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Abstract. This study presents a new concept for estimat-
ing the pollutant emission rates of a site and its main fa-
cilities using a series of atmospheric measurements across
the pollutant plumes. This concept combines the tracer re-
lease method, local-scale atmospheric transport modelling
and a statistical atmospheric inversion approach. The con-
version between the controlled emission and the measured
atmospheric concentrations of the released tracer across the
plume places valuable constraints on the atmospheric trans-
port. This is used to optimise the configuration of the trans-
port model parameters and the model uncertainty statistics
in the inversion system. The emission rates of all sources
are then inverted to optimise the match between the concen-
trations simulated with the transport model and the pollu-
tants’ measured atmospheric concentrations, accounting for
the transport model uncertainty. In principle, by using atmo-
spheric transport modelling, this concept does not strongly
rely on the good colocation between the tracer and pollutant
sources and can be used to monitor multiple sources within a
single site, unlike the classical tracer release technique. The
statistical inversion framework and the use of the tracer data
for the configuration of the transport and inversion modelling
systems should ensure that the transport modelling errors are
correctly handled in the source estimation. The potential of
this new concept is evaluated with a relatively simple practi-
cal implementation based on a Gaussian plume model and a
series of inversions of controlled methane point sources us-
ing acetylene as a tracer gas. The experimental conditions
are chosen so that they are suitable for the use of a Gaus-

sian plume model to simulate the atmospheric transport. In
these experiments, different configurations of methane and
acetylene point source locations are tested to assess the effi-
ciency of the method in comparison to the classic tracer re-
lease technique in coping with the distances between the dif-
ferent methane and acetylene sources. The results from these
controlled experiments demonstrate that, when the targeted
and tracer gases are not well collocated, this new approach
provides a better estimate of the emission rates than the tracer
release technique. As an example, the relative error between
the estimated and actual emission rates is reduced from 32 %
with the tracer release technique to 16 % with the combined
approach in the case of a tracer located 60 m upwind of a
single methane source. Further studies and more complex
implementations with more advanced transport models and
more advanced optimisations of their configuration will be
required to generalise the applicability of the approach and
strengthen its robustness.

1 Introduction

Atmospheric pollution due to anthropogenic activities is a
major issue both for air quality and for climate change. In-
dustrial sites are known to emit a significant amount of pollu-
tants and greenhouse gases. For instance in France, industrial
emissions represent between 10 and 30 % of major air pollu-
tants, such as carbon and nitrous oxide (Bort and Langeron,
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2016). Currently, industries must list their emissions through
national inventory reports, and some of them commit to re-
ducing these emissions. However, the choice of an appropri-
ate mitigation policy and the verification of its results require
a good understanding of the emitting processes and a precise
quantification of the emission rates. Industrial emissions are
difficult to model and quantify because of the diversity and
the temporal variability in the emitting processes.

Many emitting industrial sites have a typical size of
100 m2–1 km2, and they emit pollutants from very specific
locations within this area. Once emitted from a single or
multiple point sources, the transport of these pollutants in
the atmosphere over distances from 0.1 to several kilome-
tres forms a distinct plume or multiple plumes, eventually
merging at larger distance downstream. One approach devel-
oped to quantify the emissions from these sites involves at-
mospheric concentration measurements around the site, par-
ticularly across these emission plumes, and proxies of the
atmospheric transport. These proxies are used to characterise
the link between the emission rate and the structure and am-
plitude of the emission plume. The inversions of this link en-
able an estimate of the emission rates from the observed con-
centrations. Among the different techniques used to estimate
emissions from concentrations is the tracer release method. It
is often realised in the form of mobile continuous measure-
ments across the emission plumes of the studied pollutant
and of a tracer purposely emitted with a known rate as close
as possible to the suspected pollutant source (Lamb et al.,
1995). In this method, the proxy of the atmospheric transport
is given by the relation between the tracer emission rate and
the tracer concentrations. In practice, it provides estimates of
the emissions of a site over a relatively short time window,
i.e. typically a few hours during a given day, which generally
corresponds to the time in which the tracer can be released
or a mobile measurement can be conducted.

This approach is relatively simple to implement and en-
ables instantaneous estimations for a large number of sites.
Nevertheless, this technique encounters some limitations,
particularly (i) when it is difficult to position the tracer emis-
sion close to the sources, (ii) when the sources are spread
over a significant area compared with the distance between
the sources and the location of the measured concentrations,
or (iii) when targeting individual estimates of the different
emission rates from multiple sources with plumes that over-
lap at a given site within distances at which the measure-
ments can be conducted (Mønster et al., 2014; Roscioli et al.,
2015). Typically, at industrial sites, pollutant sources may be
sporadic and diffusive over a large area, their location can be
difficult to reach and the spatial distribution of the emissions
is not always precisely known, e.g. when considering tran-
sitory leakages or widespread and heterogeneous sources. In
these cases, the tracer release method can induce errors in
the flux estimation, since the tracer plume cannot be used by
itself as an accurate proxy of the local transport from the tar-
geted gas sources to the measurement locations. Moreover,

this approach can hardly be used to provide an estimate of
the different sources within a site.

Other techniques exploit atmospheric measurements using
local atmospheric dispersion models to simulate the transport
of the targeted gas from its sources to the measurement loca-
tions (Lushi and Stockie, 2010). Micrometeorological mea-
surements are often conducted in parallel with those of the
targeted gas concentrations in order to support the set-up of
such models (Flesch et al., 2004, 2007; Gao et al., 2009). In
theory, the model and the inversion of this proxy of the at-
mospheric transport can be applied for a point source or for
a source with a known spread. In principle, they can also be
applied to multiple sources. The principle of this technique
is relatively simple, but the representation of the transport
and emission spread by these models (even when they are
constrained using micrometeorological measurements), and
the separation of the different plumes associated with the
different sources when targeting multiple sources can bear
large uncertainties. In particular, the transport over short dis-
tances or timescales in a complex terrain can be characterised
by complex turbulent structures which are difficult to match
with a model, even when the underlying processes are taken
into account. Moreover, when targeting several sources, this
technique relies on the mathematical inversion of a square
matrix characterising the atmospheric transport that links the
set of sources to the observation data. This artificially re-
quires extending or limiting the number of observation data
from the measurement series to the number of sources to
be quantified. It can lead to a loss of information or it can
hide the fact that the problem is underconstrained when the
plumes overlap too much.

The statistical inversion framework, which can be viewed
as a generalised inversion technique, can account for uncer-
tainties in the model. It can also address under- or over-
constrained mathematical problems when constraining the
source estimation with the correct number of observation
data that corresponds to the complementary pieces of infor-
mation in the measurements. In such a framework, a statis-
tical estimate of the emission rates for the different targeted
sources is derived to optimise the fit to the measurements,
accounting for the statistical uncertainties in the source and
transport modelling, in the measurements and in the prior
knowledge of the source location and magnitude (Goyal
et al., 2005). Statistical inversions using atmospheric trans-
port models and atmospheric concentration measurements
have been used for decades to infer surface sinks and/or
sources of pollutants and greenhouse gases on continental
to city scales (Gurney et al., 2003; Bré et al., 2015). How-
ever, the effectiveness of such approaches strongly relies on
high accuracy of the transport modelling and on the ability to
characterise statistics of the modelling uncertainties. It can
also strongly rely on prior knowledge of emissions, in partic-
ular on the spatial distribution of the multiple sources within
an industrial site for the type of applications considered in
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this study and on the ability to characterise the uncertainties
with this knowledge.

This study describes a concept which combines the tracer
release technique, local-scale transport modelling and the
statistical inversion framework to improve the estimation of
gas emissions from one or several point sources in an indus-
trial site-scale configuration. It is based on the same mea-
surement framework as the tracer release technique. It con-
sists of using knowledge of the transport given by the tracer-
controlled emission and concentration measurements to op-
timise the calibration of the transport model parameters and
to assess the statistics of the model errors for the configu-
ration of the inversion system. A practical implementation
with a Gaussian plume model is demonstrated and its robust-
ness is evaluated to illustrate the principle and the potential
of the concept. This practical implementation is tested for the
quantification of methane emissions during a time window of
several hours using acetylene as a tracer gas and mobile mea-
surements across the methane and acetylene plumes.

Methane is an important greenhouse gas with poorly
known point source emissions (Saunois et al., 2016). Typi-
cal methane-emitting sites due to anthropogenic activities in-
clude waste-processing plants (wastewater treatment plants
and landfills), oil and gas extraction and compressing sites
and farms (Czepiel et al., 1996; Marik and Levin, 1996;
Yver Kwok et al., 2015). These sites contain widespread
and heterogeneous sources (like the basins in waste water
treatment plants, the cells in landfills and the livestock in
farms) and are prone to fugitive leakages (especially in the
oil and gas sectors). Until recently, there were no strong
incentives to estimate site emissions using dedicated mea-
surements. The reported estimates were usually derived us-
ing standard bottom-up products of emission factors times
quantity of waste, wastewater, processed gas and/or relatively
simple emission models (IPCC, 2013). However, a precise
estimate of the methane emissions from these sites based on
atmospheric techniques could help their operators to mitigate
their emissions as part of their local action plans in the con-
text of climate change. Instantaneous estimates of the emis-
sions through a dedicated measurement campaign can help
to detect and provide a useful order of magnitude for sources
that are generally poorly known (Yver Kwok et al., 2015).
The results from series of campaigns can be extrapolated to
estimates for long timescales. However, a continuous moni-
toring of the emissions with permanent measurements would
help to characterise the dependence of emissions on mete-
orological conditions and on changes in the site processes
through time.

