

Supplement of

A technique for the measurement of organic aerosol hygroscopicity, oxidation level, and volatility distributions

Kerrigan P. Cain and Spyros N. Pandis

Correspondence to: Spyros N. Pandis (spyros@andrew.cmu.edu)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

1. TD loss fraction

Figure S1. Loss fraction in the TD as a function of particle size and temperature. The colors represent different TD temperatures. The error bars represent one standard deviation of the mean.

2. Results and analysis of Experiment 2

Figure S2. (a) Thermogram, corrected for losses in the TD, for Experiment 2 with the fit from the TD model. The error bars represent one standard deviation of the mean. (b) SOA volatility distribution for Experiment 2 using the 1D-VBS framework. The error bars correspond to one standard deviation of the solution calculated by the model.

Figure S3. The average O:C ratio observed through the BP and several TD temperatures for Experiment 2. The error bars represent one standard deviation of the mean. The O:C ratios at a TD temperature of 50°C and greater were statistically smaller than the values at the BP and the TD at 25°C.

Figure S4. (a) The average activation diameter observed at 0.3 % supersaturation in the CCNC for Experiment 2. The error bars represent one standard deviation of the mean. (b) The estimated κ values for Experiment 2. The error bars were obtained by estimating the κ at +/- one standard deviation of the average activation diameter measured. The values at a TD temperature of 100°C was statistically different from the values at the BP and the TD at 25°C.

Figure S5. The estimated mass fractions for each volatility bin as a function of TD temperature for Experiment 2. Red represents the $C^* = 0.01 \ \mu \text{g m}^{-3}$ bin, green the $C^* = 0.1 \ \mu \text{g m}^{-3}$ bin, blue the $C^* = 1 \ \mu \text{g m}^{-3}$ bin, and black the $C^* = 10 \ \mu \text{g m}^{-3}$ bin.

3. Results and analysis of Experiment 3

Figure S6. (a) Thermogram, corrected for losses in the TD, for Experiment 3 with the fit from the TD model. The error bars represent one standard deviation of the mean. (b) SOA volatility distribution for Experiment 3 using the 1D-VBS framework. The error bars correspond to one standard deviation of the solution calculated by the model.

Figure S7. The average O:C ratio observed through the BP and several TD temperatures for Experiment 3. The error bars represent one standard deviation of the mean. The O:C ratios at a TD temperature of 50°C and greater were statistically smaller than the values at the BP and the TD at 25°C.

Figure S8. (a) The average activation diameter observed at 0.25 % supersaturation in the CCNC for Experiment 3. The error bars represent one standard deviation of the mean. (b) The estimated κ values for Experiment 3. The error bars were obtained by estimating the κ at +/- one standard deviation of the average activation diameter measured.

Figure S9. The estimated mass fractions for each volatility bin as a function of TD temperature for Experiment 3. Red represents the $C^* = 0.01 \ \mu g \ m^{-3}$ bin, green the $C^* = 0.1 \ \mu g \ m^{-3}$ bin, blue the $C^* = 1 \ \mu g \ m^{-3}$ bin, and black the $C^* = 10 \ \mu g \ m^{-3}$ bin.

4. Results and analysis of Experiment 4

Figure S10. (a) Thermogram, corrected for losses in the TD, for Experiment 4 with the fit from the TD model. The error bars represent one standard deviation of the mean. (b) SOA volatility distribution for Experiment 4 using the 1D-VBS framework. The error bars correspond to one standard deviation of the solution calculated by the model.

Figure S11. The average O:C ratio observed through the BP and several TD temperatures for Experiment 4. The error bars represent one standard deviation of the mean. The O:C ratios at a TD temperature of 50°C and greater were statistically smaller than the values at the BP and the TD at 25°C.

Figure S12. (a) The average activation diameter observed at 0.27 % supersaturation in the CCNC for Experiment 4. The error bars represent one standard deviation of the mean. (b) The estimated κ values for Experiment 4. The error bars were obtained by estimating the κ at +/- one standard deviation of the average activation diameter measured. The values at a TD temperature of 75°C and greater were statistically different from the values at the BP and the TD at 25°C. The SOA through the TD at 125°C did not have large enough particles to reach 50 % activation, so the activation diameter was extrapolated from the particles that activated.

Figure S13. The estimated mass fractions for each volatility bin as a function of TD temperature for Experiment 4. Red represents the $C^* = 0.01 \ \mu \text{g m}^{-3}$ bin, green the $C^* = 0.1 \ \mu \text{g m}^{-3}$ bin, blue the $C^* = 1 \ \mu \text{g m}^{-3}$ bin, and black the $C^* = 10 \ \mu \text{g m}^{-3}$ bin.

5. O:C and κ correlation

Figure S14. The κ 's plotted as a function of their corresponding O:C ratios for each volatility bin in Fig. 7. Red represents the $C^* = 0.01 \ \mu g \ m^{-3}$ bin, green the $C^* = 0.1 \ \mu g \ m^{-3}$ bin, blue the $C^* = 1 \ \mu g \ m^{-3}$ bin, and black the $C^* = 10 \ \mu g \ m^{-3}$ bin.

6. Predicted versus measured k's for Experiment 2

Figure S15. The predicted versus measured κ 's for Experiment 2 using the κ distribution in Fig. 7b for the three highest bins and the κ from the $C^* = 0.01 \ \mu g$ m⁻³ bin in Fig. 10. The symbol indicates the TD temperature. The error bars for the predicted κ 's were obtained by predicting the κ 's using the κ distribution at +/- one standard deviation.