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Abstract. A method for directly measuring carbon dioxide
(CO2) emissions using a mobile sensor network in cities at
fine spatial resolution was developed and tested. First, a com-
pact, mobile system was built using an infrared gas analyzer
combined with open-source hardware to control, georefer-
ence, and log measurements of CO2 mixing ratios on ve-
hicles (car, bicycles). Second, two measurement campaigns,
one in summer and one in winter (heating season) were car-
ried out. Five mobile sensors were deployed within a 1×
12.7 km transect across the city of Vancouver, BC, Canada.
The sensors were operated for 3.5 h on pre-defined routes to
map CO2 mixing ratios at street level, which were then aver-
aged to 100× 100 m grid cells. The averaged CO2 mixing ra-
tios of all grids in the study area were 417.9 ppm in summer
and 442.5 ppm in winter. In both campaigns, mixing ratios
were highest in the grid cells of the downtown core and along
arterial roads and lowest in parks and well vegetated residen-
tial areas. Third, an aerodynamic resistance approach to cal-
culating emissions was used to derive CO2 emissions from
the gridded CO2 mixing ratio measurements in conjunction
with mixing ratios and fluxes collected from a 28 m tall eddy-
covariance tower located within the study area. These mea-
sured emissions showed a range of−12 to 226 CO2 ha−1 h−1

in summer and of −14 to 163 kg CO2 ha−1 h−1 in win-
ter, with an average of 35.1 kg CO2 ha−1 h−1 (summer) and
25.9 kg CO2 ha−1 h−1 (winter). Fourth, an independent emis-
sions inventory was developed for the study area using build-
ings energy simulations from a previous study and rou-
tinely available traffic counts. The emissions inventory for
the same area averaged to 22.06 kg CO2 ha−1 h−1 (summer)
and 28.76 kg CO2 ha−1 h−1 (winter) and was used to com-
pare against the measured emissions from the mobile sensor

network. The comparison on a grid-by-grid basis showed lin-
earity between CO2 mixing ratios and the emissions inven-
tory (R2

= 0.53 in summer and R2
= 0.47 in winter). Also,

87 % (summer) and 94 % (winter) of measured grid cells
show a difference within ±1 order of magnitude, and 49 %
(summer) and 69 % (winter) show an error of less than a fac-
tor 2. Although associated with considerable errors at the in-
dividual grid cell level, the study demonstrates a promising
method of using a network of mobile sensors and an aerody-
namic resistance approach to rapidly map greenhouse gases
at high spatial resolution across cities. The method could be
improved by longer measurements and a refined calculation
of the aerodynamic resistance.

1 Introduction

Cities and the cumulative processes of urbanization are key
drivers of local and global environmental change (Mills,
2007; Grimmond, 2007). As cities are the centres of in-
creasing population growth and resource consumption, they
are also the dominant source of greenhouse gas emissions
– in particular carbon dioxide (CO2) – into the atmosphere
(Rosenzweig et al., 2010). On the global scale, urban areas
are responsible for up to 80 % of the total anthropogenic
CO2 emissions footprint (Satterthwaite, 2008). Cities are
thus responsible for a major proportion of the anthropogenic
greenhouse gas emissions that are intensifying positive atmo-
spheric radiative forcing of the troposphere contributing to
global climate change (IPCC, 2013), although a large frac-
tion of the emissions related to the resource chains that sus-
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tain cities does not occur within the built-up area but rather
is emitted elsewhere.

Within cities, the major sources of CO2 are the combustion
of fossil fuels for heating, ventilation, and cooling systems
(HVAC), transportation, industrial processes, and power gen-
eration (Kennedy et al., 2009). These fossil fuel emissions
are combined with CO2 emitted from biological sources,
namely soil, plant, and human respiration, and in part taken
up by photosynthesis of urban vegetation (Christen et al.,
2011). Overall, fossil fuel sources dominate CO2 fluxes in
cities. The sequestration of CO2 by urban vegetation in most
cities is very limited (Velasco et al., 2016). However, the rate
of CO2 uptake by photosynthesis at a given time can be rel-
evant and is measurable in highly vegetated cities during the
daytime in the growing season (Peters and McFadden, 2012;
Weissert et al., 2014). The dominance of fuel emissions re-
sults in increased concentrations of CO2 in the urban bound-
ary layer (UBL) relative to rural or pristine air (Idso et al.,
2001; Grimmond et al., 2002; Vogt et al., 2006). The enrich-
ment of CO2 in the UBL links directly to emissions which
are controlled by urban form and function.

With more than 50 % of the global population now liv-
ing in cities (United Nations, 2014), cities are also the place
where effective mitigation of climate change, driven by pol-
icy, design, and bottom-up citizen engagement is possible.
According to IPCC (2014), the urban scale has the high-
est potential for fast, efficient, and sustained implementation
of mitigation efforts. Central to the reduction of urban CO2
emissions is the availability of reliable emissions information
and inventories and methods of validating city-scale emis-
sions estimates and reduction efforts. While there are a grow-
ing number of methods of quantifying emissions in urban
areas, there are disconnects between the current spatial and
temporal resolution of emissions models, the ever-evolving
urban form and function, and block to neighbourhood-scale
measurements which inform and validate emissions models
(Pataki et al., 2009; Kellett et al., 2013). It further remains a
challenge to directly measure emissions at fine urban scales
and separate CO2 emission measurements in the urban at-
mosphere into different fossil fuel emissions and biological
sources (Christen, 2014).

The research goal of this study is to develop, apply, and
test a new methodology to map CO2 emissions in complex
urban environments. Data from a network of mobile sensors
and an eddy-covariance flux tower combined with an aero-
dynamic approach are used to calculate and map emissions
at fine scales (blocks to neighbourhoods) in cities.

Mobile measurements have been used in the past for study-
ing and mapping the spatial variability of greenhouse gases in
cities (Jimenez et al., 2000; Idso et al., 2001; Henninger and
Kuttler, 2007; Crawford and Christen, 2014). Because trace
gas analyzer systems for greenhouse gases are still bulky
(e.g. Tao et al., 2015), past mobile mapping studies utilized
specialized research vehicles (Bukowiecki et al., 2002; Elen
et al., 2013; Crawford and Christen, 2014). While these ve-

hicles have the advantage that they can be equipped with ad-
ditional components such as calibration tanks or computers,
the complexity of such systems does not allow for easy de-
ployment on standard and flexible modes of transport.