Here, we conduct a series of controlled experiments with
known emissions of methane from one or two sources and
of acetylene from one source, in meteorological and topo-
graphical conditions that are compliant with the use of a
simple Gaussian plume model. Concentrations are measured
through the methane and acetylene plumes at an appropri-
ate distance from the source, as described below. The known

emission of methane is used to validate the inversion results,
thus assessing the efficiency of our inversion system. In par-
ticular, the fit between these results and the actual emissions
is compared with the one obtained with the more traditional
application of the tracer release technique to demonstrate,
under our experimental conditions, the asset of the statisti-
cal inverse modelling framework. In Sect. 2, we detail the
theoretical framework of the tracer release technique, the
local dispersion modelling, the statistical inversion and our
concept that combines these different techniques. We also
give some practical guidance regarding their application to
the monitoring of methane sources and regarding the use
of a Gaussian plume model for suitable meteorological and
topographical conditions. Then, we describe the configura-
tion and the results of the experiments conducted in this study
to evaluate the potential of our approach (Sect. 3). The results
and perspectives of the study are discussed in Sects. 4 and 5.

2 Methods

2.1 Instantaneous quantification of pollutant sources
using mobile measurements across the atmospheric
plumes

The presentation of the atmospheric monitoring techniques
below focuses on their specific configuration for the quasi-
instantaneous estimation of emission rates from gas sources
within a targeted site. These techniques apply to gases that
can be considered inert (non-reactive) on the relevant atmo-
spheric transport and mixing timescales of the experiment. In
this case, the representation of atmospheric transport, linking
the emissions to the gas concentrations, can be considered
linear. Given that these timescales typically correspond to 1
to 10 h, it applies to most pollutants in practice. In this con-
figuration, several times over the course of a few hours and
at an appropriate distance from the site, the concentrations
are measured along transect lines across the plumes of a gas
emitted by the sources. The emission plumes are associated
with an increase in the gas concentrations above the back-
ground concentration. This background concentration can be
characterised by the gas concentrations in the vicinity of the
measurement locations that have not been affected by the
sources. The increase above the background concentration
is proportional to the emission rates (due to the linearity of
the atmospheric transport) and it can be identified in the mea-
surements across the plume. Ideally, there should be no other
major gas emitter in the vicinity of the targeted site to ensure
that, due to the atmospheric diffusion over long distances,
the concentrations upwind of the site are relatively constant.
Under these conditions the background concentration can be
easily characterised.

The choice of the measurement distances should follow
several criteria. On one hand, the distance has to be large
enough such that the transport from the source to the mea-
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surement is correctly characterised with a local-scale trans-
port model or the proxy from the tracer release. This dis-
tance depends on the spread of the single or multiple tar-
geted sources and thus indirectly on the size of the industrial
site, but also on meteorological conditions like wind speed
and the atmospheric stability. On the other hand, it should
be short enough such that the amplitude of the measured
concentrations is high enough compared to the measurement
and model precision. This criteria essentially depends on the
emission rates due to the linearity of the atmospheric trans-
port from the sources: the larger the source, the larger the ra-
tio of the signal to the noise of the measurement, modelling
and background and thus the higher the precision of the in-
versions. Finally, the choice of the distance is constrained by
the need to conduct measurements on roads located down-
wind of the site sources (depending on the specific wind di-
rections during the measurement campaigns) when using in-
struments on board cars, as in this study.

The simulated relation between the gas emission rates
from the single or multiple sources of the site and the at-
mospheric concentrations relies on knowledge of the loca-
tion and spread of each source as well as on the proxy of the
atmospheric transport. It is linear and expressed by the ob-
servation operator H. The relation between the measurement
indices of the concentration increase in the emission plumes
or ”plume indices”, hereafter called the observation vector p,
and the targeted emission rates, called the control vector f ,
is given by the observation equation:

p =Hf + ε0. (1)

ε0 represents the sum of errors from the observation oper-
ator in the measurements and in the estimate of the back-
ground concentration. The observation vector is derived from
the gas concentrations measured for each cross section of the
gas plume(s). The atmospheric transport proxy can be de-
rived using the relationship between the known tracer emis-
sion collocated with the targeted sources and the tracer con-
centrations in the tracer release technique (Sect. 2.2) or using
a local-scale atmospheric transport model (Sect. 2.3). Infer-
ring gas emissions from gas concentrations implies inverting
the atmospheric transport to express f as a function of p.
If the size of f is the same as that of p (i.e. if the num-
ber of plume indices derived from the concentration mea-
surements is set equal to the number of targeted sources) the
atmospheric transport matrix H is a square matrix. If H is
mathematically invertible (i.e. if the problem is not under-
constrained due to using indices on plumes that overlap too
much) and if the measurement, background and observation
operator errors ε0 are ignored, f can directly be derived as
H−1p (Sects. 2.2 and 2.3). If the sizes of f and p differ,
or if the measurement, background and observation opera-
tor errors ε0 are to be accounted for, statistical inversion ap-
proaches can be used to retrieve an optimal estimate of f

(Sects. 2.4 and 2.5).

2.2 The tracer release method

The tracer release method was developed to quantify pollu-
tant emissions and has already been used in a wide range
of studies to estimate the sources of various types of gases
such as methane (Babilotte et al., 2010), carbon monoxide
(Möllmann-Coers et al., 2002) and isoprene (Lamb et al.,
1986). This method consists of releasing a tracer gas with a
known rate close to the targeted gas source when this source
is clearly localised and of measuring both the targeted and
tracer concentrations in sections of the downwind emission
plumes. When targeting the total emissions of a site with
multiple sources, the tracer release is generally located in the
middle of these sources, assuming that the site is seen as a
point source from the measurement locations.

When both the released tracer and targeted sources are per-
fectly collocated and constant in time, the tracer and targeted
gas concentrations have the same spatial and temporal rela-
tive variations in the atmosphere; i.e. the plumes of the tar-
geted gas and of the tracer have the same structure. In such
a configuration, knowledge of the ratio between the tracer
plume index pt and the tracer-controlled emission rate ft pro-
vides a perfect (scalar) observation operator h. It thus pro-
vides a perfect estimate of the ratio between the targeted gas
plume index pm and the targeted gas emission rate fm. By ig-
noring the measurement and background errors, the targeted
emission rate can be estimated using the following formula:

fm = ft×
pm

pt
. (2)

Various types of plume indices p can be used (provided
that they are consistently derived for the tracer and tar-
geted gas). The background concentration is generally de-
rived from the measurements before and after crossing the
plumes. Then, the plume indices can typically be calculated
using the difference between the maximum concentrations
(peak heights of the signals) and the background concentra-
tion. It can also be derived from the areas between the plume
signals and the background concentration (Mønster et al.,
2014). When the sources of the released and targeted gases
are perfectly collocated and when their emission rates are
constant, both of these approaches provide the same result
given that the tracer and targeted emission plumes have the
same structure. However, if the collocation of both sources
is not perfect or if the targeted emissions vary in time, then
the shapes of the emission plumes of the released tracer and
of the targeted gas can differ. To minimise the impact of this
difference, the ratio of the integrated plumes is generally cho-
sen because this index is less sensitive to the impact of thin
turbulent structures than the peak height ratio (Mønster et al.,
2014). Other indices have also been tested to overcome this
issue like the slope of the ratio between the targeted and re-
leased concentrations above the background (Roscioli et al.,
2015).
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The measurement transects through the emission plumes
and the computation from Eq. (2) are generally repeated sev-
eral times, typically ntr = 10–15 times over an hour. The
mean and standard deviation SDtr of the ntr different results
are used as the best estimate and uncertainty assessment for
the source quantification. Note that, strictly speaking, the ex-
act quantification of the uncertainty in the mean estimate
should be SDtr/

√
ntr, which will be used here, even though

SDtr is often used (Yver Kwok et al., 2015). These statistics
allow us to account, at least partly, for the potential temporal
variations of the emissions, for the measurement and back-
ground errors, and for the potential impact of the non-perfect
collocation of the sources in the selected measurement tran-
sects. In order to strengthen the precision of the best estimate,
measurement transects with low correlations between the tar-
geted gas and the released tracer are often ignored. The rea-
son is that such low correlations are related to critical sources
of estimation errors. For a range of local meteorological con-
ditions, it can be due to relatively high background and mea-
surement errors compared to the measured signal. It can also
be due to a strong difference between the structures of the
tracer and targeted gas plumes arising from the fact that the
tracer emission is not perfectly colocated with the targeted
gas emission.

