

Supplement of

Improved methods for signal processing in measurements of mercury by Tekran[®] 2537A and 2537B instruments

Jesse L. Ambrose

Correspondence to: Jesse L. Ambrose (Jesse.Ambrose@unh.edu)

The copyright of individual parts of the supplement might differ from the CC BY 3.0 License.

S1 Details on the Format of the Tekran[®] Analyzer's Serial Data Output

The serial data output ("RAWDUMP" format) from the Tekran[®] analyzer can be parsed into the components listed below. (A more detailed description is provided in the Tekran[®] user manuals [*c.f.*, Tekran Corporation, 2006, 2007].)

- I. A "Raw data" string, which consists of Hg atomic fluorescence signal values, recorded at 10 Hz over a userdefined interval of the sample analysis cycle.
- II. A "Peak table" string, which consists of a header and parameters defining the Hg thermal desorption peak profile (*e.g.*, the peak start and end times) according to the Tekran[®] analyzer's internal signal processing method.
- III. A "Final data" string, which consists of a header and the following components (not ordered exactly as in the string): the timestamp; the cycle type flag ("CLN", clean cycle; "CONT", continuous ambient air analysis cycle; "SPAN", calibration gas analysis cycle; "ZERO", zero air blank cycle); the Au trap identity ("A" or "B"); the sample duration (seconds) and volume (standard liters); the area of the Hg TD peak, as determined by the Tekran[®] analyzer's internal signal processing method, and the corresponding Hg concentration, calculated based on the sample volume, Hg TD peak area, and internal calibration data (see below); and some diagnostic parameters (*e.g.*, the baseline standard deviation).

An example string for a single sample cycle is shown in Fig. S1. An additional "Calibration data" string is generated when a calibration gas analysis cycle is executed (Fig. S2).

RAWDUN	AP:									8
110358	110430	110463	110468	110445	110433	110460	110455	110461	110456	
110458	110414	110416	110429	110421	110428	110459	110471	110481	110508	
110528	110539	110561	110554	110571	110595	110612	110607	110620	110642	
110650	110624	110656	110686	110725	110770	110799	110863	110926	110973	
111056	111131	111206	111318	111415	111570	111732	111880	112027	112198	
112389	112598	112830	113105	113393	113763	114164	114634	115106	115634	
116179	116842	117517	118266	119019	119802	120694	121636	122564	123553	
124546	125510	126511	127496	128405	129364	130184	131003	131714	132390	
132967	133531	133945	134334	134595	134843	135010	135123	135235	135235	
135204	135115	135061	134908	134723	134538	134285	133996	133708	133293	
132900	132480	132024	131531	131054	130494	129982	129432	128870	128318	
127814	127241	126708	126158	125618	125094	124615	124162	123714	123240	
122802	122409	122006	121592	121194	120860	120489	120145	119810	119469	
119146	118803	118516	118203	117911	117611	117379	117082	116826	116607	
116369	116205	115967	115769	115590	115396	115258	115034	114857	114683	
114530	114292	114118	113944	113782	113633	113493	113314	113176	113066	
112932	112814	112702	112583	112517	112374	112285	112205	112086	111974	
111876	111770	111698	111562	111450	111345	111274	111177	111087	111036	
110969	110944	110922	110863	110824	110764	110711	110631	110570	110513	
110492	110392	110307	110221	110169	110121	110059	109991	109970	109912	 "Raw data" string
109901	109875	109843	109815	109794	109730	109697	109696	109675	109643	
109582	109515	109494	109465	109412	109395	109349	109341	109291	109260	
109211	109228	109200	109218	109202	109181	109165	109120	109093	109069	
109088	109050	109001	108971	108939	108928	108944	108902	108883	108841	
108848	108886	108861	108894	108894	108852	108844	108807	108799	108788	
108769	108714	108708	108665	108650	108625	108626	108621	108594	108571	
108547	108580	108542	108534	108530	108481	108457	108447	108468	108444	
108437	108393	108387	108399	108396	108362	108311	108289	108265	108243	
108223	108267	108260	108251	108251	108250	108257	108204	108205	108169	
108192	108165	108135	108085	108115	108071	108076	108067	108025	108026	
108008	108034	108011	107983	108011	108028	108037	108033	108009	108027	
108045	108012	107995	107966	107912	107875	107890	107914	107914	107918	
107897	107895	107861	107871	107883	107849	107836	107844	107848	107803	
107784	107730	107729	107688	107708	107711	107744	107731	107706	107719	
107718	107726	107709	107657	107638	107703	107701	107710	107719	107737	
107737	107717	107683	107628	107609	107532	107524	107505	107498	107520	
107513	107569	107531	107546	107550	107553	107525	107521	107533	107510	
107522	107502	107495	107473	107470	107467	107441	107443	107437	107412	
107426	107462	107474	107457	107463	107456	107449	107456	107472		
*									Ĩ	
PEAK S	BL STM	PKHT	MTXN	EBL ETM	WIDTH	AREA				 "Peak table" string
PK01 110	0443 16	135235	90 10	866 240	22.4	763347			1	· · · · · · · · · · · · · · · · · · ·
RAW END):								1	8
-										
Date 1	Time Tv	p C Stat	AdTim	Vol Bl	BIDev 1	MaxV A	rea ng	/m3	1	 "Final data" string
13-12-20	19:19:0	S CLN A	OK 0 0	.00 0.	553 0.2	32 0.676	763347	0.000		

