droplet size of a cloud col-
umn. The retrieval performance for this parameter will be
discussed in Sect. 4. It should be pointed out that there are
other possibilities for column-average CDER (Miller et al.,
2016).

Figure 2 shows temporal variations of (a) the domain-
mean COT (specified at 0.55 µm throughout this paper),
(b) the domain-mean column-mean CDER, (c) the cloud
fraction, and (d) the inhomogeneity index H , defined as

H =
σ 2
τ

τ 2 , (3)

where στ is the standard deviation of the COT and τ is
the mean COT. The coefficient of COT variation,

√
H , has

been used often in previous studies (Szczap et al., 2000;
Liang et al., 2009; Liang and Girolamo, 2013). Clouds in
the closed-cell case are optically thick and horizontally ho-
mogeneous, covering almost the entire sky and giving a high
cloud fraction. Therefore, as can be seen in Fig. 2a and b,
the domain-averaged COT and CDER remain almost con-
stant over the entire period. In contrast, clouds in the open-
cell case are distributed sparsely, meaning that the inhomo-
geneity indexH is larger than that in the closed-cell case and
increases gradually over time. The domain-averaged CDER
is larger in the open-cell case than it is in the closed-cell case.

2.2 Radiative-transfer simulations

A Monte Carlo 3-D radiative-transfer model known as
MCARaTS (Monte Carlo radiative transfer Simulator;
Iwabuchi, 2006) is used to simulate the cloud radiances.
The radiances reflected in the zenith direction are calcu-
lated for solar zenith angles (SZAs) of 20 and 60◦ at wave-
lengths of 0.86, 1.64, 2.13, and 3.75 µm. The aerosol optical
properties are derived using the one-dimensional RSTAR6b
radiative-transfer code (Nakajima and Tanaka, 1986, 1988).
The aerosol optical thickness is assumed to be 0.2, and the ru-
ral aerosol model is used (Hänel, 1976). A correlated k dis-
tribution is used for gaseous absorption by H2O, CO2, O3,
N2O, CO, CH4, and O2 molecules (Sekiguchi and Nakajima,
2008). Rayleigh scattering by air molecules is included in
the scattering process. The particle size distribution of wa-
ter cloud droplets is expressed as a log-normal volume (V )
distribution
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Figure 2. Temporal variations of (a) COT, (b) column-mean CDER,
(c) cloud fraction, and (d) inhomogeneity index H . Solid lines
shows mean values, and dashed lines show the 25th and 75th per-
centiles. The cloud fraction and H are computed for pixels with
COT> 0.3. A time step corresponds to 1 min.

dV
dlnr

= C exp

[
−

1
2

(
lnr − lnrmod

lns

)2
]
, (4)

where r is the particle radius, C is the maximum value of the
volume distribution at mode radius rmod, and s is the width
of the distribution. In this study, we assume s= 1.5. The
CDER re is related to rmod by re= rmod exp(−1/2× (lns)2).
The χ parameter in Eqs. (1) and (2) is determined as
χ = rvol/re= exp(−ln2s)= 0.84, where rvol is the volume
mean radius. The scattering properties of water cloud
droplets are calculated using the Lorenz–Mie theory (Bohren
and Huffman, 1983). For simplicity, the underlying surface is
approximated as black.

3 Method

3.1 Deep learning techniques

This section briefly explains fundamentals of deep learning.
This study uses Chainer, an NN framework developed by
Tokui et al. (2015) to implement DNN cloud retrieval meth-
ods. Chainer is used in a wide variety of research fields be-
cause it covers common functions and algorithms for con-
structing and training DNNs and provides easy access to ef-
ficient GPU-based computation. It is easy to test different
DNN structures and learning techniques, and there is high
degree of freedom for choice. Interested readers may refer
to Tokui et al. (2015) for details. Several other deep learning
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frameworks have been developed for general purposes and
are publicly available.

The DNN consists of multiple network layers, each of
which consists of units. Each unit receives input signals from
the previous layer and generates an output signal. If each unit
in a layer is connected with all units in the previous layer,
that layer is known as fully connected. The unit computes a
weighted sum and adds a bias as follows:

x =
∑
k

wkx
′

k + b, (5)

where x′k is the kth input signal, wk is the corresponding
weight, and b is the bias. The weights and the bias are de-
termined at the training stage. The result x is usually trans-
formed by a function known as the activation function to ob-
tain an output signal. In this study, we use a rectified linear
function (Nair and Hinton, 2010) defined as

f (x)=max(0,x) (6)

for the activation function. Among the various activation
functions used for NNs, this rectified linear function is rel-
atively simple, leads to good learning efficiency, and is most
commonly used in recent DNN applications.