A mislocation of the tracer source far from the targeted
source or its location close to a targeted source with a large
spread compared to the distance to the measurements can
also generate significant biases in the series of computations.
These biases can impact the average estimate of the source
without being reflected in the standard deviation of the indi-
vidual emissions computations or in the correlation between
the tracer and targeted gas concentrations. The impact of
the mislocation of the tracer source can be decreased by in-
creasing the distance between the sources and the measure-
ments (Roscioli et al., 2015) but the choice of this distance
is often constrained by other considerations as discussed in
Sect. 2.1. Approaches based on atmospheric transport mod-
els have been used to account for errors arising from this mis-
location (Goetz et al., 2015).

Moreover, the tracer release technique provides an over-
all estimate of the emissions of a site. However, when the
site has several sources located quite close to each other, it
can hardly be used to provide individual estimates of these
sources. More specifically, even with the use of different
tracer release points, the technique in itself hardly provides
solutions to separating overlapping tracer or targeted gas
plumes associated with different point sources.

2.3 Using local-scale transport models

Many types of transport models are used to simulate the dis-
persion of pollutants at the local scale, i.e. typically over
distances from a few metres to 1 or 2 km, from simple
Gaussian models to Lagrangian dispersion and sophisticated
CFD (computational fluid dynamics) models that allow tur-

bulent patterns to be determined for complex terrain through
an explicit representation of reliefs and obstacles (e.g. Bak-
lanov and Nuterman, 2009; Hanna et al., 2011). Beyond the
large range of possible model complexity, a common feature
of these transport models is their ability to represent sources
of any geometry. Therefore, the local-scale transport mod-
els allow multiple sources or sources to be addressed with a
far more significant spread than proxies based on collocated
tracers. In a configuration similar to that of the tracer release
technique where concentration measurements are conducted
across the N plumes of N targeted gas sources, the local dis-
persion models can be used to infer the linear relationship
between the emission rates and plume indices in each of the
measurement transects. The models are run with a zero back-
ground concentration unless a strong signal from neighbour-
ing sources outside the targeted site needs to be accounted
for, which is not the case in this study.

In practice, for a given measurement transect, simulations
with such models for each individual source (ignoring the
other ones), with a unitary emission rate can be used to com-
pute each column of the H matrix in Eq. (1). If the plumes of
the N sources do not overlap too much and are all discern-
able in the measurement transect, an appropriate selection of
N plume indices can be used to disentangle these different
sources. In such cases, H is invertible and the derivation of
H−1 from matrix H is straightforward. Consequently, if ig-
noring the measurement, background and observation oper-
ator errors ε0, H−1 can be directly used for the inversion of
the emission of the N different sources as a function of the
N plume indices for each measurement transect:

f =H−1p. (3)

As with the tracer release technique, statistics of the re-
sults from multiple inversions associated with the different
measurement transects can be used to derive a best estimate
and its uncertainty. The correlations between the modelled
and measured concentrations along the measurement tran-
sects can be used to select the most robust inversion cases.

However, the local-scale transport models can bear large
uncertainties that are ignored by this inversion. These errors
can be directly projected onto the estimate of the emissions
through Eq. (3) and thus strongly weaken the confidence in
the results. Furthermore, such an inversion can hardly ac-
count for the amount of useful information provided by the
measurements. Typically, limiting the number of plume in-
dices to the number of targeted sources prevents us from
analysing the shape of each emission plume. The shape can
indicate the measurement, background and observation oper-
ator errors ε0, which can highly impact the inversion results.
Finally, with such an inversion, the level of separation be-
tween the source plumes has to be evaluated before defining
the number of sources that can be inverted separately within a
site without solving for an underconstrained problem. When
this level of separation is weak, the inversion finds a mathe-
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matical solution to Eq. (3) that can be highly uncertain. The
lack of flexibility of such an inversion is thus problematic.

2.4 Statistical inversion

The statistical inversion techniques can address the issues as-
sociated with Eq. (3) that are discussed above. The Bayesian
principle of statistical inversion is to update prior statistical
knowledge (i.e. a prior estimate f b and the uncertainties in
it) of the emission rates f with statistical information from
observations p. This update accounts for the statistical uncer-
tainties in the observations (here the measurement and back-
ground errors) and in the observation operator H (Tarantola,
2005). In order to account for several sources within a site,
the statistical inversion needs to rely on a local-scale trans-
port model to derive the H matrix. This theoretical frame-
work allows for a control vector f and an observation vector
p taking different sizes into account. All sources can thus
be inverted, even if there is not enough information to sep-
arate the plumes of some of them. Furthermore, the system
can make use of all the information in the measurements to
filter the measurement, background and observation opera-
tor errors and any signal from the different emissions plumes
associated with the different sources.

Assuming that during the measurement campaign the
source emission rates are constant, this framework can also
be used to assimilate the data from all plume transects to
compute the optimal estimate of the emission rates at once.
In such a case, the observation vector p gathers plume in-
dices from all the measurement transects and the H obser-
vation operator represents the transport, with various mete-
orological conditions, from the sources to all the transects.
This combination presents advantages over repeating compu-
tations for each measurement transect and deriving statistics
for the emission estimates out of the ensemble of computa-
tions as for the other techniques presented above. In particu-
lar, this helps to account for the fact that the sources of errors
do not have the same statistical distributions, e.g. the same
amplitude for each transect. The previous techniques require
a selection of the cases in which the confidence in the ob-
servation operator is good enough to enhance the robustness
of the average. By assigning model and measurement un-
certainties as a function of the measurement transect and/or
meteorological conditions, the statistical inversion allows the
information from each transect to be weighted differently ac-
cording to its uncertainty.

The prior estimate of the emission f b has to be indepen-
dent of the atmospheric observations and can be provided
by expert knowledge, emission inventories or process-based
models. In practice, it is generally assumed that the uncer-
tainties in f b, in the observations p and in the observation
operator have unbiased and Gaussian distributions. The prior
uncertainty and the sum (henceforth called observation error)
of the uncertainties in the observations p (from the measure-
ment and background errors) and on the observation operator

H are thus characterised by their covariance matrices B and
R, respectively. Following these assumptions, the posterior
statistical distribution of the emission rate knowing f b and
p is Gaussian and is characterised by its optimal estimate
f a and its covariance matrix A given by equations (Bocquet,
2012):

f a = f b+BHT (R+HBHT )−1(p−Hf b) (4)

A= (B−1
+HTR−1H)−1. (5)

The matrix A characterises the unbiased and Gaussian un-
certainty in f a . If the plume from a source cannot be sepa-
rated from the other ones, or if the observation errors on the
plume indices related to this source are very large, the poste-
rior uncertainty in this source will be large. The A matrix can
thus be used to evaluate the level of constraint on the different
sources or on their sum provided by the selection of plume in-
dices and the robustness of the corresponding emission esti-
mates. One difficulty associated with this method is the need
to provide a realistic estimate of the observation error statis-
tics, which in practice are difficult to evaluate. Another issue
is that, even if the system correctly accounts for the transport
modelling errors when well informed about their statistics, it
will derive very uncertain emission estimates if these trans-
port errors are large.

2.5 A statistical inversion based on tracer release and
local-scale transport modelling

Here, we propose a new concept for the estimation of the gas
emission rates combining the tracer release method, local-
scale transport modelling and a statistical inversion frame-
work to overcome the issues associated with these different
approaches and tools as discussed above. The basis of this
new concept is the statistical inversion framework, assimilat-
ing the plume indices from all measurement transects alto-
gether, where the H matrix is derived from local-scale trans-
port model simulations for each point or spread source of a
targeted site and each measurement transect.

The main idea is to use the very accurate information on
the atmospheric transport in the area of interest from the
tracer release method to adjust parameters of the local-scale
transport models and to assess the statistics of the transport
errors. The optimised transport model and the statistics of
the transport errors are then used for the configuration of the
observation operator and of the observation errors in the sta-
tistical inversion system outlined in the previous section. The
optimisation of the transport model parameters can rely on a
range of methods, from a simple comparison between an en-
semble of tracer simulations with different sets of parameters
and the tracer measurements to complex tracer data assimi-
lation.

The statistics of the misfits between the tracer measure-
ments and the model-based concentrations when using the
optimal transport model configuration are used to set up the
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covariances of the observation (measurement, background
and observation operator) errors R. This requires the conver-
sion of the error statistics for the tracer gas into statistics of
the errors for the targeted gas. Therefore, the statistics of the
variability of the measured tracer and targeted gas concen-
trations are used to normalise the transport errors for the two
species as relative errors, and the assumption is made that the
relative transport errors are the same for both species.

Model parameters and/or characterisation of the transport
errors can be optimised for each individual crossing of the
plume or for all plume crossings together. The use of a spe-
cific optimisation of the model for each plume crossing may
be preferable if the local meteorological conditions evolve
rapidly. Using general statistics of the tracer model-data mis-
fits from all plume crossings would prevent the transport er-
ror from being weighted and thus the information for each
plume crossing depending on the modelling skills. Deriving
different transport errors for each plume crossing requires the
extrapolation of the single set of tracer model-data misfits
into statistics for each plume crossing. These different op-
tions need to be chosen depending on the experimental case.

