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S1 Details on the Format of the Tekran® Analyzer’s Serial Data Output

The serial data output (“RAWDUMP” format) from the Tekran® analyzer can be parsed into the components listed below. (A
more detailed description is provided in the Tekran® user manuals [c.f., Tekran Corporation, 2006, 2007].)

I A “Raw data” string, which consists of Hg atomic fluorescence signal values, recorded at 10 Hz over a user-
defined interval of the sample analysis cycle.

Il. A “Peak table” string, which consists of a header and parameters defining the Hg thermal desorption peak
profile (e.g., the peak start and end times) according to the Tekran® analyzer’s internal signal processing
method.

I1. A “Final data” string, which consists of a header and the following components (not ordered exactly as in
the string): the timestamp; the cycle type flag (“CLN”, clean cycle; “CONT”, continuous ambient air analysis
cycle; “SPAN”, calibration gas analysis cycle; “ZERO”, zero air blank cycle); the Au trap identity (“A” or
“B”); the sample duration (seconds) and volume (standard liters); the area of the Hg TD peak, as determined
by the Tekran® analyzer’s internal signal processing method, and the corresponding Hg concentration,
calculated based on the sample volume, Hg TD peak area, and internal calibration data (see below); and
some diagnostic parameters (e.g., the baseline standard deviation).

An example string for a single sample cycle is shown in Fig. S1. An additional “Calibration data” string is generated when a

calibration gas analysis cycle is executed (Fig. S2).
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Figure S1: An example of the Tekran® 2537B instrument’s serial data output (‘RAWDUMP” format). The string of
10 Hz Hg fluorescence signal values in the “Raw data” string is delimited at the beginning and end by lines reading
“RAWDUMP:” and “-9999”, respectively. The data values in the “Peak table” string are delimited at the beginning
by a line reading “-” and at the end by a line reading “RAW END:” in the “Final data” string. The “Final data” string
is delimited at the beginning by the line reading “RAW END:” and at the end by the line reading “RAWDUMP:” from
the subsequent sample’s “Raw data” string. Note that the lines containing the dash, “-”, and the data header in the
“Final data” string are only written with the raw data for the first sample analyzed. The same formatting is used with
the 2537A instrument. Further information is provided in the Tekran® user manuals (Tekran Corporation, 20086,

2007).



CALIBRATION: S/N:0336 H/W:3.20 S/w:1.11 13-12-21 01:33:09
ZERO: A

Sample : 150sec | BlArea : 0
Volume : 2.491 | BlCorr : 0/l
Baseline: 0.498 V | PkMax : .000V
BlStDev: 0.3 mv | PkWid : .0sec
Start :13-12-21 01:23:11

ZERO: B

Sample : 150sec | BlArea : 0
Volume : 2501 | BlCorr : 0/l
Baseline: 0.497 V | PkMax : .000 V
BIStDev: 0.38 mv | PkWid : .0sec
Start :13-12-21 01:25:41

SPAN: A SOURCE

Sample : 150sec | Area :5796730
Volume : 2.501 | AdjArea :5796730 *
HgAmt : 105.0pg | RespFctr:55191e3
Baseline: 0.496V | PkMax :1.873V
BlStDev: 0.47 mv | PkWid : 24.2 sec
Start :13-12-21 01:28:11

SPAN: B SOURCE

Sample : 150sec | Area :5354910
Volume : 2,501 | AdjArea :5354910 *
HgAmt : 105.0pg | RespFctr:50985e3
Baseline: 0.496V | PkMax :1.842V
BIStDev: 0.33 mv | PkwWid : 24.1sec
Start :13-12-21 01:30:41

Figure S2: An example of the “Calibration data” string in the Tekran® analyzer’s serial data output (‘RAWDUMP?”
format). Further information is provided in the Tekran® user manuals (Tekran Corporation, 2006, 2007).



S2 Details on Tekran® Operating Parameters Employed in This Work

Instrument operating parameters and Hg thermal desorption peak integration parameters employed with the Tekran® 2537A
and 2537B instruments | tested are given in Table S1.

Table S1. Operating parameters and Hg TD peak integration parameters employed with the Tekran® 2537A and 2537B
instruments | tested.?