Image recognition is often implemented through convo-
lutional NNs because they enable pattern recognition in an
image. A convolutional layer consists of units that compute
the convolution on the input image. For multichannel im-
ages, multiple structural filters operate within a convolutional
layer. A convolutional signal xm of themth output channel at
a pixel is represented as

xm =
∑
l

∑
k

wk,l,mx
′

k,l + bm, (7)

where x′k,l andwk,l,m are the input signal and the correspond-
ing filter weight for the kth pixel (the target or an adjacent
pixel) and lth input channel. The number of required filters
is the product of the number of input channels (wavelengths)
and output channels. The summation over k in Eq. (7) oper-
ates only on the target pixel and its neighbors. Unlike a fully
connected layer, a convolutional layer has the following two
characteristics: (1) the input and output signals of a convolu-
tional layer are sparsely connected, and (2) the filter profiles
are defined independently for input channels but are shared
among all pixels; the filter profile does not depend on pixel
location in the input image.

Current deep learning techniques enable us to train a DNN
with a complicated structure, in which multiple fully con-
nected and convolutional layers are connected. During the
training, the DNN parameters are optimized to minimize the
so-called loss function. In this study, the loss function is the
sum of the squared residuals between the DNN output and
ideal data in the training dataset. For the DNN optimiza-
tion, we use the Adam (adaptive moment estimation; Kingma
and Ba, 2014) algorithm, which automatically determines

the learning rate at each training step using the mean and
variance of the loss function. An NN is expected to deliver
meaningful and accurate retrievals for the dataset that it was
trained on. However, in some cases, the NN can be overfitted
to the training dataset, thereby losing its ability to generalize
and performing appreciably worse for other data. Such over-
fitting is a serious issue in NNs. In the present study, we use
the dropout technique (Srivastava et al., 2014) to overcome
this problem. The dropout technique removes randomly se-
lected units from the NN at each step in the training stage,
decreasing the number of degrees of freedom of the NN, and
thus avoiding overfitting. An NN trained with the dropout
technique can work like ensemble estimation that uses many
different independently trained NNs. Dropout results in bet-
ter performance and is widely used in many applications.

3.2 Design and configuration of DNNs

The DNNs used in this study are designed to estimate COT
and column-mean CDER simultaneously at multiple pixels
from multi-pixel, multispectral radiances. This is a unique
approach compared to previous studies. Larger input and out-
put vectors allow more degrees of freedom for the features
to be learned in the DNNs. Two types of DNN were con-
structed:

1. DNN-2r (with IPA retrieval and two wavelengths),
which corrects IPA retrievals based on 0.86 and 2.13 µm
radiances using the radiances at those same wavelengths
(0.86 and 2.13 µm);

2. DNN-4w (with four wavelengths), which uses convolu-
tional layers and retrieves cloud properties directly from
the radiances at 0.86, 1.64, 2.13, and 3.75 µm.

It should be noted that only solar radiation is considered in
the present study, which requires that the thermal radiation at
3.75 µm be corrected during pre-processing.

The DNN-2r network is designed to correct the IPA re-
trieval of COT and CDER from the bispectral retrieval for
3-D effects. The elements of the DNN-2r input vector are the
radiances at the wavelengths of 0.86 and 2.13 µm. Prior to
applying DNN-2r, the COT and CDER are estimated by IPA
for 10× 10 pixels at 28 m resolution. Thus, the input vector
has 400= (10× 10× (2+ 2)) elements. Figure 3 shows the
DNN-2r structure schematically; the COT and CDER dis-
tributions are estimated at 8× 8 pixels at the center of the
input field, and the output vector has 128= (8× 8× 2) ele-
ments. The reason for including margin pixels in the input
field is to take into account the 3-D radiative effects from
the surroundings of the cloud field. The DNN-2r network
consists of several fully connected layers. In the first layers,
radiances and IPA-estimated cloud properties are merged to
obtain 8× 8× 2 elements (two elements per pixel for 8× 8
pixels). The final part of DNN-2r consists of two independent
groups of layers that finally estimate the COT and CDER.
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Radiances
(10 × 10 × 2)