In order to investigate the potential of this approach in
a first real test case, we propose a relatively simple practi-
cal implementation using a Gaussian transport model. CFD
models remain sophisticated tools. The choice of a Gaussian
plume model is more appropriate for the introduction and
first test of our concept but we are aware that it restrains the
range of situations that can be investigated.

2.6 Practical implementation for the monitoring of the
methane sources using a Gaussian plume model
and acetylene as tracer

2.6.1 The Polyphemus Gaussian plume model

Gaussian plume models provide a stationary and average
view of the pollutant plumes driven by meteorological con-
ditions that are stationary in time and homogeneous in space.
This is a decent approximation for the dispersion over 1–
2 min (i.e. the typical timescale associated with our experi-
ments) and an area of approximately 1 km2 when the wind
speed is relatively high. These models cannot account for
the effects of complex local topography and buildings. How-
ever, they are suitable for many configurations of industrial
sites located in nearly flat suburban to rural areas, and they
are easily set up and applied for the simulation of local-scale
transport.

In this study, the Gaussian plume model of the Polyphe-
mus air quality modelling system (Mallet et al. (2007) http:
//cerea.enpc.fr/polyphemus/) is used because it has been
proven to be adapted for estimating gas emissions from local
sites (Korsakissok and Mallet, 2009). Gaussian plume mod-
els are based on a simple formula that provides the concentra-
tion of the pollutant at a location generated by a point source
depending on the weather conditions. The Gaussian plume

formula is expressed as

C(x, y, z)=
Y
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, (6)

where C is the concentration of the pollutant at a location
of coordinates (x, y, z), Y is the source emission rate, and ū
is the wind speed. In this formula, the x axis corresponds to
the wind direction, ys is the pollutant source ordinate (for a
single source usually set to zero) and zs is the release height
above the ground. As both studied gases are poorly soluble
and chemically inert for the considered dispersion timescale,
it is appropriate to neglect the mass loss due to dry depo-
sition and assume a total reflection from the ground as ex-
pressed by the last exponential term in the equation. The val-
ues σy and σz are the horizontal and vertical Gaussian plume
standard deviations and characterise the atmospheric condi-
tions during the measurements. The modelled concentrations
are strongly dependent on these two parameters. Within the
Polyphemus system, several ways in which to parameterise
these constants are available: the Doury formulas (Doury,
1976), the Pasquill–Turner formulas (Pasquill, 1961) and the
Briggs formulas (Briggs, 1973).

The parameterisation according to Briggs is the most flex-
ible one. This parameterisation considers the stability of the
atmosphere via the six classes of the Pasquill classification
from A (extremely unstable) to F (extremely stable) by tak-
ing into account wind speed and solar irradiance. It also con-
siders the type of environment with an urban mode when the
emission source is surrounded by buildings and a rural mode
for isolated sites (by changing the roughness factors). The
standard deviations with this parameterisation are given by
the following equations:

σy =
αx

√
1+βx

and σz = αx(1+βx)γ , (7)

where x is the downwind distance from the source and α,
β and γ are coefficients that are dependent on the stability
classes. All these coefficients can be found in Arya (1999).

Different source spatial extensions can also be created in
this model. However, its configuration imposes the emission
fi of a given source to be spread homogeneously over its ex-
tension. The Gaussian plume model cannot represent the in-
stantaneous turbulent structures at fine spatial and temporal
scales but rather represents a time-averaged view of a plume.
Therefore, it is expected that, by using a high number of mea-
surement transects, the Gaussian plume model should appro-
priately depict an average plume and that the transient tur-
bulent patterns in the measurements would generate noise in
the emission estimates without biasing it.
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Table 1. Weather conditions during the four tests and configuration of the observation vector for the statistical inversion.

Weather conditions (avg.) Total Number Configuration of the

Trace gas Temperature Wind Wind speed number of of selected observation vector for the
configuration (◦C) direction (m s−1) transects transects statistical inversion

Configuration 1 9.9± 0.3 N 3.2± 0.6 29 11 Integration of the entire plume
Configuration 2 9.2± 0.1 N 3.7± 0.8 20 9 Integration of the entire plume
Configuration 3 8.4± 0.8 N 2.5± 0.7 35 10 Integration of the entire plume
Configuration 4 11.3± 0.3 NE 2.0± 0.7 40 8 Integration of slices of the plume

2.6.2 Adjustment of the stability class underlying the
Briggs parameters and estimate of the Gaussian
model errors using the tracer data

The application of the new statistical inversion strategy de-
scribed in Sect. 2.5 in connection with the Polyphemus Gaus-
sian transport model relies on the optimisation of the stabil-
ity class underlying the Briggs parameters and of the plume
direction as a function of the tracer measurement transects.
Since wind was measured directly in our experiments, a
correction of the Gaussian plume direction should not be
needed, but Sect. 3.2 will describe practical issues which re-
quire a correction.

For each measurement transect, the method consists of
running multiple model tracer simulations with different sta-
bility classes. They are all forced with the known tracer emis-
sion rate. The model plume direction is adjusted so that the
measured and simulated plumes are aligned. The stability
class with the simulation of the tracer concentrations that best
fits the measurements is taken as the optimal one. The fit is
quantitatively checked for the plume indices chosen for the
definition of p, but it is also checked in a qualitative way by
analysing the shape of the modelled and measured signals.
The estimate of the Gaussian model errors is based on statis-
tics of the misfits between the modelled and measured tracer
plumes indices.

2.6.3 Monitoring of the methane sources using
controlled release of acetylene

This method is tested for the quantification of methane
sources using acetylene as a tracer gas. The lifetimes of
methane and acetylene are approximately 10 years and 2–
4 weeks (Logan et al., 1981). Both of these gases can be
considered inert at the timescale corresponding to the time
between the release of molecules at the source and the mea-
surement of concentrations downwind in the plume.

In this study, the methane and acetylene concentrations
are measured in a continuous manner along a line crossing
the emission plumes using a sensitive analyser placed in a
car. Our preliminary analysis shows that we obtain satisfying
results when concentrations are typically measured at dis-
tances of 100 to 1000 m from methane sources of 1500 to

100 000 gCH4 h−1 and spread within an area of 100×100 to
500× 500 m2.

3 Evaluation of the concept with controlled release
experiments

3.1 General principle of the controlled experiments

The following sections describe the experiments under con-
trolled conditions for both acetylene and methane, which
are used to evaluate the statistical inversion framework de-
tailed in Sect. 2.6 and more generally to give insights
into the potential of the approach proposed in this study
in Sect. 2.5. A campaign was organised over 2 days in
March 2016 at the Laboratoire des Sciences du Climat et de
l’Environnement (LSCE) in France (longitude: 48.708831◦,
latitude: 2.147613◦, altitude a.s.l.: 163 m). The experimen-
tal conditions were selected to be favourable for the use of a
Gaussian plume model to simulate the atmospheric transport.
One or two methane sources and one acetylene point release
were generated with cylinders in the car park of the LSCE,
which is located in a rural area in the southern region of Paris.
The topography of this area is very flat, and only few low
buildings can potentially influence the atmospheric transport
from the car park to the road where the concentrations are
measured. This road is located approximately 150 m away
from the controlled sources. No major methane or acetylene
sources in the vicinity of the LSCE could disturb the mea-
surements. Each measurement day was selected by taking
the weather forecast into account and choosing days with a
strong enough wind from the north to be able to measure the
emissions from the car park on the measurement road. The
average weather conditions of each measurement series are
summarised in Table 1.

During this campaign, the methane and acetylene sources
were dispersed in four different configurations to estimate
the accuracy of the proposed method and the uncertainties
depending on whether the tracer gas is perfectly collocated
with the methane source or not. For each configuration, the
methane and acetylene emission plumes were crossed 20–40
times (see Table 1), and each series of crossings occurred
on the same day on a timescale of 1–2 h. The observed in-
creases in the acetylene and methane concentrations within
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the plumes ranged between 3–15 and 50–500 ppb. Config-
urations 1, 2 and 4 were tested in the afternoons between
13:30 and 16:30 UTC, while configuration 3 was tested in
the morning between 10:00 and 12:00 UTC (see Fig. 1).

The following sections describe the different components
of the experimental and modelling systems used for the in-
version of the methane sources and the results from both
the tracer release technique and the combined statistical ap-
proach. These results are compared with the known methane
emission rate to test the ability of each method to estimate the
emissions. Statistics of uncertainties are also derived for the
two methods based on the statistical frameworks described
in Sect. 2 but also based on Observing System Simulation
Experiments (OSSEs) with pseudo-data.

3.2 Analytical equipment

Downwind gas concentrations were measured using a
G2203 cavity ring-down spectrometer (Picarro, Inc., Santa
Clara CA), which continuously measures acetylene (C2H2),
methane (CH4) and water vapour (H2O). Based on infrared
spectroscopy, the high precision of the system (precisions of
3 ppb and < 600 ppt for methane and acetylene, respectively,
on a 2 s interval) is due to its very long path length (' 20 km)
and the small size of its measurement cell (< 35 mL). Mobile
measurements with this instrument have already been suc-
cessfully taken and published in previous studies (Mønster
et al., 2014; Yver Kwok et al., 2015), demonstrating the po-
tential of this method. The measurement error encompasses
the precision stated above but also the fact that the acetylene
and methane are not measured at the exact same time and
frequency. Indeed, acetylene is measured every second while
methane is measured every other second. At the scale of our
measurement (less than a minute to cross a plume), this can
impact the error significantly.