There is increasing interest to develop innovative methods
for monitoring urban climate and air pollution using low-
cost distributed sensor networks. For example, Meier et al.
(2017) used sensor data from a commercial consumer-grade
weather station network to examine fine-scale urban heat is-
land effects in the city of Berlin. In another example, Chap-
man et al. (2014) developed a road sensor network to monitor
road surface temperatures to optimally salt roads during the
winter months in Birmingham. Given this growing interest
in distributed sensing systems and the advances in the re-
lated technologies, could there be new opportunities for the
fine-scale mapping of CO2 emissions in cities? This study in-
vestigates whether it is feasible to map greenhouse gas emis-
sions, specifically CO2, at a spatial resolution of neighbour-
hoods/blocks across the city with a portable network of mo-
bile sensors that can be routinely implemented on various
mobile platforms. In order to address this question, four ma-
jor objectives were pursued.

1. Sensor development: develop and test a compact, mo-
bile, and multi-modal CO2 sensor for bicycles and cars.

2. Measurement campaign: deploy the sensors in a tar-
geted measurement campaign.

3. Methodology development: calculate emissions from
measurements of CO2 mixing ratios and aerodynamic
resistance (in the following called “measured emis-
sions”).

4. Analysis and evaluation: compare the measured emis-
sions to fine-scale traffic and building emissions inven-
tories. Can we find agreement between the spatial pat-
terns in the inventories and measured emissions?

2 Methods

2.1 The mobile measurement system for
carbon dioxide

A mobile CO2 monitoring system was required to address
the project’s need for multiple, low-cost yet accurate sen-
sors capable of measuring mixing ratios and position at high
frequency (≈ 1 Hz to have an error of 5 m at typical driv-
ing speeds) and easily deployable on bicycles and passen-
ger cars with a compact design. A mobile monitoring sys-
tem with such specifications is necessary to cover large ge-
ographic areas within limited timescales at sufficiently fine
resolution that are representative of typical urban emission
patterns. With typical vehicle speed and a characteristic ur-
ban street layout/traffic density, one sensor is capable of cov-
ering between 0.5 and 1 km2 h−1. Sensor systems with many
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of these specifications do already exist, but few, if any, were
designed to be carried on and easily interface with various
types of mobile platforms; all studies using high accuracy
CO2 sensors have been either stationary or mounted in spe-
cialized vehicles because of the weight, power consumption,
size, and high cost of the sensors being used.

2.1.1 System design

We used a commercially available carbon dioxide infrared
analyzer (IRGA) (Li-820, Licor Inc., Lincoln, NE, USA).
The Li-820 is a compact (23.23× 15.25× 7.62 cm, 1 kg),
low maintenance (approx. 2 years of continuous use), and
low noise (±1 ppm) CO2 analyzer (Li-Cor, 2015). The Li-
820 uses a single path infrared light to determine the CO2
mixing ratio within a closed path by detecting the amount of
absorption of the light from the path. The Li-820 was oper-
ated with a nominal sampling rate (data output) of 1 Hz but
the actual time constant of the system was determined to be
3.2 s (see Appendix A2). The gas analyzer was coupled with
an Arduino microcontroller (Arduino CC, Ivrea, Italy). The
Arduino platform is capable of communicating digitally with
the IRGA, a Global Positioning System (GPS) unit (Adafruit
Ultimate GPS Logger Shield with GPS Module, Manhattan,
New York, USA) unit, and a digital temperature thermome-
ter (Maxim Integrated One Wire Digital Temperature Sensor
– DS18B20, San Jose, CA, USA). A custom hardware board
was developed to connect all of the components together to
distribute the correct amount of power to each of the hard-
ware components and to allow for compact hardware and
sensor input. The portable CO2 system was named the “Do-
It-Yourself-Sensor-CO2”, or “DIYSCO2” system (Fig. 1a)

The DIYSCO2 system reports CO2 as mixing ratios (r)
in ppm, geoposition (latitude/longitude, speed, altitude, and
satellite strength), and internal and external air tempera-
ture which are logged onto a micro secure digital (mi-
croSD) card at 1 s intervals. Air is drawn into the DIYSCO2
system through a 3 m long inlet tube (6.35 mm diameter,
Synflex, polyethylene–aluminum composite, Eaton, Eden
Prairie, MN, USA) using a small KNF NMP015 micro-
diaphragm pump (KNF Neuberger, Inc., Trenton, NJ, USA),
first passing through a mesh filter at the sample inlet head
to prevent large particles from entering the DIYSCO2 sys-
tem (e.g. insects) and then through a Balston disposable fil-
ter unit (DFU) (Parker Hannifin Corporation, Lancaster, NY,
USA) at the end of the 3 m tube. The flow rate is regulated by
a Swagelok needle valve at 700 cc min−1 as recommended
by Licor to minimize the effect of internal cell pressure
changes on the CO2 measurements. The entire DIYSCO2
system is 35.8 cm× 27.8 cm× 11.8 cm, weighs 2.6 kg, and is
contained in a weather-proof case (NANUK 910, Plasticase,
Terrebonne, CA, USA). The system is powered by a single
9-18V DC/DC input which can be supplied by battery or via
car cigarette lighter socket.

Figure 1. (a) Photo of the “DIYSCO2” system (case open) with
components labelled. (b) The inlet is mounted through the passen-
ger window (right side) of the vehicle; the “DIYSCO2” sits in the
trunk space.

2.1.2 System testing and installation

Within the range of typical ambient mixing ratios of CO2
between 400 and 550 ppm the DIYSCO2 system showed
strong linearity (R2 of 0.9999) and a root mean square er-
ror (RMSE) of 0.233 ppm relative to four different mixing
ratios (six tanks) of reference gases (see Appendix A1). The
maximum sensor drift over 3 h (the duration of the campaign,
see below) under controlled conditions was in the range of
−0.31 and +0.51 ppm (see Appendix A2). In the configu-
ration used, the DIYSCO2 had a time lag of 18.2 s between
measurement intake and analysis (see Appendix A3).

Appendix A4 discusses errors associated with mounting
the inlet at different positions on the car which can lead to a
systematic bias. Generally, values on the driver side (centre
of road) were higher than the passenger side. In the current
work, the sample inlet tube was run out through the passen-
ger side window of the vehicle. The sampling line inlet was
70 cm over the vehicle’s roof and 2.2 m above the road sur-
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face (Fig. 1b). In order to deploy the DIYSCO2 on a bicycle,
the setup requires a 40 L backpack to carry the sensor and
a 7 amp-hour, 12 V gel-cell battery and a 1.5 m long rigid
mounting tube (6 mm diameter) to mount the inlet tube above
the cyclist. The sensor is placed in the backpack with the bat-
tery and worn on the back of the cyclist to reduce vibrations
to the sensor system.

2.2 Measurement campaigns

The systems were tested in two field campaigns. In each of
the campaigns, a fleet of five sensors was operated simultane-
ously on pre-defined routes to evaluate the potential to map
emissions and compare them against inventory data.