Estimated properties
(10 × 10 × 2)

Estimated properties
(8 × 8 × 2)

+

Fully connected (1024) Fully connected (1024)

Fully connected (1024) Fully connected (1024)

Fully connected (8× 8 × 2) Fully connected (8× 8 × 2)

+ +

Fully connected
(COT; 8 × 8)

Fully connected
(CDER; 8 × 8)

Fully connected (8× 8 × 2)

Figure 3. Structure of the DNN-2r network. Blue rectangles denote
fully connected layers, and a red rectangle denotes the addition of
two vectors. A gray background indicates that the layer use the ac-
tivation function. The numbers of units in each layer are shown in
parentheses.

As in the residual network designed by He et al. (2015), the
DNN-2r network has what are known as shortcuts, which al-
low residuals to be learned. The NN is trained to predict the
correction terms to be added to the data from the shortcut
path represented in Fig. 3 as the bypassing route of data. Such
shortcuts make machine learning possible even in cases with
many NN layers. In this way, the DNN-2r network can be
considered a way to correct the IPA retrievals.

The DNN-4w structure is shown schematically in Fig. 4.
The input comprises radiance distributions at four wave-
lengths (0.86, 1.64, 2.13, and 3.75 µm) and 10× 10 pix-
els of 280 m resolution. Thus, the input vector has
400= (10× 10× 4) elements. Unlike in DNN-2r, the COT
and CDER distributions in DNN-4w are predicted at the cen-
ter of 6× 6 pixels of the input field, and the output vector
has 72= (6× 6× 2) elements. In addition to shortcuts, the
DNN-4w network has two convolutional layers. In the first
convolutional layer, convolutions operate on 5× 5 pixels sur-
rounding the center pixel, with 100 different profiles of filter
weights for each wavelength. There are 400 filters in the first
convolutional layer because the number of input wavelengths
is 4 and that of output channels is 100. As shown in Fig. 4, the
activation function is applied to the signal xm in the first con-
volutional layer but not in the second. By using these convo-
lutional layers, we expect that the DNN learns image patterns
that capture the 3-D radiative effects between the target pixel
and its surroundings. The DNN-4w network firstly corrects
for 3-D radiative-transfer effects and then transforms the sig-

Radiances (10 × 10 × 4)

Radiances (6 × 6 × 4)

Convolutional (5 × 5, 100)

Convolutional (1 × 1, 4)

+

Fully connected (1024)

Fully connected
(COT; 6 × 6) (CDER; 6 × 6)

Fully connected (1024)

Fully connected

Figure 4. The same as Fig. 3 but for the DNN-4w network. Yellow
rectangles denote the convolutional layers, for which the numbers in
parentheses denote the filter size and the number of output channels.
The number of filters is determined by multiplying the numbers of
input and output channels.

nals to COT and CDER with the possibility of additional 3-D
corrections at this stage.

The above two DNN structures were obtained from var-
ious trial-and-error experiments. Different DNN structures
were also tested. For example, we tested a DNN similar to
DNN-2r but with four wavelengths and one similar to DNN-
4w but with only two wavelengths. However, DNN-2r and
DNN-4w performed best. There is room for improvement in
DNN structures, which should be investigated in the future.

3.3 Generation of the training and test datasets

A training dataset is necessary for machine learning. In this
study, the training dataset is generated as follows. The zenith
radiances are calculated using MCARaTS with 105 model
photons incident on each pixel, which results in Monte Carlo
noise of approximately 1 %. Such noise can be interpreted
as measurement noise in the present problem. From two
cases of SCALE-LES cloud-field data, 1 977 440 samples
(10× 10 areas) are chosen randomly for the training datasets.
As shown in Fig. 2, the 25th to 75th percentile ranges for
COT are 0–5 and 11–15 for the open- and closed-cell cases,
respectively. With a DNN, a variety of training data is im-
portant for better generalization performance. To increase
the variety of the COT training data, one half was generated
from original cloud data, whereas the other half was gener-
ated from artificially modified cloud fields in which the cloud
extinction coefficients were multiplied by numbers chosen
randomly from the range 0.5–1.5. The cloud extinction coef-
ficients of all pixels within a single cloud scene were multi-
plied by the same number.