Before the experiment, the instrument has been tested in
the laboratory. It showed good linearity over a large range of
mixing ratios and high stability over time with small depen-
dency on pressure and temperature. To control for a drift, we
measured a gas with a known mixing ratio (calibrated with a
multi-point calibration in the laboratory) before each series
of measurements in order to ensure the good analytical per-
formance of our instrument. Moreover, in the tracer release
method and the combined approach presented in this study,
we are interested in the increase in concentrations due to the
tracer and targeted point sources above the background sig-
nal (i.e. the plume indices) more than in the absolute value of
the measurements. Thus, an offset of the measured concen-
trations will not impact our estimates.

During the field campaign, wind speed and direction were
taken from the meteorological station installed on the roof
of the nearby laboratory at about 7 m high. The mobile sys-
tem was set up in a car and powered by the car’s battery.
The air sampler was placed on the roof at approximately 2 m
above the ground with a GPS (Hemisphere A21 Antenna) to

provide the location of the measurements. The sampled air
was sent into the instrument by an external pump system,
allowing an inlet lag between the sample inlet and the mea-
surements of less than 30 s. This more or less constant in-
let lag introduced a spatial offset when comparing the mea-
sured and modelled tracer or methane concentrations. This
spatial offset is the same for methane and acetylene and is
characterised by the comparison between the modelled and
measured acetylene plumes. In our combined statistical ap-
proach, it is thus well accounted for when comparing the
modelled and simulated methane plumes thanks to the cor-
rection of the Gaussian plume direction according to the
acetylene data. Therefore, this offset is ignored hereafter.

3.3 Tracer and target gas release

Acetylene is commonly used as a tracer. Due to its low con-
centration in the atmosphere (' 0.1–0.3 ppb), any release is
easily detected. Acetylene also has the benefit of being rel-
atively inert, and thus, negligible loss during the transport
process is expected (Whitby and Altwicker, 1977). Other
gases are suitable as tracers, such as SF6, but acetylene is
preferred because it is not a greenhouse gas. However, due to
its flammability, its use requires specific precautions.

An acetylene cylinder (20 L) containing acetylene with a
purity > 99.6 % was used as the tracer source. A methane
cylinder (50 L) with a purity of 99.5 % was used for the con-
trolled methane release. The flows of both gases were con-
trolled by a 150 mm flow meter (Sho-rate, Brooks) which
was able to measure fluxes between 0 and 1500 L min−1. The
different acetylene and methane emission rates were checked
by weighing the cylinders before and after each test and tim-
ing the release duration. The flow rate calculated with the
mass difference was systematically in good agreement with
the flow rate reading on the flow meter, since their rela-
tive difference was between 1 and 3 %. Therefore, we be-
lieve that there was no significant variability in the acetylene
and methane release during our experiments. The amount of
acetylene emitted was adjusted such that its emission plume
can be detected on the roads where the measurements were
taken while keeping it at the lowest rate possible to limit
the risks associated with its flammability. In this study, we
used emission rates from 65 to 90 g h−1 for acetylene. Dur-
ing the measurement campaign, the cylinders were attached
with straps to a fixed frame to avoid any accidents.

3.4 Tested configurations of the gas releases

This section details the four configurations used during this
campaign (Fig. 2). The first configuration consisted of a col-
located emission of acetylene and methane. This configu-
ration enabled us to estimate the accuracy of the method
and our system under optimal conditions. One cylinder of
methane and one cylinder of acetylene were placed in the car
park and connected together by a tube with a length of a few
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Figure 1. Concentrations of methane and acetylene during the four tracer release experiments.

metres. This system aimed to ensure optimal mixing of both
gases and was designed to be as close as possible to the ideal
situation in which methane and acetylene are emitted at the
same location and under the same conditions. In principle,
under such conditions, the tracer-concentration-to-emission
ratio should provide a perfect proxy of the methane transport
and the tracer release technique should provide better esti-
mates than the statistical inversion that relies on an imperfect
but optimised modelling of the methane plume. Still, both
techniques should be hampered by measurement and back-
ground errors.

In reality, at industrial sites, methane source locations are
not always well known, or it may be difficult to access these
sources and place a tracer cylinder next to them. The second
and third configurations tested the impact of non-collocated
emissions of tracer and methane. To represent this situation,
one cylinder of methane and one cylinder of acetylene were
used, and the methane cylinder was moved (i) approximately
60 m downwind from the acetylene bottle location (second
configuration) and (ii) approximately 35 m laterally from the
wind direction (third configuration). During these two ex-

periments, the wind was blowing from the north; i.e. it was
perpendicular to the measurement transects along the road,
south of the sources.

Finally, within real industrial sites, several sources
of methane may be encountered. The fourth configura-
tion tested the influence of having two methane sources on
the estimation of their fluxes when one tracer source is used.
With this configuration, we also evaluate the ability of the
combined statistical approach to estimate the emissions for
each individual methane source. For this purpose, a system
of two tubes was connected to the methane cylinder, splitting
its exhaust into two locations approximately 35 m apart. Dur-
ing this experiment, the wind was blowing from the north-
east, i.e. it was not perpendicular to the measurement tran-
sects along the road. The acetylene cylinder was collocated
with one of the exhausts.

The advantage of the combined method proposed in this
study over the traditional tracer release technique (which re-
lies on the collocation of the target and the tracer gas sources)
to infer the total emissions from a site should be revealed in
the second and fourth experimental configurations. In homo-
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Figure 2. The four tracer release configurations tested. Triangles
represent the tracer source locations, and the circles mark methane
sources. Each colour represents a configuration: blue is configura-
tion 1 (collocated tracer), red is configuration 2 (upwind tracer),
green is configuration 3 (lateral tracer) and, yellow is configura-
tion 4 (multiple sources).

geneous meteorological conditions, and when the wind di-
rection is perpendicular to the measurement transects, a shift
of the methane sources in a direction perpendicular to the
wind and parallel to the measurement transects should only
result in a shift of the emission plumes along the measure-
ment transects. It should not impact the plume indices from
the measurement transects and thus the results from the tracer
release technique. Therefore, under idealistic conditions, in
the third experimental configuration, the tracer release tech-
nique should still provide better estimates than the combined
approach. However, in practice, during experiments with the
third emission configuration, neither the shift between the
cylinders nor the measurement transects (along the slightly
curvilinear road) were perfectly perpendicular to the wind
direction, and they were not perfectly parallel between them.
Therefore, the combined approach also has the potential to
yield better estimates in this configuration. Finally, it can
provides estimate for both sources in the fourth configura-
tion, while this cannot be achieved with the tracer release
technique in our experimental framework due to the strong
overlapping of the plumes from the individual sources (see
Sect. 3.8).

The time series of acetylene and methane measurements
for each tracer release experiment are shown in Fig. 1.

3.5 Definition of the background concentration and of
the plume indices

In this study, two different definitions of the plume indices
are used to build the observation vector p, but they are both
based on the integral of areas between the concentrations
within the plumes and the background concentration.

The portions of plume concentrations and of background
concentrations in the measurement transects are defined “by
eye”. The portions of background concentration are restricted
to ' 5 s before and after the plumes. In many cases, the in-
crease in the concentrations due to the plumes is clear and
the portions of plume and background concentration are easy
to define. However, in other cases the background variations
near the plumes and the turbulent patterns at the edge of
the plumes can have comparable amplitudes so that defining
these portions is more difficult (Fig. 1). For each plume, the
background concentration value used to compute the plume
index is taken as the average concentration over the back-
ground portions of the transect.

When we investigate the tracer data or when we estimate
the emission rate of a single source of methane, i.e. in con-
figurations 1, 2 and 3, and in configuration 4 for the tracer
release technique only, the plume indices are defined as the
integral over the entire plume of the concentrations above
background. In this case, the observation scalar p (when ap-
plying the tracer release technique to each transect) or vector
p are denoted pent and pent when conducting the combined
statistical inversion by gathering data from all transect into a
single vector.

When we estimate the emission rates of the two sources of
methane with the combined approach in configuration 4, the
portion of observed methane and acetylene increase within
the plumes is divided into five slices of equal time (and iden-
tical for methane and acetylene). For each slice of a given
transect, an index pslc is defined as the integral of the concen-
trations above the background in this slice. The observation
vector pslc gathers all these indices.

3.6 Optimisation of the Gaussian plume model
parameters

In the Polyphemus Gaussian plume model, the definition of
the plume indices is consistent with the one in the measure-
ments, and in particular it follows the same definition of the
plume portions or slices along the measurement transects.

For each measurement transect, the optimisation of the
stability class underlying the Briggs parameterisation of this
model is based on the fit to the acetylene plume index only.
Since no measurements of solar irradiance were available,
comparing the selected stability class to the theoretical one
is not possible. According to the table of Pasquill, which is
used for the Briggs parameterisation, there are three stabil-
ity classes that correspond to the 2 to 4 m s−1 measured wind
speed during our experiments: the classes A and B and C.
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However, for a given wind speed, there is only two choices,
A and B, or B and C. We have verified, for each measure-
ment transect, that the selected stability class is consistent
with these two theoretical options. Choosing one over the
other can modify the simulated plume indices by a factor 2
to 3.