2.2.1 Study area

The study area is a 12.7 km× 1 km quadrangle within the
city of Vancouver, BC, which spans from the northern-most
tip of the city in forested “Stanley Park” (49◦18′45.17′′ N,
123◦09′29.10′′W, WGS-84) to the city’s south eastern
neighbourhood “Victoria – Fraserview” (49◦12′59.00′′ N,
123◦03′46.90′′W) (Fig. 2). It includes dominant urban land
uses – the downtown core, medium density residential, single
detached residential, light industrial development, parks, and
forest. The study area encompasses approximately 11.1 % of
the total area of the city of Vancouver and was selected be-
cause of the provision of high-resolution geospatial data, in-
cluding light detection and ranging (lidar) measurements of
urban form used for building emission simulations in previ-
ous research (van der Laan, 2011), the availability of detailed
traffic counts, and the location of a 30 m tall eddy-covariance
tower.

2.2.2 Flux tower measurements

The eddy-covariance flux tower “Vancouver-Sunset” (ID:
Ca-VSu, FLUXNET, 2016; Crawford and Christen, 2015)
is located near the south east corner of the study area
(49◦13′34.0′′ N, 123◦04′42.2′′W). On the flux tower, a
CSAT-3 ultrasonic anemometer–thermometer (Campbell
Scientific Inc., Logan, UT, USA) measured continuously
sensible heat flux (H ), wind direction, and wind veloc-
ity. Further, air temperature (Ttower) was measured with a
shielded HMP 45 thermometer/hygrometer (Vaisala Inc.,
Vanta, Finland). All four radiation components, including
long-wave upwelling radiation (L↑), were measured by a
CNR-1 net radiometer (Kipp & Zonen, Delft, the Nether-
lands). Carbon dioxide molar mixing ratios rtower were mea-
sured near tower top (28 m) using a tube that pumps air to a
TGA200 closed path analyzer (Campbell Scientific Inc.). In
addition, CO2 mixing ratios were measured by a Licor-7500
open path IRGA (Licor Inc., Lincoln, NE, USA) co-located
with the ultrasonic anemometer–thermometer. The TGA200
was calibrated every 10 min against three WMO-traceable
tanks of known CO2 mixing ratios to ensure an accuracy of

Figure 2. Map of the study area (thick black outline). Thin black
lines refer to the paths of each of the five DIYSCO2 systems. The
coloured areas are the neighbourhoods used in further analysis. The
location of the eddy-covariance tower and the start and end point of
all paths are labelled. The 1.9 × 1.9 km box labelled “Sunset study
area” refers to the domain of previous research, including the fine-
scale emission inventory developed by Christen et al. (2011) and
Kellett et al. (2013).

< 0.15 ppm. The Licor-7500 is calibrated twice a year in the
lab. Further details of the site location, instrument exposure,
and data processing are discussed in Crawford and Chris-
ten (2015). Measurements on the flux tower made it possible
to link mobile measurements with data from above the city
and determine aerodynamic resistances for the calculation of
emissions (see Sect. 2.3.2)

2.2.3 Mobile measurements

Two field campaigns took place, the first on 28 May 2015
(non-heating season, broadleaf vegetation with leaves
emerged) and the second on 18 March 2016 (heating season,
before leaf emergence). For simplicity, datasets from the two
dates will be referred to as “summer” (28 May 2015) and
“winter” (18 March 2016). Sampling was conducted from
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10:00 to 13:30 LT (Pacific Time), when vehicular traffic and
meteorological conditions are relatively constant.

Five DIYSCO2 systems were installed on vehicles. Each
of the five vehicles was assigned a route to travel approx-
imately 70 km during the study period (achieving an op-
timal sampling density of about 3.5 km2 h−1). Each vehi-
cle started and ended at the southeast corner of the transect
(49◦13′15.08′′ N, 123◦04′14.11′′W; Fig. 2). The routes of the
five systems were drawn such that a majority of the streets
and lanes in the study area would be sampled at least once in
the 3.5 h time period, but ideally sampled at different times
throughout the campaign. The routes were evaluated using
an overlaid 100× 100 m grid, confirming that nearly all of
the grid cells would be crossed by at least one system if
the routes were successfully completed. Furthermore, a bi-
cycle was used to traverse trails in the forested area of “Stan-
ley Park” to sample along pathways in the densely forested
ecosystem away from roads.

Prior to the mobile measurements, all vehicles were parked
on the southeastern corner of Gordon Park, away from major
streets in a school parking lot. The five DIYSCO2 systems
were operated for a 15 min warm-up period in their respec-
tive vehicles parked next to each other and then logged for
5 min in order to determine their relative offsets before the
field campaign; this is called the “in situ comparison”. Dur-
ing the test, all people moved away and 30 m downwind of
the vehicles to avoid contamination from human exhaust and
all engines were turned off. After the 3.5 h traverse, all vehi-
cles returned to the starting location, where a second in situ
comparison was performed. The data collected in the in situ
comparison were used to determine offsets and drift of the
sensors during the campaign. The slope of the senors was
determined in the lab the day before each campaign using
two reference tanks.

2.3 Data analysis

2.3.1 Data post-processing and gridding

The 1 Hz data from all five DIYSCO2 systems were filtered
according to Crawford and Christen (2014), so that all data
were removed when the GPS recorded speeds were below
5 km h−1 (to avoid self contamination by vehicle exhaust
when idling). Data were also removed where the IRGA cell
temperature and pressure were below 45 ◦C and 96 kPa, to
measure within the specifications and calibration of the Li-
820.

Vector matrix grids of 50× 50 m, 100× 100 m,
200× 200 m, and 400× 400 m were mapped onto the
study area in a Geographic Information System to spa-
tially aggregate and attribute the rmobile measured by the
DIYSCO2 systems to square grid cells. The separate data
analysis for the 50, 100, 200, and 400 m grids provided a way
to determine the effects of grid size on emissions estimates.
In the results section, the 100 m grid is selected because the

100 m grid cell size was determined to be significantly large
enough to avoid most micro-scale horizontal advection of
emissions while also still attributing emissions at a traceable
scale to individual arterial roads and features. Appendix C
explores the effect of using different grid sizes by comparing
the results from the 100 m grid to the 50, 200, and 400 m
grids.

For each cell, the summary statistics were computed for
all valid data points intersecting it. The summary statistics in-
cluded the mean, median, maximum, minimum, range, skew-
ness, and variance. The gridded data were also classified by
neighbourhood (Fig. 2) to enable comparisons of rmobile for
areas of different urban form and density. Only grid cells with
actual measurements were retained for the analysis. All of the
grid cells that did not fall “completely within” the boundaries
of the study area were withheld from the analysis.