Flow Parameters (mL/min)

Car-Meas Car-ldle Car-Flush Smpl-RateP
80.0 15.0 160.0 1.00
Analysis Timing Parameters (sec)
Sample Flush-Hi Meas-dly BL-time Intg-dly Pk-time
150.0 30.0 5.0 10.0 10.0 19.0
Integration Parameters®
N-up V-up (LSB) N-dn V-dn (LSB) N-base V-base (LSB)
7 4 3 3 5 8

aParameters are defined in the Tekran® instrument manuals (Tekran Corporation, 2006, 2007). Flows are referenced
to standard temperature and pressure of 273.15 K and 1.01325 bar.

bUnits are liters/min.

°LSB: least significant bit (1 LSB = 5 pV).

S3 Details on Constraining the Hg Thermal Desorption Peak End Time

For the dataset represented in Fig. 2 in the main manuscript, the SPAN samples (Hg loadings ~ 150 pg) have peak heights that
are large enough that it is necessary to constrain tehq S0 that it is no later than 10 ds before the upper bound time, t,, of the
interval during which the Hg atomic fluorescence signal was recorded. Two blank samples have peak heights that are small
enough that it is necessary to constrain tenq SO that it is no earlier than 10 ds after the peak maximum time.

For the dataset represented in Fig. S3, the preliminary peak height value is negative for seven blank samples (V1a. method
only). Only the SPAN samples (Hg loadings = 100 pg) have peak heights that are large enough that it is necessary to constrain
tend SO that it is no later than 10 ds before the upper bound time, t,, of the interval during which the Hg AF signal was recorded.
Sixteen (Va2 method) and one (VIm. method) blank samples have peak heights that are small enough that it is necessary to

constrain teng SO that it is no earlier than 10 ds after the peak maximum time.



S4 Details on Estimating the Baseline Standard Deviation

LabVIEW calculates the mean Bisquare regression residual, Fmean, fromeq. 1:

1 -
Tmean = ﬁ X (Zﬁ:(} Wn (fn - YH)Z) (1)
Here, N is the number of data points in the regression, wy is the weight of the n" data point, f, is the value of the n' data point
predicted by the regression equation, y, is the true value of the n™ data point, and the summation is over all data points.

Accordingly, | estimate the baseline standard deviation from rmean Using eq. 2:

Op1 = (rmean X %)0.5 (2)



S5 Results Obtained with a Tekran® 2537B Hg Vapor Analyzer

The test dataset collected with the 2537B instrument is shown as a time series in Fig. S3. Figure S4 shows the Hg thermal
desorption profile recorded for a calibration gas analysis cycle. Figure S5 compares Hg loadings derived from the Tekran®
method with concentrations derived from the VI, m method (dataset shown in Fig. S3, excluding SPANS).
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Figure S3: Test dataset collected with a Tekran® 2537B instrument, represented as Hg loadings derived from my VI-
based manual, semi-automated, and automated peak height determination methods (the VImm, VIma, and Vlaa
methods, respectively), and by the Tekran® method. Mercury thermal desorption peaks not detected by the Tekran®
method are assigned a value of 0.0001 pg. The pair of data points at ~100 pg corresponds with a pair of calibration gas
analysis cycles (SPAN samples), which | use to initialize the VI. 1 use response factors calculated from the SPAN
samples (and the preceding pair of blanks) to calculate Hg loadings for all other samples in the dataset. The sets of
data points at ~20 pg correspond with calibration gas analysis cycles using an external calibration unit (external SPAN
samples). The external calibration unit is described in Ambrose et al. (2015). The mean value of the baseline standard
deviation, ou (defined in Sect. 2.1.1 in the main manuscript), is ~0.19 mV (equal to ~0.02 pg). The corresponding
estimated lower-limit f value (mean + 2¢) is 1.36(5) x 107,
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Figure S4: (a) Example Hg thermal desorption profile during a calibration gas analysis cycle on a Tekran® 2537B
instrument. Also shown is the corresponding 150 point exponential Bisquare (unweighted) regression (eq. 1 in the main
manuscript; r?> = 0.997) used to derive the decay constant (b = —0.0308 + 0.0004 ds™') during initialization of the VI’s
signal processing method. (b) Comparison between the calculated (fit) and observed Hg atomic fluorescence signal
values in (a). The slope and intercept of the linear regression are 1.00 + 0.01 and 0 = 7 mV, respectively.
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Figure S5: (a) Comparison of Hg loadings derived from measurements made with a Tekran® 2537B instrument using
the Tekran® method and my VI-based peak height determination method (dataset shown in Fig. S3, excluding SPANS),
with the peaks defined manually (the VImm method). The equation of the linear regression isy = 0.95(1)x — 0.09(5) pg
(r>=0.994, n = 110). The fitincludes only the data derived from detected peaks (represented by the filled symbols). (b)
Absolute and relative biases in the Tekran®-derived loadings, based on the fit in panel (a), where absolute bias = HgTeran
— Hgsenchmark, and relative bias = 100 x (HgTekran — HgBenchmark) + Hggenchmark. Here “HgTekran” and “Hggenchmark” represent
Hg loadings derived from the Tekran® and VImm methods, respectively. Grey bands represents propagated
uncertainties (95% confidence intervals) in the fit parameters. (c) Distribution of residuals from panel (a), including
only data derived from detected peaks.