Figure S1: An example of the Tekran[®] 2537B instrument's serial data output ("RAWDUMP" format). The string of 10 Hz Hg fluorescence signal values in the "Raw data" string is delimited at the beginning and end by lines reading "RAWDUMP:" and "-9999", respectively. The data values in the "Peak table" string are delimited at the beginning by a line reading "." and at the end by a line reading "RAW END:" in the "Final data" string. The "Final data" string is delimited at the beginning by the line reading "RAW END:" and at the end by the line reading "RAWDUMP:" from the subsequent sample's "Raw data" string. Note that the lines containing the dash, "-", and the data header in the "Final data" string are only written with the raw data for the first sample analyzed. The same formatting is used with the 2537A instrument. Further information is provided in the Tekran[®] user manuals (Tekran Corporation, 2006, 2007).

CALIBRATION: S/N:0336 H/W: 3.20 S/W: 1.11 13-12-21 01:33:09 ZERO: A Sample : 150 sec | BlArea : 0 Volume : 2.49 | BlCorr : 0/l Baseline: 0.498 V | PkMax : .000 V BI StDev: 0.34 mv | PkWid : .0 sec Start : 13-12-21 01:23:11 ZERO: B Sample : 150 sec | BlArea : 0 Volume : 2.50 | BlCorr : 0/l Baseline: 0.497 V | PkMax : .000 V BI StDev: 0.38 mv | PkWid : .0 sec Start : 13-12-21 01:25:41 SPAN: A SOURCE Sample : 150 sec | Area :5796730 Volume : 2.50 | | AdjArea :5796730 * HgAmt : 105.0pg | RespFctr:55191e3 Baseline: 0.496 V | PkMax : 1.873 V BI StDev: 0.47 mv | PkWid : 24.2 sec Start : 13-12-21 01:28:11 SPAN: B SOURCE Sample : 150 sec | Area :5354910 Volume : 2.50 | AdjArea :5354910 * HgAmt : 105.0pg | RespFctr:50985e3 Baseline: 0.496 V | PkMax : 1.842 V BI StDev: 0.33 mv | PkWid : 24.1 sec Start : 13-12-21 01:30:41

Figure S2: An example of the "Calibration data" string in the Tekran[®] analyzer's serial data output ("RAWDUMP" format). Further information is provided in the Tekran[®] user manuals (Tekran Corporation, 2006, 2007).

S2 Details on Tekran® Operating Parameters Employed in This Work

Instrument operating parameters and Hg thermal desorption peak integration parameters employed with the Tekran[®] 2537A and 2537B instruments I tested are given in Table S1.