2.3.2 Emission calculation and comparison

Data from the eddy-covariance tower are used in conjunction
with the gridded averages of rmobile to calculate emissions for
each grid cell based on the aerodynamic resistance approach,
which posits that the molar flux of CO2 for a given area and
time (w′c′ in µmol m−2 s−1) is equal to the difference of the
molar concentration c (in µmol m−3) at the height above the
roughness sublayer (ctower) and screen level at 2 m height
(cmobile) divided by the aerodynamic resistance of CO2 (in
s m−1):

w′c′ =−
ctower− cmobile

raC
. (1)

While both ctower and cmobile are available through the mea-
surement of r and density (considering pressure and air tem-
perature), the challenge is that raC cannot be directly and
easily measured due to the spatial heterogeneity of w′c′ and
cmobile. Hence, to make the approach more robust, it uses the
availability of sensible heat flux H (W m−2), air temperature
at 24 m height (Ta), and surface brightness temperatures (T0).
This is possible because a city is a relatively homogeneous
source of sensible heat and temperatures are more uniform
than CO2 fluxes and mixing ratios. From the tower measure-
ments of air temperature (Ta) and surface brightness tempera-
ture we then calculate the aerodynamic resistance of sensible
heat raH (Kanda et al., 2007). raH is the integral resistance
from the surface (ground, roofs) to the top of the tower.

raH = ρcp
Ttower− T0

H
, (2)

where Ttower is the air temperature (K) at the height of
the tower (24 m), T0 is the surface brightness tempera-
ture (in K, calculated as T0 = (L↓/σ)

0.25) from the long-
wave radiometer, where σ = 5.6× 10−8 W m−2 K−4 is the
Stefan–Boltzmann constant), and H is the sensible heat flux
(W m−2) measured by eddy covariance.
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In a next step we assume Reynolds analogy (Arya, 2001)
between heat and passive scalar transfer, i.e. that the aerody-
namic resistance of sensible heat is equal to the aerodynamic
resistance of carbon dioxide (raC) and rewrite Eq. (1).

In order to convert the molar flux w′c′ (in µmol m−2 s−1)
to a mass flux Fc consistent with inventories (in
kg CO2 ha−1 h−1), we rewrite

Fc =−Mc ba bt bo bm
ctower− cmobile

raH
, (3)

where Mc is the molar mass of CO2 (44.01 g mol−1), ba is a
factor for converting m−2 to ha−1 (i.e. ba = 104 m2 ha−1), bt
is a factor for converting s−1 to h−1 (i.e. bt = 3600 s h−1),
bo is the factor for converting µmol to mol (i.e. bm =
10−6 µmol µmol−1), and bm is the factor for converting g to
kg (i.e. bm = 10−3 kg g−1).

Equation (3) was applied to each grid cell, where cmobile
varied for each grid cell and each time while raH and ctower
varied only over time. The calculated emissions Fc are then
compared to independent gridded building and traffic emis-
sions estimates to test the feasibility and accuracy of the
method (the derivation of the independent emissions inven-
tories is documented in Appendix B).

In summary, this procedure to calculate emissions from
mobile and tower measurements is only valid under the fol-
lowing key assumptions:

1. CO2 concentrations in the well-mixed UBL (the tower
location) at daytime will not change dramatically over
a short time period or space (e.g. over 30 min time pe-
riods are long enough where urban fluxes are well rep-
resented) given the same meteorological conditions and
are therefore in an equilibrium. In other words, the mea-
surements of ctower are representative of the UBL above
each grid cell at any time.

2. The flux at the height of the tower is directly related
to the flux at the surface; hence concentration changes
over time in the layer between surface and tower are
negligible at day (i.e. no storage flux). This assump-
tion is supported by a previous study in which no stor-
age flux was observed during daytime for this particular
site (Crawford and Christen, 2014). However, this as-
sumption is severely violated at night and in the early to
mid morning (Crawford and Christen, 2014; Bjorkegren
et al., 2015), so the proposed approach does only work
midday or afternoon.

3. Reynolds analogy applies to raC = raH and raH and
therefore raC is constant across all the urban densi-
ties/local climate zones (LCZs) in the study area/city.
Despite the fact that there are varying urban densities
throughout a city, the idea is that the resistance will not
change significantly.

Figure 3. Cumulative frequency distribution for raw 1 s r measured
by all five mobile systems in the summer (red) and winter (blue)
campaign. The thin vertical lines correspond to the average r on top
of the tower during the period of the campaign. The coloured num-
bers on the horizontal lines refer to the 25, 50, and 75 % percentiles
for summer (red) and winter (blue).

4. Lateral advection of CO2 between the surface and the
height of the tower between grid cells is negligible or,
at least, adds random (unbiased) noise.

3 Results

3.1 Field campaign

Weather conditions on both dates were cloudless, convective,
and steady. Table 1 summarizes the weather and environmen-
tal conditions for the two campaigns.

3.1.1 Raw data points

A total of 41 027 1 Hz measurements were available in
summer and 42 786 measurements in winter from the
5 DIYSCO2 systems during a 3.5 h window after filtering.
Figure 3 shows the frequency distribution of the filtered 1 Hz
rmobile measured by all five DIYSCO2 systems alongside the
mixing ratio on the tower (rtower).

In summer, the measured 1 Hz rmobile ranged from 380.2
to 918.1 ppm with a median and average r of 408.5 and
419.5 ppm (SD 32.35 ppm), respectively, for the entire
dataset. The lowest rmobile (< 400 ppm) was measured in
the forest at “Stanley Park”, in select well-vegetated res-
idential streets, and in a large cemetery. The highest val-
ues (> 800 ppm) were measured in “Downtown” and along
the major transport corridors such as “Knight St.” (Fig. 4)
and “West Georgia St.” (Highway 99). In winter, overall r
was higher for both tower and mobile system. In winter, the
measured 1 Hz rmobile ranged from 401.4 to 918.5 ppm with
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Table 1. Summary of weather conditions during the two campaigns
(from 09:00 to 13:00 PST) measured on top of the urban climate
tower “Vancouver-Sunset” (Ca-VSu) located within the study tran-
sect.

Summer Winter
28 May 2015 18 March 2016

Surface temperature 31.0 ◦C 15.2 ◦C
Relative humidity (26.0 m) 71.5 % 36.2 %
Solar irradiance (26.2 m) 817 W m−2 475 W m−2

Net radiation (26.2 m) 680 W m−2 323 W m−2

Sensible heat flux (28.8 m) 390 W m−2 120 W m−2

Wind speed (28.8 m) 2.6 m s−1 1.9 m s−1

Wind direction (28.8 m) 237◦ 70◦

CO2 mixing ratio (28.8 m) 396.6 ppm 420.2 ppm

a median and average rmobile of 432.7 and 443.9 ppm (SD
34.77 ppm).