Atmos. Meas. Tech., 10, 4747–4759, 2017 www.atmos-meas-tech.net/10/4747/2017/
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Although DNN can generally approximate nonlinear func-
tions, it is expected that less nonlinear functions can be
approximated by fewer DNN layers. Constructing efficient
DNN thus makes it desirable to linearize the relationship be-
tween input and output variables to some degree. Because the
radiances are highly nonlinear with respect to the COT and
CDER, it is convenient to transform the COT and CDER by
some simple functions. In the DNN preprocessing, the cloud
properties are transformed using

F(τ)=
(1− g)τ

1+ (1− g)τ
, (8)

G(re)=
√
re, (9)

where g is the asymmetry parameter. As a representative
value for water droplets, we set g= 0.86 for preprocessing
purposes only. After the above transformations, all the DNN
input and output data, including the radiances and cloud
properties, are normalized as

z′i,j =
zi,j − zj

σj
, (10)

where zi,j is the j th element of an input or output vector in
the ith sample, and zj and σj are the mean and standard de-
viation, respectively, of the j th element over the all samples.
This is referred to as z-score normalization and is known
to improve the efficiency of a DNN (Kotsiantis et al., 2006;
Nawi et al., 2013).

The test dataset used for evaluation should be indepen-
dent of the training dataset. In the present study, the training
and test datasets include different randomly selected loca-
tions within the cloud fields, but the statistics of cloud prop-
erties are nearly identical in the training and test datasets. The
test datasets include 10 000 samples. As for computational
cost, the training requires significant computation time, for
which even one GPU helps considerably. Once the DNNs
are trained, the retrievals using the present DNNs are gen-
erally very quick because they entail only very few simple
manipulations of numerical data.

4 Results

In this section, we illustrate the ability of DNNs to retrieve
cloud properties, and we compare it with the corresponding
abilities of existing methods. The values of COT and CDER
are retrieved from test datasets by using DNNs and IPA re-
trievals. The retrieved values are compared to the true val-
ues in the test datasets, and the retrieval errors at each pixel
are evaluated. In the IPA retrieval, COT and CDER are esti-
mated from LUTs of radiances at the wavelengths of 0.86 and
2.13 µm. These wavelengths are used in the MODIS product
for retrieving cloud properties over oceans (Platnick et al.,
2003). The lower and upper limits for COT are 0 and 150, re-
spectively, and those for CDER are 0 and 55 µm, respectively.

Table 1. The RMSE of estimated COT and CDER by the IPA re-
trieval and DNNs for a view zenith angle of 0◦ at y= 14.56 km in
Fig. 5.

Retrieval method COT CDER (micron)

IPA retrieval 11.36 9.33
DNN-2r 5.64 1.64
DNN-4w 4.40 1.37

If any radiance falls outside the associated range defined by
the LUTs, the COT/CDER value is forced to be the lower or
upper limit, as appropriate.

4.1 Retrieval results for DNN-2r and DNN-4w

Figure 5 shows examples of the IPA and DNN-4w retrieval
results for an open-cell case with a SZA of 60◦ and a view-
ing zenith angle of 0◦. Cross sections at y= 14.56 km are
shown in Fig. 6 with additional DNN-2r retrieval results. In
Fig. 6, the relative error of estimated cloud properties are
also shown. On this cross section, the RMSE of estimated
cloud properties are shown in Table 1. The sunny (left-hand)
side of the COT fluctuation peak is directly illuminated by
the sun. This is noticeable at locations around y= 11 km
and 16.5 km. For pixels on that side, the radiances calcu-
lated by 3-D radiative transfer are brightened (illumination
effect), which results in an overestimation (underestimation)
of COT (CDER) by IPA retrievals. For pixels on the oppo-
site (right-hand) side, the radiances are darkened (shadowing
effect), and COT (CDER) is underestimated (overestimated)
by IPA. These illumination and shadowing effects have con-
siderable influence on the IPA retrieval (Várnai and Davies,
1999; Várnai and Marshak, 2002; Marshak et al., 2006).
These effects lead to a spatial offset in the IPA-retrieved hor-
izontal COT distribution, and the COT IPA retrieval error is
particularly large for optically thick pixels. This can be as-
cribed to weaker sensitivity of radiance to COT when COT
is larger; a small difference in radiance leads to large dif-
ference in retrieved COT. Compared to the IPA retrieval, the
DNNs retrieve COT values that are closer to the true values
assumed in this test. The DNN-4w successfully corrects the
phase lag as shown in Fig. 6c. However, minor errors are still
present in the DNN-retrieved COT.