		Flow Pa	arameters (mL/mi	n)	
	Car-Meas	Car-Idle	Car-Flush	Smpl-Rate ^b	
	80.0	15.0	160.0	1.00	
		Analysis T	iming Parameters	(sec)	
Sample	Flush-Hi	Meas-dly	BL-time	Intg-dly	Pk-time
150.0	30.0	5.0	10.0	10.0	19.0
		Integr	ration Parameters	2	
N-up	V-up (LSB)	N-dn	V-dn (LSB)	N-base	V-base (LSB)
7	4	3	3	5	8

Table S1. Operating parameters and Hg TD peak integration parameters employed with the Tekran[®] 2537A and 2537B instruments I tested.^a

^aParameters are defined in the Tekran[®] instrument manuals (Tekran Corporation, 2006, 2007). Flows are referenced to standard temperature and pressure of 273.15 K and 1.01325 bar. ^bUnits are liters/min.

^cLSB: least significant bit (1 LSB \approx 5 μ V).

S3 Details on Constraining the Hg Thermal Desorption Peak End Time

For the dataset represented in Fig. 2 in the main manuscript, the SPAN samples (Hg loadings ≈ 150 pg) have peak heights that are large enough that it is necessary to constrain t_{end} so that it is no later than 10 ds before the upper bound time, t_n , of the interval during which the Hg atomic fluorescence signal was recorded. Two blank samples have peak heights that are small enough that it is necessary to constrain t_{end} so that it is no earlier than 10 ds after the peak maximum time.

For the dataset represented in Fig. S3, the preliminary peak height value is negative for seven blank samples (VI_{a,a} method only). Only the SPAN samples (Hg loadings ≈ 100 pg) have peak heights that are large enough that it is necessary to constrain t_{end} so that it is no later than 10 ds before the upper bound time, t_n , of the interval during which the Hg AF signal was recorded. Sixteen (VI_{a,a} method) and one (VI_{m,a} method) blank samples have peak heights that are small enough that it is necessary to constrain t_{end} so that it is no earlier than 10 ds after the peak maximum time.

S4 Details on Estimating the Baseline Standard Deviation

LabVIEW calculates the mean Bisquare regression residual, r_{mean} , from eq. 1:

$$r_{\text{mean}} = \frac{1}{N} \times \left(\sum_{n=0}^{N-1} w_n \left(f_n - y_n \right)^2 \right) \tag{1}$$

Here, *N* is the number of data points in the regression, w_n is the weight of the n^{th} data point, f_n is the value of the n^{th} data point predicted by the regression equation, y_n is the true value of the n^{th} data point, and the summation is over all data points. Accordingly, I estimate the baseline standard deviation from r_{mean} using eq. 2:

$$\sigma_{\rm bl} = \left(r_{\rm mean} \times \frac{N}{N-1}\right)^{0.5} \tag{2}$$

S5 Results Obtained with a Tekran® 2537B Hg Vapor Analyzer

The test dataset collected with the 2537B instrument is shown as a time series in Fig. S3. Figure S4 shows the Hg thermal desorption profile recorded for a calibration gas analysis cycle. Figure S5 compares Hg loadings derived from the Tekran[®] method with concentrations derived from the VI_{m,m} method (dataset shown in Fig. S3, excluding SPANs).

Figure S3: Test dataset collected with a Tekran[®] 2537B instrument, represented as Hg loadings derived from my VIbased manual, semi-automated, and automated peak height determination methods (the VI_{m,m}, VI_{m,a}, and VI_{a,a} methods, respectively), and by the Tekran[®] method. Mercury thermal desorption peaks not detected by the Tekran[®] method are assigned a value of 0.0001 pg. The pair of data points at ~100 pg corresponds with a pair of calibration gas analysis cycles (SPAN samples), which I use to initialize the VI. I use response factors calculated from the SPAN samples (and the preceding pair of blanks) to calculate Hg loadings for all other samples in the dataset. The sets of data points at ~20 pg correspond with calibration gas analysis cycles using an external calibration unit (external SPAN samples). The external calibration unit is described in Ambrose et al. (2015). The mean value of the baseline standard deviation, σ_{bl} (defined in Sect. 2.1.1 in the main manuscript), is ~0.19 mV (equal to ~0.02 pg). The corresponding estimated lower-limit *f* value (mean ± 2σ) is 1.36(5) × 10⁻⁴.