During the summer and winter campaigns, 2 % and 16 %
of the measured rmobile were lower than the tower (rtower) and
3 % and 7 % were higher than 500 ppm, respectively.

3.1.2 Grid sample counts

For the 100× 100 m grid cells that could be traversed, in
summer 91.31 % of the grid cells contained more than 10
samples per grid cell (1 sample equals one 1 Hz measure-
ment), 69.24 % of cells contained more than 20 samples, and
28.32 % of cell contained more than 50 samples. At the aver-
age vehicle speed of 20 km h−1, this corresponds to a typical
spatial spacing of 5.5 m. For the winter campaign, 90.85 % of
the grid cells contained more than 10 samples, 72.64 % con-
tained more than 20 samples, and 27.36 % contained more
than 50 samples. Grid cells with less than 10 samples were
removed from further analysis, which resulted in 30.8 % of
all cells being removed in the summer campaign and 27.4 %
in the winter campaign. Generally, grid cells along major
roads tended to have more sample counts because they were
traversed at different times, often by different vehicles.

3.1.3 Grid-averaged statistics

Of the 1332 grid cells that could be traversed by a car or bi-
cycle, the case study covered 1024 in summer and 1037 in
winter, of which 821 and 856 were further used (based on
the condition of more than 10 samples). The maps of grid-
ded rmobile for the summer and winter campaign are shown
in Fig. 5. Table 2 summarizes the measured mixing ratios
separated by neighbourhood. In summer, the grid-averaged
rmobile of all valid grid cells in the entire transect ranged be-
tween 393.1 and 518.0 ppm, averaging 417.9 ppm, and had
a median of 410.0 ppm. In winter, the grid-averaged rmobile
ranged between 408.4 and 560.5 ppm, averaging 442.5 ppm.
Three percent of all grid cells in summer and 8 % in win-
ter showed a rmobile that was lower than rtower; the majority

Figure 4. Three-dimensional visualization of all raw rmobile
measurements from all systems (summer campaign) in the
“Sunset/Victoria-Fraserview” neighbourhood. The visualization is
illustrating the high density of measurements taken along streets,
laneways, and in parks. The linear area with many higher mixing
ratios is the busy six-lane “Knight St.” with ≈ 50 000 vehicles per
day. Image visualized in Google Earth.

of those cases were located in the forested “Stanley Park”
in both campaigns (Table 2). Selected cells in the residen-
tial parts of “Riley Park/Kensington – Cedar Cottage” neigh-
bourhood also showed a rmobile that was lower than rtower.

Both campaigns showed considerable variation of rmobile
between grid cells in the same neighbourhoods. Overall, the
grid cells covering major arterial roads and downtown core
showed the highest maximum, minimum, median, and mean
rmobile. Conversely, the grid cells covering residential streets
and forested trails exhibited the lowest rmobile for the same
statistics. Of all neighbourhoods, “Kensington-Cedar Cot-
tage/Riley Park” exhibited the lowest and “Downtown” the
highest average rmobile in both campaigns (Table 2).

Similarly, standard deviations within each 100 m grid cell
(not shown) are highest along the major arterial roads and
in “Downtown”. In contrast, the residential areas have lower
standard deviations within grid cells, indicating less variabil-
ity in rmobile for less busy roads. The trends are similar in the
winter campaign except that there is overall higher standard
deviation in the residential areas compared to the summer
campaign. Over 65.98 % of the cells in summer and 66.80 %
in winter had a positive skewness which means there are
intra-grid peaks in measured CO2 mixing ratios.

3.1.4 Measured emissions

The aerodynamic resistance raH for each measurement cam-
paign was calculated by averaging H , averaging T0, and av-
eraging Ttower over the 3.5 h of the field campaign. The re-
sulting raH was 34.14 s m−1 in summer and 56.12 s m−1 in
winter.
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Table 2. Grid-averaged mixing ratios (rmobile), standard deviation of all grid cell means in the neighbourhood, and fraction of cells with
rmobile < rtower per neighbourhood.

Neighbourhood LCZ∗ Mean mixing ratio SD of rmobile Fraction of cells Number of
rmobile (ppm) (ppm) with rmobile < rtower grid cells

Summer Winter Summer Winter Summer Winter Summer Winter

Stanley Park Dense trees 413.7 435.6 19.1 24.3 4 % 28 % N = 78 N = 86
West End Compact high-rise 416.1 442.7 15.1 15.9 1 % 4 % N = 102 N = 111
Downtown Compact high-rise 437.8 474.9 19.2 26.5 0 % 0 % N = 117 N = 115
Fairview/Mount Pleasant Open low-rise & large low-rise 421.2 446.2 19.0 17.6 0 % 0 % N = 136 N = 144
Kensington-C. C./Riley Park Open low-rise 411.0 432.3 13.5 15.1 1 % 11 % N = 225 N = 245
Sunset/Victoria-Fraserview Open low-rise 413.3 434.7 14.2 16.0 0 % 8 % N = 163 N = 155
∗ LCZ refers to the dominant local climate zones in the neighbourhood according to Stewart and Oke (2012).

Figure 5. Map of grid-averaged CO2 mixing ratios (rmobile) for (a) summer and (b) winter campaign using the same scale. The grid size is
100× 100 m.

The measured CO2 emissions calculated using Eq. (1)
showed a range of −12.0 kg CO2 ha−1 h−1 (net uptake)
to 225.6 kg CO2 ha−1 h−1 in the summer campaign and
−13.7 to 162.4 kg CO2 ha−1 h−1 in winter. The me-
dian and average emissions were, respectively, 20.1 and
35.0 kg CO2 ha−1 h−1 for the summer campaign and 17.1
and 25.6 kg CO2 ha−1 h−1 for the winter campaign. Highest
emissions in general were located in “Downtown” and along
the major transport corridors and intersections (Fig. 6, Ta-
ble 3).

3.2 Comparison to emissions inventory

3.2.1 Characteristics of emissions inventories

The gridded traffic emissions inventory at 100× 100 m
resolution (see Appendix B1 and Fig. 7a) showed me-
dian and mean emissions, respectively, of 2.37 and
12.50 kg CO2 ha−1 h−1 for the summer campaign and 2.17
and 12.19 kg CO2 ha−1 h−1 for the winter campaign. As ex-
pected, the major roads and the areas with the densest
road network (e.g. “Downtown”) exhibited the highest emis-
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Figure 6. Measured emissions (calculated from mixing ratios using the aerodynamic resistance approach in Eq. 1) for (a) summer and
(b) winter campaign at a resolution of 100× 100 m.

sions, all of which were greater than 18 kg CO2 ha−1 h−1.
The greatest traffic emissions in a single grid cell was
123.60 kg CO2 ha−1 h−1.