As for the retrieved values of CDER, the DNN ones are ob-
viously better than the IPA-retrieved ones. The IPA-retrieved
CDER is noticeably overestimated at pixels for which the
shadowing effect decreases the radiance, a fact that we at-
tribute to the strong nonlinear dependence of CDER on radi-
ance. As a result, a positive bias appears in the IPA-retrieved
CDER, which also shows an appreciable fluctuation at small
horizontal scales because SWIR radiances are sensitive to
cloud-top variability at such scales (Iwabuchi and Hayasaka,
2003). In contrast, the DNN-retrieved CDER is generally
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(a)	 (b)	

(c)	 (d)	

(e)	 (f)	

Figure 5. Examples of estimated (a, c, e) COT and (b, d, f) CDER of IPA and DNN retrievals for a view zenith angle of 0◦. The sun is
located on the left-hand side with an SZA of 60◦. (a, b) True (reference) values of COT and CDER, (c, d) IPA retrievals, and (e, f) DNN-4w
retrievals.

highly accurate, although small-scale fluctuations of CDER
are not very well reproduced.

The COT and CDER retrieval errors are evaluated for all
the test datasets, and the mean and standard deviation of the
relative errors are calculated in bins that are equally spaced
in the logarithm of COT and CDER. The results are evalu-
ated using 360 000 pixels for each SZA. In Fig. 7, the IPA
retrieval and DNN-4w relative errors are plotted against the
true COT and CDER values. The IPA-retrieved COT error
and its standard deviation are particularly large for a SZA
of 60◦, where radiative roughening causes the 3-D radiance
to deviate from the IPA radiance. Both the COT and CDER
retrieval errors are reduced considerably by using the DNN,
which suggests that the DNN is well trained to correct the
3-D radiative-transfer effects. The DNN mean bias errors are
generally closer to zero than those from the IPA retrieval.

Compared to the IPA retrieval, the DNN retrieves COT bet-
ter, even at optically very thick pixels. In particular, the COT
error is markedly reduced for true COT values greater than 5
and for an SZA of 60◦. At pixels with small COT (1 or less),
the DNN overestimates COT, although the errors are still
smaller than those from the IPA retrieval.

The DNN also yields better CDER retrievals than does
the IPA retrieval, with much smaller variability of CDER er-
rors. For SZAs of 20 and 60◦, the IPA-retrieved CDER tends
to be overestimated over almost the entire range of CDER.
The IPA retrieval shows a particularly large bias when the
true CDER is small, although very few data are available for
CDER values less than 15 µm, as shown in Fig. 2. This over-
estimation of CDER can be partly attributed to the neglect
of vertical inhomogeneity in the IPA retrieval. The reflected
SWIR radiances (2.13 µm) give information about the cloud
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Figure 6. Examples of horizontal distribution of estimated (a) COT and (b) CDER by the IPA retrieval and DNNs for a view zenith angle of
0◦ at y= 14.56 km in Fig. 5 and the relative error of the estimated (c) COT and (d) CDER. The sun is located on the left-hand side with an
SZA of 60◦.
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Figure 7. Comparison of retrieval errors of DNN-4w and IPA re-
trieval for SZAs of (a, b) 20◦ and (c, d) 60◦. The horizontal axes
show the true values of either COT or column-mean CDER. The
vertical axes show the relative error of the estimated cloud prop-
erty. The solid and dashed lines denote mean errors and means ±
standard deviations of error, respectively.

microphysical status only near the cloud top (Platnick, 2000),
and the IPA-retrieved CDER is associated primarily with the
CDER near the cloud top (Nakajima et al., 2010; Zhang et al.,