Figure S4: (a) Example Hg thermal desorption profile during a calibration gas analysis cycle on a Tekran[®] 2537B instrument. Also shown is the corresponding 150 point exponential Bisquare (unweighted) regression (eq. 1 in the main manuscript; $r^2 = 0.997$) used to derive the decay constant ($b = -0.0308 \pm 0.0004 \text{ ds}^{-1}$) during initialization of the VI's signal processing method. (b) Comparison between the calculated (fit) and observed Hg atomic fluorescence signal values in (a). The slope and intercept of the linear regression are 1.00 ± 0.01 and 0 ± 7 mV, respectively.

Figure S5: (a) Comparison of Hg loadings derived from measurements made with a Tekran[®] 2537B instrument using the Tekran[®] method and my VI-based peak height determination method (dataset shown in Fig. S3, excluding SPANs), with the peaks defined manually (the VI_{m,m} method). The equation of the linear regression is y = 0.95(1)x - 0.09(5) pg ($r^2 = 0.994$, n = 110). The fit includes only the data derived from detected peaks (represented by the filled symbols). (b) Absolute and relative biases in the Tekran[®]-derived loadings, based on the fit in panel (a), where absolute bias $\equiv 100 \times (Hg_{Tekran} - Hg_{Benchmark}) \div Hg_{Benchmark}$. Here "Hg_{Tekran}" and "Hg_{Benchmark}" represent Hg loadings derived from the Tekran[®] and VI_{m,m} methods, respectively. Grey bands represents propagated uncertainties (95% confidence intervals) in the fit parameters. (c) Distribution of residuals from panel (a), including only data derived from detected peaks.

The nominal Hg limit of detection for the Tekran[®] method is 0.5 pg (see Sect. S7). While many Hg thermal desorption peaks in the 2537B dataset are detected by the Tekran[®] method at Hg loadings <0.5 pg, some Hg TD peaks are undetected by the Tekran[®] method for loadings \leq 0.20 pg (Fig. S3). The results suggest that the actual Hg LOD achieved with the Tekran[®] method is ~0.2 pg, which is lower than the nominal value (and lower than observed for the 2573A instrument) as a result of modifications that were made to the 2537B instrument to improve its signal-to-noise ratio (Ambrose et al., 2013).

Figure S6: (a) Comparison of Hg loadings derived from measurements made with a Tekran[®] 2537B instrument using my VI-based automated and manual peak height determination methods (the VI_{a,a} and VI_{m,m} methods, respectively; dataset shown in Fig. S3, excluding SPANs). The equation of the linear regression is y = 1.015(2)x - 0.017(8) pg ($r^2 = 0.9998$, n = 132). (b) Absolute and relative biases in the VI-based Hg loadings, based on the fit in panel (a), where absolute bias = Hg_{Auto} – Hg_{Benchmark}, and relative bias = 100 × (Hg_{Auto} – Hg_{Benchmark}) ÷ Hg_{Benchmark}. Here "Hg_{Auto}" and "Hg_{Benchmark}" represent Hg loadings derived from the VI_{a,a} and VI_{m,m} methods, respectively. Grey bands represents propagated uncertainties (95% confidence intervals) in the fit parameters. (c) Distribution of residuals from panel (a).

Table S2. Bias in Hg loadings derived by applying automated and semi-automated Hg atomic fluorescence signal processing methods to measurements made with a Tekran[®] 2537B instrument.

	Hg (pg, ng/m ³) ^{a,b}						
-	5, 1	3.75, 0.75	2.5, 0.5	1.25, 0.25	0.5, 0.1	0.25, 0.05	0.125, 0.025
Method				Bias (%)			
Tekran ^{®c}	-7 ± 2	-7 ± 2	-9 ± 2	-12 ± 4	-24 ± 10	-42 ± 20	-100 ^f
$\mathbf{V}\mathbf{I}_{\mathbf{a},\mathbf{a}}^{\mathbf{d}}$	1.1 ± 0.3	1.0 ± 0.3	$\textbf{0.8} \pm \textbf{0.4}$	0.1 ± 0.7	-2 ± 2	-5 ± 3	-11 ± 6
VI _{m,a} e	$\textbf{0.7} \pm \textbf{0.2}$	$\textbf{0.7} \pm \textbf{0.2}$	$\boldsymbol{0.9\pm0.2}$	1.2 ± 0.4	$\textbf{2.4} \pm \textbf{0.9}$	4 ± 2	8 ± 4

^aBias values for the Tekran[®] and VI_{a,a} methods are calculated from the equations of the linear regressions in Figs. S5a and S6a, respectively. Bias values for the VI_{m,a} method are similarly calculated from the linear regression equation given in Table S6 ("Standard" configuration). All bias values are expressed relative to Hg loadings derived by processing the data using manual peak definition (the VI_{m,m} method).