The building emissions inventory (see Appendix B2)
is shown in Fig. 7b. In summer, the data for the
100 m grid showed a median and mean of 6.69 and
10.19 kg CO2 ha−1 h−1, respectively. In winter, the data for
the 100 m grid showed a higher median and a higher mean
of 13.08 and 20.44 kg CO2 ha−1 h−1, respectively. The maxi-
mum rate of building emissions was located in “Downtown”.
The building emissions inventory only covers a subset of the
transect area (Fig. 7b). Data for part of “West End” and for
“Stanley Park” are not available.

The total emissions inventory is the sum of the building
and traffic emissions estimates (Fig. 7c). For the summer
campaign, the median and mean of the total emissions es-
timates were 10.15 and 22.06 kg CO2 ha−1 h−1, respectively.
Overall, for the area with both inventories available, 59 %
of the emissions were estimated from traffic and 41 % from
buildings. For the winter campaign, the total emissions esti-
mates were 15.87 and 28.76 kg CO2 ha−1 h−1, respectively,
and 41 % of the emissions were estimated from traffic and
59 % from buildings. The fraction of traffic emissions is

higher in the detached residential areas (LCZ 6 and 8) and
lower in “Downtown” (Table 3).

3.2.2 Mixing ratios vs. emissions inventory

First, measured rmobile was compared to the emissions esti-
mates to identify if there is a direct relationship between mea-
sured mixing ratios and hourly emissions estimates from the
emissions inventory. It is observed that as emissions in the in-
ventory increase, the range of the measured rmobile becomes
greater. The relationship between measured rmobile and traffic
shows generally a linear correlation (Fig. 8a and b). Further,
measured rmobile and building emissions are also positively
correlated, but with more scatter (Fig. 8c and d). Best agree-
ment is archived when comparing rmobile to the total (i.e. traf-
fic+ building) emissions (Fig. 8e and f). The linear equations
given in Fig. 8e show R2

= 0.53 in summer and R2
= 0.47

in winter.

3.2.3 Measured emissions vs. emissions inventory

Figure 9a and b show the measured emissions as a function of
the traffic emissions inventory. The data show that 86.71 % of
the measured emissions are within a factor of±10 of the traf-
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Table 3. Comparison of measured emissions, with inventory emissions, separated by neighbourhood based on a 100× 100 m grid.

Neighbourhood Measured Emission Relative Mean absolute Fraction Grid
emissions inventory error error of traffic cells

(kg CO2 (kg CO2 (kg CO2
ha−1 h−1) ha−1 h−1 ha−1 h−1)

Summer

West End 47.6 30.4 +56 % 29.3 34 % N = 21
Downtown 75.1 63.3 +19 % 28.9 54 % N = 90
Fairview/Mount Pleasant 41.4 27.4 +51 % 19.7 70 % N = 136
Kensington-C. C./Riley Park 21.9 14.5 +51 % 10.9 60 % N = 225
Sunset/Victoria-Fraserview 26.5 13.3 +99 % 15.3 73 % N = 162

Winter

West End 30.1 43.4 −31 % 24.8 22 % N = 24
Downtown 65.3 92.1 −29 % 41.6 35 % N = 92
Fairview/Mount Pleasant 30.3 34.7 −13 % 14.6 52 % N = 142
Kensington-C. C./Riley Park 14.0 19.4 −28 % 10.1 40 % N = 244
Sunset/Victoria-Fraserview 16.8 17.1 −2 % 12.4 56 % N = 155

Figure 7. Emission inventory for (a) traffic emissions, (b) local building sector emissions, and (c) total (traffic+ buildings) emissions for the
time of the winter campaign. The equivalent emission inventory for the summer date (not shown) does not look significantly different, but it
has overall lower building emissions. Note that the building inventory, available from a previous study, did not extend into the northern part
of the transect (label “no data”) due to lack of high-resolution lidar data in this part of the city.

fic emissions estimates for 100 m grids for the summer cam-
paign (grey shaded area in Fig. 9). For the winter campaign,
93.74 % of the measured emissions are within a factor of±10
of the traffic emissions estimates for 100 m grids. In particu-
lar in areas with lower traffic emissions and where the urban
density is lower (e.g. “Sunset/Victoria-Fraserview”) the mea-

surements are higher than the emission inventory (note that
building emissions are not considered in Fig. 9a and b). The
measured emissions and the traffic emissions inventory were
found to be correlated positively by 77.87 % for the 100 m
grid in the summer campaign and 71.75 % in the winter cam-
paign.
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Figure 8. (a, c, e) Comparison of inventory (traffic only, building emissions only, and total emissions) against grid-averaged mixing ratios
(rmobile), where each dot is a 100× 100 m grid cell. Note that the x axis is logarithmic. The curves in (e) are linear fits. (b, d, f) Comparison
of inventory (traffic only, building emissions only, and total emissions) to the difference between grid-averaged mixing ratio rmobile and the
mixing ratio measured at the tower.

In Fig. 9c and d measured emissions and the building
emissions inventories are compared for each grid cell. Build-
ing emissions are clustered by neighbourhood, with the low-
est urban density (LCZ 6) of “Sunset/Victoria-Fraserview”
exhibiting the lowest emissions and the highest urban den-
sity (LCZ 1) of “Downtown” exhibiting the highest building
emissions. Across all neighbourhoods, the measured emis-
sions are higher than the building emissions only (note that
traffic emissions are not considered in Fig. 9c and d). The
measured emissions and the building emissions estimates
were found to be correlated positively by 35.91 % for the
100 m grid in the summer campaign and 32.42 % in the win-
ter campaign.

Lastly, Fig. 9c shows the measured emissions as a func-
tion of the total emissions (building+ traffic) inventory. For
the summer campaign the data show that 86.71 % of the mea-
sured emissions are within a factor of ±10 of the total emis-
sions estimates for the 100 m grid. The measured emissions
and the total emissions inventory were found to be correlated
positively by 77.87 % for the 100 m grid. For the winter cam-
paign, the data show that 92.58 % of the measured emissions
are within a factor of±10 of the total emissions estimates for
100 m grid. The measured emissions and the total emissions
inventory were found to be correlated positively by 71.75 %
for the 100 m grid.
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Figure 9. Comparison of inventory emissions and measured emissions on a grid-by-grid basis plotted with double logarithmic axes. The black
line is the 1 : 1 curve and the grey area shows data within 1 order of magnitude of each other. Grid cells with less than 0.1 kg CO2 ha−1 h−1

in the emission inventory and/or measured emissions are not shown. n refers to the number of grid cells included in the comparison.