2012; Nagao et al., 2013). IPA-retrieved CDER thus tends to
be larger than column-mean CDER, whereas DNNs are by
design trained to learn the relationship between the column-
mean CDER and radiances by taking into account the vertical
inhomogeneity. However, this vertical inhomogeneity effect
on the IPA-retrieved CDER does not seem to be the main
cause of the large positive bias. Overestimation of CDER in
the IPA retrieval is mainly observed at the shadowed pix-
els, as shown in Figs. 5 and 6. The IPA retrieval also shows
large values of standard deviation of the relative errors, par-
ticularly for small values of CDER. Figure 5a and b show
that the CDER tends to be smaller at pixels with small COT,
where the shadowing tends to reduce the SWIR radiance. A
small radiance perturbation due to 3-D effects may result in a
large error in the retrieved CDER because of the weaker sen-
sitivity of SWIR radiance to CDER in cases of small COT.
However, the DNN-retrieved values of column-mean CDER
are close to the true values.

Table 2 shows the relative RMSE of estimated COT and
CDER by the IPA and DNN retrievals for open-cell and
closed-cell cases. In both cases, the retrieval accuracies for
DNNs are obviously improved compared to the IPA retrieval.
An exception appears for COT in closed-cell case when SZA
is 20◦; COT RMSE of 24 % for DNN is larger than 16 % for
IPA. The DNN-4w is better than DNN-2r in both cases.

Figure 8 shows selected examples of the trained (5× 5)-
pixel filters of the first convolutional layer used in DNN-4w
for a SZA of 60◦. It is noted that the convolutional layer is
designed to correct the 3-D radiative effects appeared in ra-
diances (Fig. 4). Only 16 out of 100 mutispectral filters are
shown here, and each filter weight can be either positive or
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Table 2. The relative RMSE of estimated COT and CDER by the IPA retrieval and DNNs for each cases of cloud field.

Retrieval method Open-cell, Closed-cell, Open-cell, Closed-cell,
COT COT CDER CDER

IPA retrieval, SZA: 20◦ 30.7 % 16.0 % 38.3 % 51.2 %
DNN-2r, SZA: 20◦ 24.3 % 24.6 % 8.1 % 8.9 %
DNN-4w, SZA: 20◦ 21.6 % 23.4 % 5.5 % 6.7 %

IPA retrieval, SZA: 60◦ 74.8 % 50.9 % 51.1 % 55.2 %
DNN-2r, SZA: 60◦ 33.2 % 37.4 % 7.6 % 8.4 %
DNN-4w, SZA: 60◦ 26.6 % 18.7 % 6.5 % 7.3 %

Figure 8. Selected examples of the filter for 5× 5 pixels at each wavelength in the first convolutional layer in DNN-4w. Only 16 of 100 filters
for each wavelength are shown here. The color shade denotes the filter weight. The sunlight is from the left.

negative. At the beginning, filters are initialized with white
noise. Once the DNN has been well trained, this noise is re-
placed with features that emerge from patterns in the input
images. The patterns in some filters (e.g., first and eleventh
ones from the left) are nearly symmetrical around the cen-
ter pixel with various spatial profiles, which suggests that
they extract features that characterize the relationship be-
tween the center pixel and those adjacent to it. For exam-
ple, isotropic smoothing and second-order central difference
operators have such a symmetrical pattern. Also, several fil-
ters (e.g., fifth one from the left) have higher weights in pix-
els along the solar azimuth direction, which suggests a fea-
ture related to the direct beam that operates along that di-
rection. In our design of DNN-4w, different filters operate
at each wavelength independently, whereas most of the ob-
tained filters show strong correlations among wavelengths.
These patterns suggest that the combination of filter patterns
in the DNN corrects 3-D radiative effects and thus recovers
the local cloud property information. However, it is presently
difficult to understand which combinations of filter patterns

perform such corrections in the DNN or indeed how they do
so.