^bHg loadings are also expressed in terms of concentrations under the typical Tekran[®] operating parameters.

^cTekran[®] operating and peak integration parameters are defined in Table S1.

^dMy VI-based peak height determination method, with peak start and end times determined automatically (VI_{a,a}).

^eMy VI-based peak height determination method, with peak start times determined manually and peak end times determined automatically $(VI_{m,a})$.

^fFor Hg < the estimated 0.2 pg Tekran[®] LOD, the true bias is -100%. For clarity, the true bias is substituted for the calculated value.

S6 Details on Reproducing Hg Thermal Desorption Peak Baselines Calculated by the Tekran® Method

I reproduced the Hg thermal desorption peak areas (and thereby the baselines) calculated by the Tekran[®] method by doing the following: linearly interpolating between consecutive Hg atomic fluorescence signal values; carrying out a stepwise integration over the interval between the baseline start and end times ("STM" and "ETM" in the "Peak table" string in Fig. S1), with the baseline signal values calculated by linearly interpolating between the baseline start and end values ("SBL" and "EBL" in the "Peak table" string in Fig. S1); summing the resulting integrals and multiplying by a factor of 2.5. I found that the values of "SBL" and "EBL" (Fig. S1) are not the same as the signal values recorded at "STM" and "ETM".

S7 Details on Estimating the Nominal Hg Limit of Detection for the Tekran® Method

The Tekran[®] manuals (Tekran Corporation, 2006, 2007) state a Hg limit of detection for the Tekran[®] analyzer of 0.1 ng/m³ for typical operating conditions, which include a sample flow rate of 1.0 liter/min (at standard temperature and pressure of 273.15 K and 1.01325 bar) and a sample duration of 5 min. These conditions yield a sample volume of 5 standard liters. In terms of Hg loading, the nominal LOD is therefore 0.5 pg.

S8 Details on Sensitivity Tests Carried Out with the VIa,a and VIm,a Methods

Tables S3 and S4 show the results of sensitivity tests carried out with the VI_{a,a} and VI_{m,a} methods, respectively, applied to the 2537A dataset. Following each listed modification to the "Standard" VI_{a,a} configuration, I determine σ_{blank} and the parameters of a linear regression of "Hg_{Auto}" vs. "Hg_{Benchmark}" (as in Fig. 5a in the main manuscript). For all sensitivity tests, the fit parameters are indistinguishable (at the 95% confidence interval) from those obtained from the values derived from the "Standard" VI_{a,a} configuration (Fig. 5 in the main manuscript).

VI _{a,a} Configuration	Fit Equation ^a	r^2	Hg LOD ^b (pg)
Standard ^c	y = 1.001(1)x + 0.000(6)	0.99992	0.12
$-\delta t_{\mathrm{end}}{}^{\mathrm{d,e,f}}$	y = 1.002(2)x - 0.007(7)	0.99989	0.13
$+\delta t_{\rm end}{}^{\rm e,g,h}$	y = 1.001(2)x + 0.003(6)	0.99991	0.11
$\Delta t_{\rm start}^{{\rm i},{\rm j}}$	y = 1.000(2)x + 0.001(8)	0.99988	0.13
$-\delta t_{\mathrm{end}}, \varDelta t_{\mathrm{start}}^{\mathrm{k}}$	y = 1.001(2)x - 0.01(1)	0.99988	0.17
$+\delta t_{\mathrm{end}}, \varDelta t_{\mathrm{start}}^{\mathrm{l}}$	y = 1.000(2)x + 0.005(8)	0.99988	0.12
Second SPANs ^m	v = 1.000(2)x + 0.001(8)	0.99987	0.13

Table S3. Results of sensitivity tests carried out with the $VI_{a,a}$ method applied to the 2537A dataset (Fig. 2 in the main manuscript).