The nominal Hg limit of detection for the Tekran® method is 0.5 pg (see Sect. S7). While many Hg thermal desorption peaks
in the 2537B dataset are detected by the Tekran® method at Hg loadings <0.5 pg, some Hg TD peaks are undetected by the
Tekran® method for loadings <0.20 pg (Fig. S3). The results suggest that the actual Hg LOD achieved with the Tekran®
method is ~0.2 pg, which is lower than the nominal value (and lower than observed for the 2573A instrument) as a result of

modifications that were made to the 2537B instrument to improve its signal-to-noise ratio (Ambrose et al., 2013).
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Figure S6: (a) Comparison of Hg loadings derived from measurements made with a Tekran® 2537B instrument using
my VI-based automated and manual peak height determination methods (the Vlaa and VImm methods, respectively;

dataset shown in Fig. S3, excluding SPANS).

The equation of the linear regression is y = 1.015(2)x — 0.017(8) pg (r? =

0.9998, n = 132). (b) Absolute and relative biases in the VI-based Hg loadings, based on the fit in panel (a), where
absolute bias = Hgauto — HQsenchmark, and relative bias = 100 x (Hgauwo — HgBenchmark) + Hggenchmark. Here “Hgauto” and
“Hggenchmark” represent Hg loadings derived from the Vlaa and VImm methods, respectively. Grey bands represents
propagated uncertainties (95% confidence intervals) in the fit parameters. (c) Distribution of residuals from panel (a).
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Table S2. Bias in Hg loadings derived by applying automated and semi-automated Hg atomic fluorescence signal
processing methods to measurements made with a Tekran® 2537B instrument.

Hg (pg, ng/md)2P

51 3.75,0.75 25,05 1.25, 0.25 0.5,0.1 0.25, 0.05 0.125, 0.025
Method Bias (%)
Tekran® 742 -7 42 -9+ -12+4 —24+10 —42 +£20 -100f
Vlaa® 1.1+0.3 1.0+£0.3 0.8+0.4 0.1+0.7 —2+2 —-5+£3 -11=x6
Vima® 0.7+0.2 0.7+0.2 0.9+0.2 1.2+04 24+0.9 4+2 8+4

3Bias values for the Tekran® and V1.2 methods are calculated from the equations of the linear regressions in Figs. S5a
and S6a, respectively. Bias values for the VIma method are similarly calculated from the linear regression equation
given in Table S6 (“Standard” configuration). All bias values are expressed relative to Hg loadings derived by
processing the data using manual peak definition (the VImm method).

bHg loadings are also expressed in terms of concentrations under the typical Tekran® operating parameters.

‘Tekran® operating and peak integration parameters are defined in Table S1.

dMy VI1-based peak height determination method, with peak start and end times determined automatically (V1aa).
My VI-based peak height determination method, with peak start times determined manually and peak end times
determined automatically (VIm.a).

fFor Hg < the estimated 0.2 pg Tekran® LOD, the true bias is —100%. For clarity, the true bias is substituted for the
calculated value.

S6 Details on Reproducing Hg Thermal Desorption Peak Baselines Calculated by the Tekran® Method

| reproduced the Hg thermal desorption peak areas (and thereby the baselines) calculated by the Tekran® method by doing the
following: linearly interpolating between consecutive Hg atomic fluorescence signal values; carrying out a stepwise integration
over the interval between the baseline start and end times (“STM” and “ETM” in the “Peak table” string in Fig. S1), with the
baseline signal values calculated by linearly interpolating between the baseline start and end values (“SBL” and “EBL” in the
“Peak table” string in Fig. S1); summing the resulting integrals and multiplying by a factor of 2.5. I found that the values of
“SBL” and “EBL” (Fig. S1) are not the same as the signal values recorded at “STM” and “ETM”.