Across all valid grid cells in the study area, the measured
emissions in summer averaged to 35.11 kg CO2 ha−1 h−1

as compared to 22.06 kg CO2 ha−1 h−1 of the emis-
sions inventory. In winter, the measured emissions
averaged to 25.92 kg CO2 ha−1 h−1 as compared to
28.76 kg CO2 ha−1 h−1 of the emissions inventory.

In summer, 73 % of the grid cells show measured emis-
sions that are greater than the corresponding grid cells of
the total emissions inventory. For the winter campaign, only
35 % of the measured emissions are greater than the total
emissions inventory. For both the summer and winter cam-
paigns, emission measurements are higher than the inventory

in grid cells along major arterial roads whereas the measure-
ments are lower than the inventory in residential areas and in
“Downtown”.

The mean absolute error (MAE) for all grid cells
in the entire transect between measured and modelled
total emissions is 17.1 kg CO2 ha−1 h−1 in summer and
16.6 kg CO2 ha−1 h−1 in winter. The median absolute error
for the entire transect is 9.6 in summer and 9.9 in winter. Ta-
ble 3 lists the MAE by neighbourhood. The MAE is about a
factor of 2 larger in “Downtown” and “West End” compared
to the residential and industrial neighbourhoods.
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The relative error (RE) is defined as the difference between
a grid cell’s measured emission and the same cell’s emissions
inventory divided by the cell’s emissions inventory. The data
for the 100 m grid show that 62 % of the grid cells in sum-
mer and 81 % in winter have an RE within a factor of±1. As
expected, locations with higher REs were locations in which
the building and traffic emissions inventories estimated al-
most zero but measured emissions were higher. When ex-
cluding grid cells with emissions < 10 kg CO2 ha−1 h−1) in
the inventory, 80 % of the grid cells in summer and 91 % in
winter have an RE with a magnitude of less than ±1.

4 Discussion

4.1 Assessment of the measurement methodology

Overall, the developed approach lead to realistic and con-
sistent results. The spatial patterns of measured emissions
are plausible and generally match the fine-scale inventories
of traffic and buildings although at the scale of an individ-
ual grid cell, large errors up to an order of magnitude are
observed. The study was also able to replicate in the win-
ter campaign the spatial patterns and the magnitude found
in summer. The results demonstrate the potential to apply an
aerodynamic resistance approach to measuring emissions us-
ing a network of mobile sensors and data from an urban cli-
mate tower.

Building and traffic emissions are both good predictors of
rmobile measured in a city at ground level. This implies that
values of rmobile, from microscale to neighbourhood scales,
are related the CO2 emissions being generated at those scales
(and presumably this also holds for primary, less reactive air
pollutants). This suggests that it is possible to link r to emis-
sions across a complex landscape under specific, stationary
atmospheric conditions. Nevertheless, several challenges re-
main.

Overall, the building emissions were less clearly corre-
lated with the spatial variability in r than traffic emissions
which were a better predictor. Building emissions of CO2
(natural gas burning) are most likely injected into the atmo-
sphere at roof level (chimneys), where higher winds blend
them in the process of downward mixing into streets and
laneways where mobile sensors were operated. As a result
of this blending, the signal of r might show less spatial vari-
ability if emissions originate from buildings (far from sensor)
compared to situations near ground-level emissions (car ex-
haust on arterial roads). Measured emissions generally tend
to underestimate the inventory in “Downtown” where there is
a high density of tall buildings that vent their emissions usu-
ally at higher storeys, likely decoupled from the grid cells at
the ground. Consequently, the observed peaks in r are more
likely to be a result of traffic emissions alone.

Data can be compared to an independent previous
study by Christen et al. (2011) that measured and mod-

elled emissions within a 1.9× 1.9 km study area cen-
tred on the “Vancouver-Sunset” tower (see Fig. 2). In
the 1.9× 1.9 km area, emissions were modelled to be
34.0 kg CO2 ha−1 h−1 and measured emissions by eddy co-
variance were 30.8 kg CO2 ha−1 h−1. The current study esti-
mates emissions for the “Sunset/Victoria-Fraserview” neigh-
bourhood (that is larger than the area in Christen et al., 2011,
Fig. 2) for 18 March (winter) as only 16.8 kg CO2 ha−1 h−1.
For the month of May, Christen et al. (2011) report mod-
elled emissions of 26.9 kg CO2 ha−1 h−1 and measured emis-
sions of 26.0 kg CO2 ha−1 h−1. The current study matches
extremely well here, with emissions for “Sunset/Victoria-
Fraserview” on 28 May (summer) of 26.5 kg CO2 ha−1 h−1.
Note that not only the spatial extent but also the timescales
of the two studies disagree. Christen et al. (2011) report
monthly 24 h emissions for the years 2008–2010, while the
current study is restricted to weekdays between 10:00 and
13:30 on the two given dates.

In selected areas negative net ecosystem exchange (NEE)
were detected, such as in the forest at “Stanley Park”, in
some highly vegetated urban residential areas and the lawn
area of a cemetery. This is plausible, because most grid cells
have likely some uptake by photosynthesis of urban veg-
etation, but in many cells the emissions from combustion
and respiration combined are greater than photosynthesis.
In comparing our lowest measured emissions from “Stanley
Park” (−12 kg CO2 ha−1 h−1) to a study by Humphreys et al.
(2006) who measured NEE for a forest with similar stand
composition (Douglas fir forest on Vancouver Island, 200 km
to the W) in April and June in the same latitude. We find that
our measured emissions were within a factor of 2 of those
observed in a typical forest at the same time of day and year.

4.2 Possible refinements and errors

Ultimately, the comparison of measured emissions and the
emissions inventories showed where there might be close
alignment or divergences between the datasets and suggests
promising new research opportunities for improving the pro-
posed methodology and/or emissions inventories.

4.2.1 Aerodynamic resistance

In terms of methodology, raH is calculated using Ttower and
T0 at a single location and is likely not representative for the
entire city. There is evidence of varying aerodynamic resis-
tances across the study area. For example in the narrow street
canyons of “Downtown” and in forested “Stanley Park”, it is
likely that the aerodynamic resistance is higher, because of
the sheltered nature of the deep canyons and forest canopy,
respectively. Generally, measured emissions could possibly
be overestimated in streets with a denser tree canopy regard-
less if the canopy is vegetation or buildings. An area with
a dense tree canopy may actually reduce mixing (Jin et al.,
2014) and, as a result, the measured rmobile might be higher
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than emissions propose with a constant raH across the study
area. It would therefore be beneficial to consider variable
aerodynamic resistances and to use models that relate canopy
porosity to create maps of variability in raH. Further experi-
ments should be done to determine how raH and consequently
the resulting Fc change when using different methods of es-
timating raH.