^aUnits of y are pg. Errors are quoted at the 95% confidence interval (n = 152).

^bEstimated as twice the standard deviation in blank samples (n = 62).

^cVI_{a,a} method initialized with the first pair of SPAN samples in Fig. 2 in the main manuscript.

^dSame as "Standard" but with δt_{end} subtracted from calculated t_{end} values.

^eThe estimated range in δt_{end} is 7–49 ds.

^fThe value of $|\delta t_{end}|$ is > $|t_{end}|$ for five samples. In those cases, t_{end} is forced to 0 ds.

^gSame as " $-\delta t_{end}$ " but with δt_{end} added to calculated t_{end} values.

^hThe value of t_{end} is <10 ds for two samples. In those cases, δt_{end} is set to 49 ds (*i.e.*, the value estimated for a peak height equal to σ_{bl} .)

ⁱSame as "Standard", but with t_{start} values taken from the second pair of SPAN samples in Fig. 2.

^jThe values of t_{start} for the first pair of SPAN samples are 123 ds (Au trap A) and 145 ds (Au trap B). For the second pair of SPAN samples, the values are shifted by -9 and -5 ds to 114 ds and 140 ds for Au traps A and B, respectively. ^kSame as " $-\delta t_{\text{end}}$ ", but with t_{start} values taken from the second pair of SPAN samples in Fig. 2.

¹Same as "+ôtend", but with t_{start} values taken from the second pair of SPAN samples in Fig. 2.

^mSame as "Standard", but with the VI_{a,a} method initialized with the second pair of SPAN samples in Fig. 2.

Table S4. Results of sensitivity tests carried out with the $VI_{m,a}$ method applied to the 2537A dataset (Fig. 2 in the main manuscript).

VI _{m,a} Configuration	Fit Equation ^a	r^2	Hg LOD ^b (pg)
Standard ^c	y = 1.001(1)x + 0.004(3)	0.99998	0.10
$-\delta t_{\mathrm{end}}{}^{\mathrm{d,e}}$	y = 1.000(1)x + 0.001(3)	0.99998	0.10
$+\delta t_{\rm end}{}^{\rm e,f}$	y = 1.000(1)x + 0.008(3)	0.99998	0.10
Second SPANs ^g	y = 1.001(1)x + 0.007(3)	0.99998	0.10

^aUnits of y are pg. Errors are quoted at the 95% confidence interval (n = 152).

^bEstimated as twice the standard deviation in blank samples (n = 62).

^eVI_{m,a} method initialized with the first pair of SPAN samples in Fig. 2 in the main manuscript.

^dSame as "Standard" but with δt_{end} subtracted from calculated t_{end} values.

^eThe estimated range in δt_{end} is 7–16 ds.

^fSame as " $-\delta t_{end}$ " but with δt_{end} added to calculated t_{end} values.

^gSame as "Standard", but with the VI_{m,a} method initialized with the second pair of SPAN samples in Fig. 2.

Tables S5 and S6 show the results of sensitivity tests carried out with the VI_{a,a} and VI_{m,a} methods, respectively, applied to the 2537B dataset. Following each listed modification to the "Standard" VI_{a,a} configuration, I determine σ_{blank} and the parameters of a linear regression of "Hg_{Auto}" vs. "Hg_{Benchmark}". Because only one pair of SPAN samples was analyzed, the sensitivity of the results to variability in *t*_{start} can't be tested as is done for the 2537A dataset. However, the values of *t*_{start} calculated for external standard samples falls within a range of ±5 ds from one another, suggesting that derived Hg loadings would be insensitive to the choice of calibration standard samples used to initialize the VI.