S7 Details on Estimating the Nominal Hg Limit of Detection for the Tekran® Method

The Tekran® manuals (Tekran Corporation, 2006, 2007) state a Hg limit of detection for the Tekran® analyzer of 0.1 ng/m? for
typical operating conditions, which include a sample flow rate of 1.0 liter/min (at standard temperature and pressure of 273.15
K and 1.01325 bar) and a sample duration of 5 min. These conditions yield a sample volume of 5 standard liters. In terms of
Hg loading, the nominal LOD is therefore 0.5 pg.
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S8 Details on Sensitivity Tests Carried Out with the Vlaa and VIma Methods

Tables S3 and S4 show the results of sensitivity tests carried out with the V1., and Vima methods, respectively, applied to the
2537A dataset. Following each listed modification to the “Standard” V1., configuration, | determine opiank and the parameters
of a linear regression of “Hgauto” VS. “Hggenchmark”” (@S in Fig. 5a in the main manuscript). For all sensitivity tests, the fit

parameters are indistinguishable (at the 95% confidence interval) from those obtained from the values derived from the

“Standard” Vlaa configuration (Fig. 5 in the main manuscript).

Table S3. Results of sensitivity tests carried out with the Vl1a,. method applied to the 2537A dataset (Fig. 2 in the main

manuscript).

Vlaa Configuration Fit Equation? r2 Hg LOD® (pg)
Standard® y = 1.001(1)x + 0.000(6) 0.99992 0.12
—Jtenge y = 1.002(2)x — 0.007(7) 0.99989 0.13
+8tend® 9N y = 1.001(2)x + 0.003(6) 0.99991 011
Atstart") y = 1.000(2)x + 0.001(8) 0.99988 0.13
—8tend, Atstart® y = 1.001(2)x — 0.01(1) 0.99988 0.17
+8tend, Atstart’ y = 1.000(2)x + 0.005(8) 0.99988 0.12
Second SPANs™ y =1.000(2)x + 0.001(8) 0.99987 0.13

aUnits of y are pg. Errors are quoted at the 95% confidence interval (n = 152).

bEstimated as twice the standard deviation in blank samples (n = 62).
®Vla,a method initialized with the first pair of SPAN samples in Fig. 2 in the main manuscript.

dSame as "'Standard"* but with d#ena subtracted from calculated tend values.

¢The estimated range in dtend is 7—49 ds.

fThe value of Idtendl is > Itendl for five samples. In those cases, tend is forced to 0 ds.

9Same as "—dfend”" but with dzend added to calculated tend Values.

"The value of tena is <10 ds for two samples. In those cases, dtend is Set to 49 ds (i.e., the value estimated for a peak height

equal to on.)

iSame as "'Standard™, but with tsart values taken from the second pair of SPAN samples in Fig. 2.

IThe values of tsart for the first pair of SPAN samples are 123 ds (Au trap A) and 145 ds (Au trap B). For the second
pair of SPAN samples, the values are shifted by —9 and —5 ds to 114 ds and 140 ds for Au traps A and B, respectively.
kSame as "—dfend'", but With tsware values taken from the second pair of SPAN samples in Fig. 2.

'Same as "+5tend", but with tsware Values taken from the second pair of SPAN samples in Fig. 2.

MSame as ""Standard", but with the Vlaa method initialized with the second pair of SPAN samples in Fig. 2.
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Table S4. Results of sensitivity tests carried out with the VIma method applied to the 2537A dataset (Fig. 2 in the main
manuscript).

VlIma Configuration Fit Equation? r2 Hg LOD® (pg)
Standard® y =1.001(1)x + 0.004(3) 0.99998 0.10
—dtena®® y =1.000(1)x + 0.001(3) 0.99998 0.10
+8tend®’ y =1.000(1)x + 0.008(3) 0.99998 0.10
Second SPANs? y =1.001(1)x + 0.007(3) 0.99998 0.10

aUnits of y are pg. Errors are quoted at the 95% confidence interval (n = 152).

bEstimated as twice the standard deviation in blank samples (n = 62).