4.2 Comparison with previous work using a neural
network

It is of interest to compare the performance of our present
DNN with that of the NN used previously as the second
method in Faure et al. (2001), Sect. 3.3 (2). Originally, this
NN had two hidden layers with 10 units each and it used
0.8 km× 0.8 km area-averaged radiances at four wavelengths
(0.64, 1.6, 2.2, 3.7 µm) at the target pixel and eight adjacent
pixels (denoted as “ancillary data”). Rather than reproducing
their NN exactly, we construct an NN with 512 units in each
layer for the sake of this comparison to allow more degrees
of freedom. As NN inputs, we use the radiances at four wave-
lengths (0.86, 1.64, 2.13, and 3.75 µm) at the target pixel and
eight adjacent pixels. As in Faure et al. (2001), the outputs
are COT and CDER, but with a pixel resolution of 280 m.
Data for training and testing the NN are from the same orig-
inal datasets used for DNNs.
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Figure 9 shows comparisons of the NN and our DNNs.
For a SZA of 20◦, the COT is well retrieved for true COTs
of 10–50 for both the NN and DNNs. When the true COT is
less than 10, the COT values from the NN and DNN-4w re-
trievals are overestimated more for optically thinner clouds,
although DNN-2r gives better estimates. The COT estimated
by the NN tends to be underestimated when the true COT is
larger than 50, whereas DNN-2r and DNN-4w yield better re-
trievals in this range. For an SZA of 60◦, the DNN retrievals
of COT are generally better than the NN retrievals. The COT
retrievals by the NN tend to be overestimated (resp. underes-
timated) for optically thin (resp. thick) clouds. This suggests
that 3-D radiative effects with low sun are not well modeled
in the current NN because it uses only 3× 3 pixels, whereas
the DNNs use 10× 10 pixels. Moreover, the multiple convo-
lutional layers in the DNNs are more powerful for represent-
ing the complex 3-D radiative effects compared to the lay-
ers in the NN. In general, the DNN-2r retrievals show large
error variability, with the largest standard deviation among
the three methods. The CDER is well retrieved by all three
methods (NN and DNNs) when the true CDER is larger than
10 µm, although overestimating smaller CDERs is common
among the three methods.

5 Conclusions

In this study, the feasibility of a multispectral, multi-pixel ap-
proach to retrieving COT and CDER with a deep learning
technique has been investigated. Two types of DNN were
constructed: (1) DNN-2r, which corrects IPA retrievals us-
ing the reflectances at two wavelengths, and (2) DNN-4w,
which uses convolutional layers and retrieves cloud proper-
ties directly from the reflectances at four wavelengths. Both
DNNs retrieve multi-pixel estimates of COT and CDER si-
multaneously from multispectral, multi-pixel radiances. The
DNNs were trained and evaluated with SCALE-LES cloud-
field data at a horizontal resolution of 280 m. Both DNNs
outperformed IPA-based retrieval in terms of accuracy and
showed better ability to represent 3-D radiative effects com-
pared to that of an NN used in previous work. The CDER
retrievals of both DNNs were considerably better than the
corresponding IPA retrieval. Whereas the IPA retrieval ap-
preciably overestimated the CDER at pixels that were af-
fected by shadowing, the DNNs successfully corrected such
3-D effects. The DNN-4w network was generally more accu-
rate than the DNN-2r network. Information that was lost in
the IPA retrieval when the radiances came from LUTs made
for plane-parallel clouds limited the ability of the DNN-2r
network to correct those retrievals sufficiently well. In con-
trast, the DNN-4w network does not use an IPA retrieval
in its input and therefore is more robust at retrieving cloud
properties. In addition, multi-pixel information and convolu-
tional layers were shown to be efficient in improving cloud
retrievals with 3-D radiative effects taken into account.
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Figure 9. The same as Fig. 7 but for an NN and our DNNs. The solid
lines show mean errors, and the shades denote regions of means ±
standard deviations.

In the DNN-4w that we tested, we excluded 3-D radiative-
transfer effects that occurred at horizontal scales greater than
560 m (2 pixels). In addition, we only considered a cloud
thickness of less than 0.9 km, as shown in Fig. 1. It would
therefore be interesting to test the sensitivity and perfor-
mance of the algorithm for input vectors for wider areas
(more pixels) of cloud. This is because 3-D radiative-transfer
effects are known to operate on horizontal scales that are de-
termined mainly by cloud thickness and solar zenith angle
(Marshak and Davis, 2005). In the future, the application of
DNNs to cloud remote sensing is expected to become more
common. However, using DNNs with actual satellite data
will require training using realistic cloud fields for various
types of cloud. Incorporating more parameters (e.g., sun–
cloud–satellite geometry, surface albedo, aerosols, spectral
and spatial specifications of sensors) into the method will
also be necessary to handle the complexities of such mea-
surement data. It is an advantage of this method that it is
easy to incorporate such parameters into DNN. An appropri-
ate DNN architecture for addition of input parameters should
be investigated in the future.
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