For all sensitivity runs (except the " $+\delta t_{end}$ " and "External SPANs" runs) carried out with the VI_{a,a} method (Table S5), and for all sensitivity runs carried out with the VI_{m,a} method (Table S6), the fit parameters are indistinguishable (at the 95% CI) from those obtained from the values derived from the "Standard" VI_{a,a} and VI_{m,a} configurations. For the " $+\delta t_{end}$ " sensitivity run carried out with the VI_{a,a} method, bias in "Hg_{Auto}" is slightly lower at high loading and slightly higher at low loading than for the "Standard" VI configuration. For the "External SPANs" run carried out with the VI_{a,a} method, bias in "Hg_{Auto}" is slightly lower than for the "Standard" configuration at all loadings.

Table S5. Results of sensitivity tests carried out with the VI_{a,a} method applied to the 2537B dataset (Fig. S3).

VI _{a,a} Configuration	Fit Equation ^a	r^2	Hg LOD ^b (pg)
Standard ^c	y = 1.015(2)x - 0.017(8)	0.9998	0.13
$-\delta t_{\mathrm{end}}^{\mathrm{d,e,f}}$	y = 1.017(2)x - 0.027(9)	0.9998	0.13
$+\delta t_{\rm end}{}^{\rm e,g,h}$	y = 1.007(3)x + 0.016(9)	0.9998	0.15
External SPANs ⁱ	y = 1.008(2)x - 0.002(7)	0.99988	0.12

^aUnits of *y* are pg. Errors are quoted at the 95% confidence interval (n = 132). ^bEstimated as twice the standard deviation in blank samples (n = 37).

^cVI_{a.a} method initialized with the pair of SPAN samples in Fig. S3.

^dSame as "Standard" but with δt_{end} subtracted from calculated t_{end} values.

^eThe estimated range in δt_{end} is 2–65 ds.

^fThe value of $|\delta t_{end}|$ is > $|t_{end}|$ for 24 samples. In those cases, t_{end} is forced to 0 ds.

^gSame as " $-\delta t_{end}$ " but with δt_{end} added to calculated t_{end} values.

^hThe value of t_{end} is <10 ds for 16 samples. In those cases, δt_{end} is set to 65 ds (*i.e.*, the value estimated for a peak height equal to σ_{bl} .)

ⁱSame as "Standard", but with the VI_{a,a} method initialized with the last pair in the first set of external SPAN samples in Fig. S3.

Table S6. Results of sensitivity tests carried out with the VI_{m,a} method applied to the 2537B dataset (Fig. S3).

VI _{m,a} Configuration	Fit Equation ^a	r^2	Hg LOD ^b (pg)
Standard ^c	y = 1.005(1)x + 0.009(5)	0.99994	0.10
$-\delta t_{\mathrm{end}}^{\mathrm{d,e,f}}$	y = 1.006(1)x + 0.004(5)	0.99993	0.11
$+\delta t_{\rm end}{}^{\rm f,g,h}$	y = 1.004(1)x + 0.014(4)	0.99994	0.10
External SPANs ⁱ	y = 1.005(1)x + 0.011(4)	0.99995	0.10

^aUnits of y are pg. Errors are quoted at the 95% confidence interval (n = 132).

^bEstimated as twice the standard deviation in blank samples (n = 37).

 $^{c}VI_{m,a}$ method initialized with the pair of SPAN samples in Fig. S3.

^dSame as "Standard" but with δt_{end} subtracted from calculated t_{end} values.

^eThe estimated range in δt_{end} is 2–65 ds.

^fThe value of $|\delta t_{end}|$ is > $|t_{end}|$ for four samples. In those cases, t_{end} is forced to 0 ds.

^gSame as " $-\delta t_{end}$ " but with δt_{end} added to calculated t_{end} values.

^hThe value of t_{end} is <10 ds for one sample. In that case, δt_{end} is set to 65 ds (*i.e.*, the value estimated for a peak height equal to σ_{bl} .)

ⁱSame as "Standard", but with the $VI_{m,a}$ method initialized with the last pair in the first set of external SPAN samples in Fig. S3.

References

Tekran Corporation: Model 2537A Ambient Mercury Vapour Analyzer User Manual, Rev. 3.01, Tekran Instruments Corporation, Toronto, Canada, 2006.

Tekran Corporation: Model 2537B Ambient Mercury Vapour Analyzer User Manual, Rev. 3.10, Tekran Instruments Corporation, Toronto, Canada, 2007.