°V1Ima method initialized with the first pair of SPAN samples in Fig. 2 in the main manuscript.

dSame as "'Standard’ but with dt.na subtracted from calculated tena values.

®The estimated range in dtend is 7-16 ds.

fSame as "—dtend"" but with étend added to calculated tena vValues.

9Same as "*Standard™, but with the VIma method initialized with the second pair of SPAN samples in Fig. 2.

Tables S5 and S6 show the results of sensitivity tests carried out with the V1., and VIm. methods, respectively, applied to the
2537B dataset. Following each listed modification to the “Standard” VIa. configuration, | determine oniank and the parameters
of a linear regression of “Hgaut” VS. “Hggenchmark””. Because only one pair of SPAN samples was analyzed, the sensitivity of
the results to variability in tsarr can’t be tested as is done for the 2537A dataset. However, the values of ts. calculated for
external standard samples falls within a range of £5 ds from one another, suggesting that derived Hg loadings would be
insensitive to the choice of calibration standard samples used to initialize the VI.

For all sensitivity runs (except the “+tens” and “External SPANs” runs) carried out with the V1., method (Table S5), and for
all sensitivity runs carried out with the VIm, method (Table S6), the fit parameters are indistinguishable (at the 95% CI) from
those obtained from the values derived from the “Standard” VIaa and Vlna configurations. For the “+68tend” sensitivity run
carried out with the V1,, method, bias in “Hgauo” is slightly lower at high loading and slightly higher at low loading than for
the “Standard” VI configuration. For the “External SPANs” run carried out with the VI, 2 method, bias in “Hgauwo” i slightly
lower than for the “Standard” configuration at all loadings.
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Table S5. Results of sensitivity tests carried out with the Vlaa method applied to the 2537B dataset (Fig. S3).

Vlaa Configuration Fit Equation? r2 Hg LOD® (pg)
Standard® y = 1.015(2)x — 0.017(8) 0.9998 0.13
—Jtenge y =1.017(2)x — 0.027(9) 0.9998 0.13
+8tend® 9N y = 1.007(3)x + 0.016(9) 0.9998 0.15
External SPANSs' y =1.008(2)x — 0.002(7) 0.99988 0.12

aUnits of y are pg. Errors are quoted at the 95% confidence interval (n = 132).

bEstimated as twice the standard deviation in blank samples (n = 37).

®Vlaa method initialized with the pair of SPAN samples in Fig. S3.

dSame as "*Standard" but with dznd subtracted from calculated tend values.

¢The estimated range in dtend is 2—65 ds.

fThe value of Idtendl is > Itendl for 24 samples. In those cases, tend is forced to 0 ds.

9Same as "—dtend” but With dzend added to calculated tend Values.

"The value of tenq is <10 ds for 16 samples. In those cases, dtend is set to 65 ds (i.e., the value estimated for a peak height
equal to onl.)

iSame as ""Standard", but with the V1. method initialized with the last pair in the first set of external SPAN samples
in Fig. S3.

Table S6. Results of sensitivity tests carried out with the VIma method applied to the 2537B dataset (Fig. S3).

VlIma Configuration Fit Equation? r2 Hg LODP (pg)
Standard® y = 1.005(1)x + 0.009(5) 0.99994 0.10
—dteng®ef y = 1.006(1)x + 0.004(5) 0.99993 0.11
+3tend" 9" y = 1.004(1)x + 0.014(4) 0.99994 0.10
External SPANS' y = 1.005(1)x + 0.011(4) 0.99995 0.10

aUnits of y are pg. Errors are quoted at the 95% confidence interval (n = 132).

bEstimated as twice the standard deviation in blank samples (n = 37).

“VIma method initialized with the pair of SPAN samples in Fig. S3.

dSame as "'Standard" but with dzend subtracted from calculated tend values.

®The estimated range in dtend is 265 ds.

The value of Idtendl is > Itendl for four samples. In those cases, tend is forced to 0 ds.

9Same as "—dtend” but with dzend added to calculated tend values.

"The value of tend is <10 ds for one sample. In that case, dtnd is set to 65 ds (i.e., the value estimated for a peak height
equal to on1.)

iSame as ""Standard", but with the VIma method initialized with the last pair in the first set of external SPAN samples
in Fig. S3.
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