We also checked for each measurement transect that the
model error is not too large. In some cases, the model cannot
reasonably reproduce the observations due to the presence
of pronounced turbulent structures or due to transport con-
ditions that are extremely unfavourable for the model (due
to swift wind change or low wind conditions). In such situa-
tions, there is no Briggs stability class that allows the model
to approximately fit the acetylene plume index. Finally, we
decided to remove transects from the analysis when the rel-
ative error between the modelled and measured acetylene
plume indices was higher than 70 %. This value of 70 % is
an empirical choice corresponding to very large modelling
errors. All cases kept for the analysis had relative uncertain-
ties well below this 70 % threshold. In theory, the strategy
of computing the statistics of the model error as a function
of such misfits should ensure that the weight given to these
transects in the inversion is low. However, in practice, we
conservatively prefer to remove transects for which the con-
fidence in the model is extremely low. This evaluation leads
us to ignore 30 % of measurement transects when applying
the combined statistical approach.

Figure 3 illustrates the results of the model parameteri-
sation selection. In this example, which corresponds to the
fifth transect of the measurements for configuration 2 when
the wind speed was 2.9 m s−1, the tracer concentrations mod-
elled with the stability class B best fit the measured concen-
trations, which are represented in black.

3.7 Estimation of the biases of the tracer release
method due to the mislocation of the tracer with
theoretical model experiments

When using the tracer release technique, defining the opti-
mal estimate of the emissions and the uncertainty in the es-
timate from the ntr-selected transects as the average estimate
from the application of Eq. (2) and using SDtr/

√
ntr, fully

ignores any potential bias in the method. However, in our
experiments, the mislocation of the tracer emission does not
only generate random errors that are caught by the variations
of the results between the different measurements transects.
It also has a strong potential to generate a bias in the compu-
tations, since the measurements are taken in a relatively nar-
row range of positions south of the sources. Such a problem
applies to many of the tracer release experiments in which
the measurements are always taken from the same area (e.g.
due to needing to use roads).

Here, we use OSSEs (Rayner et al., 1996; Chevallier et al.,
2007) with the Gaussian plume model. Its stability class is
optimised with the tracer data to estimate the bias that can

Figure 3. Example of the Briggs parameterisation selection with
the acetylene data for peak 5 of configuration 2. The measured con-
centrations are presented in black, and the modelled concentrations
with different stability classes are shown in colours.

arise from the spatial offsets between the tracer and methane
sources. The bias estimates will be used to complement the
assessment of uncertainty in the results from the tracer tech-
nique, except for the first configuration of the experiments,
for which there is no offset between the methane and acety-
lene sources. As discussed in Sect. 3.4, the lateral (i.e. or-
thogonal to the wind direction and parallel to the road) offsets
between the methane and tracer sources in the third experi-
mental configurations are expected to have a relatively weak
impact on the tracer release computations. There should be
a far larger bias associated with the downwind shift of the
unique methane sources in the second configuration and with
the complex shift of one of the methane source when the
wind was not blowing perpendicular to the measurement
transects in the fourth experimental configuration.

In the OSSEs, we assume that the true methane and acety-
lene emission rates are those used for the experiments with
real data. The synthetic methane and acetylene concentra-
tions are simulated with the Gaussian plume model forced
with these emission rates and similar weather conditions
to those during the campaign. The corresponding emission
plume transects for both gases are extracted along the same
paths as during the campaign. Finally, Eq. (2) is applied with
the acetylene and methane plume indices from these sim-
ulations and the acetylene emission rate, and the resulting
methane emission rate is compared to the actual one. The
comparison provides a direct estimate of the bias associ-
ated with a spatial offset between the acetylene and methane
sources, since in these computations (i) stationary conditions
are implicitly assumed, (ii) the same model configuration is
used to simulate the acetylene and methane concentrations,
and (iii) we ignore the background and measurement errors.
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Figure 4. Error in plume estimation with the tracer method depending on the measurement distance to the methane source and a shift of 20,
60, 100 150 and 200 m of the tracer location relative to the methane source using our Gaussian plume model.

In the following, we characterise the biases by their abso-
lute value and the fraction of the actual source that they rep-
resent. The bias is estimated to be 69 % for configuration 2,
12 % for configuration 3 and 56 % for configuration 4. Con-
sidering the amplitude of these errors, we can expect that our
combined statistical approach has a high potential for pro-
viding better estimates than the tracer release approach for
configurations 2, 3 and 4.

Additional OSSEs are conducted to better characterise the
biases as a function of the upwind or downwind shifts of
the tracer source compared to the targeted source and as a
function of the distance between the sources and the mea-
surement locations. They correspond to the theoretical ex-
perimental configurations with one methane and one acety-
lene source only, and they use northern wind conditions as
were measured during the first experimental configuration.
Upwind and downwind offsets from 20 to 200 m between
the methane and tracer sources are tested with OSSEs, with
hypothetical measurement transects perfectly orthogonal to
the plumes (wind) directions at different distances from 100
to 2750 m from the methane source. The corresponding es-
timates of biases are presented in Fig. 4, with the results for
the downwind and upwind shifts of the acetylene source pro-
vided in Fig. 3a and b.

When the tracer is released upwind of the methane source,
the emission rate is overestimated because of the vertical at-
mospheric diffusion, which makes the integral of the released
tracer concentrations through the emission plume near the
ground lower than if both sources were collocated. The op-
posite occurs if the released tracer is placed downwind of the
methane emission location. When the tracer source is either
upwind or downwind of the methane source by more than
100 m and the measurements are taken at less than 300 m, the
bias exceeds 40 % . The biases due to upwind shifts are gen-
erally similar to the biases due to downwind shifts over the

same distances. When the measurement distance increases,
the impact of the shift between the sources decreases. When
the measurements are taken at more than 1200 m, the bias is
less than 20 %. However, at such distances, with the emission
rates used in our experiments, the signal-to-measurement and
background noise ratio would likely be too small for our in-
struments to derive precise estimates of the emissions.

3.8 Tracer release method estimates

Figure 5 presents one example of the measured acetylene
and methane cross sections used for calculating the methane
emission rate for each campaign. For the first series, both the
acetylene and methane profiles are similar due to the collo-
cation and the mixing of the sources, but we can still observe
a significant difference between both emission plumes due
to measurement and background errors. The shift between
the sources is reflected by a smaller relative amplitude and
a higher relative width of the acetylene plume compared to
the methane plume in configuration 2 than in configuration 1
and by a lateral shift of the acetylene plume compared to
the methane plume in configuration 3. The two overlapping
methane emission plumes, one superimposed with the acety-
lene plume, can be distinguished in the fourth configuration.

In this section, the uncertainties in the optimal (i.e. aver-
age) estimates of the sources are characterised by the random
uncertainty which is given by (i) the variations of the results
between the measurement transects, SDtr/

√
ntr, (ii) the bias

due to the mislocation of the tracer (see Sect. 3.7 above),
and (iii) the standard deviation of the total uncertainty being
taken as the root sum square of these two terms. Table 2 lists
the estimated methane emission rates and the methane emis-
sion rates actually released for each tested configuration.

These results confirm that the estimates closest to the ac-
tual methane rates are obtained for the first and the third con-
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Figure 5. Examples of cross sections of the measured emission plumes of acetylene and methane (in red and blue) for each configuration.

Table 2. Methane emission rates of the different controlled release configurations estimated with the different approaches and methane fluxes
actually emitted during these tests. The uncertainties given with the tracer release method are detailed as follows: standard deviation of the
random uncertainty derived from the variability in the results from one transect to the other one (bias due to the mislocation of the tracer;
total uncertainty).

Configuration 1 Configuration 2 Configuration 3 Configuration 4
(collocated tracer) (upwind tracer) (lateral tracer) (multiple sources)

Controlled methane release (g h−1) 382± 7 428± 7 360± 7 482± 7

Tracer release method estimates (g h−1) 434± 23 (0; 23) 564± 120 (295; 415) 321± 51 (43; 94) 804± 160 (270; 430)
Relative difference to the control release (%) 14 32 11 67

Combined approach estimates (g h−1) 441± 6 358± 2 386± 2 462± 34
Relative difference to the control release (%) 15 16 7 4

figurations with relative differences of 14 and 11 %. How-
ever, surprisingly they are slightly higher for the first con-
figuration than for the third one. Furthermore, these errors
are relatively high for the tracer release technique. They are
mainly due to the variations in the background concentra-
tions for methane, but also in some cases for acetylene. For
example, the methane background can range between 2079
and 2099 ppb from one crossing to another for the first con-

figuration or between 2012 and 2031 ppb between transects
for the third configuration. Moreover, the standard deviations
within the background portions used to compute the back-
ground concentration can reach 9 ppb for methane and 1 ppb
for acetylene. These variations characterise the level of un-
certainty in the background concentration and they are signif-
icant compared to the amplitude of the plumes. The measure-
ment errors associated with the lag time between the methane
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Figure 6. Examples of prior, posterior and measured values of emission rates, concentrations and values of the observation vector for cases
in configuration 1 and 4 (observations from a single transect shown).

and tracer concentrations may also play a significant role
in the level of error associated with the estimates from the
tracer release technique. Instrument precision, on the other
hand, should not significantly contribute to the error, since
its amplitude is much smaller than the typical signals mea-
sured throughout the experiments (Figs. 1 and 5).

The relative differences between the actual rates and the
tracer release estimates are much more important for the sec-
ond and the fourth configurations at 32 and 67 %. The com-
parison between these results and those estimated in the first
and third configurations indicates that in the latter cases, the
observation operator errors associated with the mislocation
of the tracer are much more important than the impact of the
measurement and background errors. These error estimations
based on direct comparison of the known emission rates are
relatively well reflected by the uncertainty estimates, which
are much lower for configurations 1 and 3 than for the second
and fourth ones, both in terms of random error and in terms
of biases.

3.9 Combined approach

3.9.1 Configuration of the statistical inversion
parameters

In this section, we provide details on our definition of the
prior estimate of the sources f b, of the covariance matrix
of its uncertainties B, and of the covariance matrix of the
observation errors R that are needed for the application of
Eq. (4) underlying the statistical inversion.

Here, we assume that the measurement and background
errors are negligible compared to the transport errors, and
thus that the observation errors can be represented solely by
the transport errors. This assumption arose from the rela-
tively high values taken by the transport error estimates. The
modelled vs. measured tracer plumes indices and their prod-
uct with the ratio between the measured methane and tracer
plume indices are thus used to set up the variances of the
observation error in the inversion configuration, i.e. the di-
agonal of the covariance matrix R. In the case of a unique
methane source, we use the absolute value of the difference
between the modelled vs. measured plume indices to define
the standard deviation of the observation error for the corre-
sponding transect. When there are several methane sources
within a site, we use the absolute value of the difference
between the modelled vs. measured plume indices for each
slice of the measurement transects (see Sect. 3.5). We as-
sign a minimum value for these standard deviations to pre-
vent one transect or slice of a transect dominating the others
in the inversion process. In the least squares minimisation
process associated with the statistical inversion, data assim-
ilated with a considerably lower observation error than the
others may fully drive the inversion results. For some tran-
sects, an excellent fit may occur between the model and the
measurements in terms of plume indices (i.e. integration of
the emission plume concentrations over the background) de-
spite the shapes of the modelled and measured tracer plumes
being significantly different, revealing some significant ob-
servation errors. Applying a threshold to the observation er-
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rors limits the impact of their underestimation through the
objective comparison between the modelled and measured
plume indices. We make the assumption that there is no cor-
relation of the transport errors, and thus of the observation
error (assuming that it is dominated by the transport errors)
from one slice to the other slice of a given transect or from
one transect to another one such that the R matrix is set up
diagonally.

The typical prior knowledge f b of the emission rate from
waste treatment sites, farms, or gas extraction or compression
sites from process models, typical national- to regional-scale
factors is generally highly uncertain. It can bear more than
100 % uncertainty and for many of these sites not even the
order of magnitude is known. Despite working in the frame-
work of a controlled release experiment, we attempt to set
up the inversion system to have the same conditions as when
monitoring the emissions from such sites. We thus set up the
prior estimate of the methane emission rates to 1800 g h−1

and the standard deviation of the prior uncertainty in these
rates to 80 % of this prior value. This ensures that the prior
has a weak impact on the results. In general, there is no cor-
relation between the prior uncertainties in the methane emis-
sions from different targeted sources within a site, since they
generally correspond to different processes (e.g. the aeration
process and the clarification process in wastewater treatment
plants; Yver Kwok et al., 2015). Therefore, here, the B ma-
trix is set up diagonally.

3.9.2 Results

Figure 6 presents examples of results obtained using the
combined statistical approach with one or several methane
sources. The behaviour of the inversion system and the val-
ues in the concentration and observation space are illustrated
for one transect only (for the third transect of the first config-
uration and for the 38th transect of the fourth configuration).
It shows that the posterior estimates of the emissions have
a much better fit of the simulated concentrations and plume
indices than the prior emissions.

Table 2 presents the methane emission rates estimated with
the combined approach for each tested configuration. We also
analyse the covariance matrix A of the theoretical uncertainty
in the emission estimates when using the statistical approach
(Eq. 5), which provides a complementary assessment of the
reliability of the results and of the level of separability be-
tween the two methane sources when using several of them
in the experiments.

For the first and the third configurations, the statistical in-
version gives similarly good estimates of the methane emis-
sion rates as the tracer release method, with relative devia-
tions from the actual rates of 15 and 7 %. As expected, the
tracer release technique provides better results for the first
configuration. However the corresponding difference or rela-
tive error is very small and the combined statistical approach
provides better results in the third configuration. Further-

more, the combined approach derives relatively good esti-
mates for the second and the fourth configurations as well,
contrary to the tracer release method. Indeed, for these two
experiments, the relative differences between the actual rates
and the combined approach estimates are 16 and 4 %. Since
being impacted by the background and measurement errors,
this approach sill provides relative errors around 15 % for
configurations 1 and 2 but lower than 10 % for the third and
fourth configuration.

In all cases, the statistical inversion predicts a very low
posterior uncertainty in the emission estimates for each con-
figuration. For the fourth configuration with two methane
sources, the approach fails to derive precise estimates of each
source due to the significant overlapping of their emission
plumes during most of the crossings. Indeed the system at-
tributes almost all the emissions to one of the two sources and
none to the other one. The diagnostic (through the computa-
tion of A) of negative correlation (−0.41) of the posterior
uncertainties in these two sources supports the assumption
that there is a weak ability to separate the signal from each
source due to their overlapping, and that it is the main source
of error in their individual estimates.

4 Discussion

The general results from these experiments indicate that both
the tracer release technique and the combined statistical in-
version system can provide good orders of magnitude of the
total methane emission rates for each of the four source con-
figurations that we have considered. However, when using
the most favourable configurations of controlled emission
where the methane source is collocated (configuration 1)
or nearly aligned with the tracer source in the direction or-
thogonal to the wind direction (configurations 3) the results
can still bear more than 10 % relative errors. This is rela-
tively high for the tracer release technique compared to what
has been obtained, e.g. by Allen et al. (2013). For both the
tracer release technique and the combined statistical inver-
sion, the best results are not obtained for the most favourable
controlled emission configuration when the acetylene and
methane sources are collocated. This is surprising, since in
such a configuration, the acetylene should provide a very
precise (perfect if ignoring the measurement and background
uncertainties) proxy of the atmospheric transport of methane.
In the configurations with non-collocated sources, the results
in the other configurations should be hampered by larger un-
certainties in the representation of the atmospheric transport
due to local variations in the wind between the methane and
the acetylene sources.

The variations of the atmospheric conditions from one
experimental configuration to the next reveal the strongest
driver of the precision of the results in our study. It changes
the turbulent patterns and thus the transport errors when us-
ing the model or when using the tracer with a mislocated
source. It also changes the typical amplitude of the tracer
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and methane signals, and thus the signal-to-measurement and
background noise ratio. This ratio is critical and strongly in-
fluences the inversion precisions, since for many measure-
ment transects, our measurement and background errors ap-
pear to be significant compared to the amplitude of the
measurements. The measurement precisions are a negligible
source of error given the typical concentrations measured in
this study. However, the small time lags between the acety-
lene and methane measurements are presumed to raise signif-
icant uncertainties in the comparison between acetylene and
methane data. The variations in the background concentra-
tions for methane but also in some cases for acetylene, also
prove to be high enough to raise uncertainties in the single
background value used for the computation of the so-called
plume indices, i.e. the integral of the increase in the concen-
trations above the background within the plumes.

We anticipate that the results would have been better and
more robust if the methane emission rates had been larger
due to the increase in the signal-to-measurement and back-
ground noise ratio. In real application cases, the methane in-
dustrial emissions are definitely higher than the controlled
emissions used in our experiments and we can thus expect
the issue of the measurement and background errors to be
less critical. Furthermore, we ignored these errors when de-
riving the covariance of the observation errors in the statis-
tical inversions, although several indicators could have been
used to characterise their statistics. We could thus help the
combined statistical inversion system to better account for
them when they are significant.

Despite these issues, this set of experiments clearly con-
firmed our expectations regarding the tracer release tech-
nique and the combined statistical inversion. In the config-
uration with the methane and acetylene sources collocated,
the tracer release method provides better results than the sta-
tistical inversion since the latter is impacted by significant
transport errors in addition to background and measurement
errors while the tracer release technique is impacted by the
last two sources of errors only. The optimisation of the Gaus-
sian plume model using the acetylene data still proves to be
efficient enough to limit the transport errors so that the ac-
curacy of the statistical inversion is still close to that of the
tracer release technique for the first experimental configura-
tion.

In the other experimental configurations, which are repre-
sentative of frequent situations in industrial sites when the
tracer cannot be released close to the single or multiple tar-
geted sources, the combined statistical inversion provides
better results than the tracer release technique. Our OSSE
demonstrates that the mislocation of the released tracer can
induce large errors when considering moderate distances be-
tween the tracer and the targeted sources, even with much
larger distances between the measurements and the sources.
In these cases, our experiments with real data illustrated that
the calibration of a Gaussian plume model using the tracer
release method and the integration of the calibrated model

in a statistical inversion framework help to reduce this error.
The better behaviour of the statistical inversion compared to
the tracer release technique cannot be explained by a stricter
selection of the measurement transects by the former. We re-
computed the results from the tracer release technique when
limiting the selection of the transects to that of the combined
statistical approach and found very similar results (33 % of
error instead of 32 % for the second configuration). On the
contrary, the need to use a stricter selection of measurement
transects that fit with the Gaussian plume model can be seen
as a weakness of the combined inversion approach. The re-
duction of the transport error when using the model rather
than the tracer with a mislocated source is the best expla-
nation for the improvement of the results with the statistical
inversion. These critical results demonstrate, in practice, the
potential of our new method to provide better estimates than
the traditional tracer release technique.

However, our results from the experiment with the fourth
configuration of the controlled emissions fails to demonstrate
the ability of the atmospheric inversion to provide precise
estimates of the different emission rates from the multiple
sources within our site. At least, it shows that the statistical
inversion could diagnose by itself, with the estimate of the
posterior uncertainty covariance matrix, indications that the
two targeted sources of methane were too close, such that
their plumes were hardly separated by the inversion in this
fourth configuration.

The much lower uncertainties associated with the statis-
tical inversion results seem to confirm that they are more
robust than those from the tracer release method. However,
even though the uncertainty estimates in both methods are
supposed to cover all sources of uncertainties, they rely on
very different assumptions regarding these sources of un-
certainties and on very different theoretical derivations. In
particular, the statistical inversion ignores biases, whereas
we explicitly accounted for biases in the tracer release tech-
nique. Furthermore, unlike the estimate of uncertainties for
the tracer release technique, the statistical inversion ignores
the variations of methane model data misfits from one tran-
sect to the other, but these misfits could be an indicator of the
uncertainties in the emissions. It strongly relies on our char-
acterisation of the transport errors and prior uncertainties. We
tried to rely on an objective quantification of the transport er-
rors and we used such a high uncertainty in the prior flux esti-
mates that this estimate did not have a large weight in the sta-
tistical inversion. However, the derivation of the transport er-
ror still relied on strong assumptions regarding its structure,
and in particular regarding its spatio-temporal correlations.
The computation of transport uncertainties using model-data
misfits for tracer plume indices that are integrated over the
whole plumes, i.e. for the same tracer plume indices as that
used to optimise the transport model configuration, raises
theoretical issues in the first three experimental configura-
tions. It assumes that the dominant source of transport model
errors is related to the inability of the transport model, in the
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range of parameterisation that are tested, to perfectly fit these
plume indices. This does not account for the inability of the
transport model to catch the turbulent patterns and the varia-
tions of the wind conditions in space and time. Assessing the
transport model errors based on statistics of model-data mis-
fits for slices of the tracer plume as in configuration 4 may
help to better account for such sources of transport errors.
However, in general, the information on the transport model
errors from the tracer data may have to be complemented by
other sources of information on the transport errors. This is in
addition to information on the background and measurement
uncertainties (as discussed above), which avoids underesti-
mating the overall observation errors and thus the posterior
uncertainties. All of this makes the comparison of the error
bars for the two methods difficult and weakens the reliability
on the quantification of the uncertainties in the results from
the statistical inversions, especially since they appear to be
very low for all experiments. These uncertainties should be
used cautiously as an indicator of the relative behaviour of
the system rather than as an absolute indicator of the result
precision.

The promising results of this study should be seen as a
proof of concept rather than as a comprehensive evaluation
and assessment of its applicability in different situations. In
particular, more complex situations with buildings and other
obstacles disturbing the flow will require the application of
more sophisticated transport models than the simple Gaus-
sian plume model applied here, even though the overall con-
cept of the combined statistical approach would still be valid.

Furthermore, as indicated above, the turbulent patterns in-
duced significant transport errors that contributed to the un-
certainties in the inversion results. The strict selection of the
measurement transects that can be exploited by the inversion
system is strongly related to the poor ability of the Gaussian
plume model to simulate many of them. This is demanding
in terms of measurements, with many transects needed to en-
sure that a significant set will be used for the statistical inver-
sion.

At last, for the optimisation of the Gaussian plume model
settings, the variable selection of stability classes represen-
tative of measurement transects shorter than 15 min is ques-
tionable. In the method, the fit of the model to the tracer data
is the only critical criteria while the consistency between the
stability class and the meteorological conditions according
to the Pasquill table is just checked as a diagnostic that does
not have any weight in the model optimisation. However, the
changes in the resulting stability classes over short timescales
make us question whether the Gaussian plume model is ap-
propriate for such a combined inversion technique. A direct
optimisation of the typical diffusion length of the Gaussian
plume or of the parameters of the Briggs formulation, instead
of the selection of the optimal stability class underlying such
parameters, would allow a better, if not perfect, fit to the
tracer plume indices. However, such an optimisation could
increase the lack of physical consistency between the result-

ing model parameters and the actual meteorological condi-
tions due to the limitation of the Gaussian representation of
the plumes.

All these problems contributed to the significant errors in
the statistical inversions in this study and could make such er-
rors too large in complex cases of actual industrial emission
quantification. Therefore, while the choice of the Gaussian
plume model for the initial tests to evaluate our new concept
was appropriate, future studies should investigate how more
complex models could be integrated in this inverse modelling
framework. However, forcing CFD-driven dispersion models
to fit the tracer data will not be straightforward, even if at-
tempting to extract far more information from these data than
simple plume indices. Even if modelling turbulent structures,
the CFD models would be hardly controlled to fit that of the
measurements. In general, the appropriate control techniques
could be as complex as tracer data assimilation in these mod-
els which would make the method far more difficult to apply
than in our study. This increase in complexity may make the
method quite difficult to apply while there is a need for a pre-
cise and easy-to-implement methods for estimating methane
emissions from the industrial sector. From this point of view,
the tracer release technique definitely appears to be the most
efficient technique.

Our concept faces another type of challenge. During mea-
surement campaigns on actual industrial sites, the locations
of the methane sources are not exactly known as in our tests.
This lack of information could induce additional uncertain-
ties to our estimates. Another source of uncertainty is the fact
that in the tested configurations, methane point sources were
used whereas during field campaigns, spread out and fugi-
tive sources may be encountered while their spatial distribu-
tion could be poorly known. The lack of knowledge of the
emission spatial distribution may decrease the advantage of
the combined approach (which, in its present form strongly
relies on this knowledge) compared to the release technique.

5 Conclusions

We propose a new atmospheric concentration measurement-
based concept for instantaneous estimates of gas emissions
from point sources or more generally from industrial sites.
This concept combines the tracer release technique, local-
scale transport modelling and a statistical inversion frame-
work. The idea is to optimise the model parameters based on
the knowledge provided by the tracer release and concentra-
tion measurement and to exploit tracer model-measurement
misfits to prescribe the statistics of the modelling error in the
statistical inversion framework. Compared to the traditional
tracer release technique, the method has the advantage of ex-
ploiting knowledge of the atmospheric transport provided by
the known tracer release and measured concentration with-
out relying on the collocation of the tracer emission and of
the targeted gas emission. This is a critical advantage, since
the tracer can hardly be collocated with the targeted sources
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in many of the real industrial cases. The statistical frame-
work can account for the different sources of uncertainties
in the source estimate, can solve different targeted sources
together and can consider any valuable number of pieces of
information in the measurement of the targeted gas for such
an inversion.

We also propose a relatively simple implementation of
this concept using a Gaussian plume model. Finally, we
apply it to a series of controlled release experiments with
methane and acetylene taken respectively as targeted and
tracer gas and we compare its results to that of the tracer
release technique to demonstrate the added benefit of our
new approach. The results indicate that, when the tracer and
targeted gas sources are collocated, the combined statistical
approach yields results that are nearly as good as that from
the tracer release technique, even though the former can be
impacted by the transport modelling errors which do not ap-
ply to the latter. More importantly, the results confirm that,
when the tracer and targeted gas sources are not collocated,
the combined statistical approach provides better results than
the tracer release technique. Such results with a rather simple
implementation of the combined statistical approach using a
Gaussian plume model are highly promising for our concept.

Our experiments fail to demonstrate the potential of this
approach to estimate the different emission rates from the
multiple sources within a site. Furthermore, as highlighted
by Sect. 4, the robustness of the method and its assessment
of the uncertainties needs to be improved. The generalisation
of the method for applications to complex sites and meteo-
rological conditions, based on more realistic transport mod-
els, will confront difficult technical and scientific challenges.
However, at least our experiments promote further studies
and development of our combined approach. They even pro-
mote application of our simple implementation framework
to the instant quantification of real industrial sites emissions
when the conditions are favourable for the use of a Gaussian
plume model.
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