4.2.2 Averaging procedure

A methodology to improve the grid averaging would be to
sub-sample larger grid cells using a finer-scale grid (e.g.
20 m× 20 m or less) and then to average those finer grid cells
to lower grid resolutions as done in Crawford and Christen
(2014). This would help to reduce some errors at two critical
moments. First, it may be possible to average out some of the
extreme values within a grid cell that may be contributing to
an over- or underestimation of emissions within a grid cell
due to a spatial sampling bias. Second, it offers a possibility
to determine the representativeness of the grid cell sample
and attribute a certainty or weight to each cell. Because the
current methodology simply spatially attributes any point(s)
to the grid cell in which it intersects, we do not account for
the degree in which point measurements represent the spatial
mean of grid cells.

4.2.3 Emission inventories

Several factors may account for the differences due to errors
in the emission inventories. First, the emissions inventories
were not based on real-time models of the data for the period
of the measurement campaign. The building emissions inven-
tory presents a challenge when comparing the grid-averaged
r and the measured emissions because the building emissions
inventory is downscaled to an hourly average from a yearly
estimate. This hourly average is assumed to be constant over
the course of the day, however, studies (e.g. Martani et al.,
2012) show that most building occupancy (and therefore en-
ergy use) occurs between 09:00 and 19:00, with peaks around
13:00 and 16:00. Furthermore, this does not address the fact
that spatially, building energy use changes throughout the
day as people go to and from work and home. Future work
might attempt to quantify the spatial ebb and flow of people
using a combination of surveys, census data, and methods us-
ing call detail records to derive home versus work locations
as shown in Holleczek et al. (2014). Building energy use in-
tensity might be modelled by season and diurnally based on
factors such as building occupancy, building age, form, and
function.

To explain differences in the traffic emissions inventory,
we must account for the fact that the traffic emissions in-
ventory was derived from spatially and temporally disaggre-
gated samples of short-term traffic counts. As a result, the
traffic emissions inventory may compound errors over time
and space. Spatially, the traffic count dataset covers mostly

the major roads, which leaves much of the residential areas
unsampled. The method described in Appendix B1 is used
to map traffic count values across the residential streets to
overcome the missing traffic counts, but more validation is
necessary to determine whether this method is appropriate.
Temporally, the traffic emissions inventory is not a real-time
representation of the traffic counts during the measurement
campaign. Furthermore, the traffic emissions are generated
using an emissions factor that is a fleet average for the emit-
ted CO2 per litre of fuel burned. More precise estimates of
emissions factor in the differences in the emissions factor by
vehicle type and fuel type (Kellett et al., 2013). Last, the traf-
fic count data do not indicate the amount of emissions from
idling that occur as a result of traffic jams, which introduces
another aspect of possible uncertainty within the traffic emis-
sions inventory and can be substantially higher in urban con-
texts.

The total emissions inventory factors only building and
traffic emissions and excludes other sources of emissions
such as those from human, animal, and plant and soil respira-
tion. Additional sources of CO2 emissions could come from
human activities such as landscaping (e.g. lawnmowers and
leaf blowers) and construction. For example, a study by Kel-
lett et al. (2013) showed that, in a 1.9 km× 1.9 km study area
around the “Vancouver-Sunset” tower (see Fig. 2), emissions
from human respiration and vegetation and soils can account
for 8 and 5 %, respectively, of the total emissions.

Data-driven models in combination with urban surface
databases (urban form, traffic) could be used to further im-
prove the information in the post-processing and hence assist
the derivation of more realistic emission maps (e.g. Moosavi
et al., 2015).

5 Conclusions

In this study, we proposed and implemented a new approach
to determine and map CO2 emissions at fine scale across
a city. The approach combines multiple mobile sensors at
street level with an eddy-covariance flux tower.

A portable, mobile sensor system to measure the spatial
variability of CO2 mixing ratios called the DIYSCO2 was de-
veloped and tested. Five DIYSCO2s were deployed across a
12.7 km2 study area over a period of 3.5 h; the average sam-
pling density was about 40 samples ha−1. Of the 11.7 km2

study area that could be traversed, 8.5 km2 in summer and
8.2 km2 in winter were sampled with > 10 samples per grid
cell. Hence, excluding the grid cells with < 10 samples, the
sampling density was roughly 0.5 km2 sensor−1 h−1 over the
3.5 h period for the five sensors. If it is assumed that this
sampling density is appropriate for representing urban-scale
processes, it would require 230 coordinated mobile sensors
on predefined routes to be deployed across the entire city of
Vancouver (115 km2) to measure CO2 emissions across the
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city during the same time – obviously an effort that is not
realistic.

However, as sensor parts will become cheaper in the fu-
ture, possibilities exist to integrate mobile sensor systems
into operational vehicles such as taxis (e.g. 600 in the city of
Vancouver) and mobility-on-demand services (e.g. currently
there are > 1000 carshare vehicles in the city of Vancouver).
Alternatively, the time frame could be extended and, using
proper data selection, one could create composite maps from
rmobile measured on different days under similar conditions.
It would take 10 days in a coordinated effort to cover the
entire city of Vancouver similarly to the current transect.

A further question to be explored is whether the current
number of samples (> 10 s) per grid cell is sufficient to rep-
resent the typical emissions in the cell given the intermit-
tent traffic and the fact that large coherent structures are
mostly responsible for mixing of pollutants out of the urban
canopy layer (Salmond et al., 2005; Christen et al., 2007).
Would a higher density of points (including multiple cam-
paign days) improve the correlation between measured and
inventory emissions?

The method to map emissions based on the aerodynamic
resistance approach is sensitive to the measurements that
are used to derive the aerodynamic resistance of heat and
requires that a number of assumptions and conditions are
met; yet, the work shows that the aerodynamic resistance
approach can be used reasonably on a scale of 100× 100 m
grid cells to derive emissions from measures of aggregated
mixing ratios. The measured emissions across the study area
ranged from −12 to 225 kg CO2 ha−1 h−1 per grid cell, thus
showing the possibility for this methodology to detect nega-
tive emissions (net uptake), where photosynthesis is greater
than the combined combustion and respiration emissions.

The research presented is proof of concept for a future in
which atmospheric sensing is integrated into urban mobility.
We have shown the successful development of new technol-
ogy and methodology for monitoring and mapping CO2 mix-
ing ratios and emissions in complex urban environments, at
much finer scale than previously possible. Despite the sim-
plicity of the methodology, the study demonstrated that it is
possible to measure emissions across a complex landscape
with a fleet of mobile sensors, an eddy-covariance tower, and
the use of the aerodynamic approach to calculating emis-
sions.

The data gained can be used to map and validate emissions
as well as be integrated into regional efforts using observa-
tions and inversion modelling (Newman et al., 2013) or even
with total column measurements of CO2 from satellites.

Further, the concept could be translated to the mapping of
other trace gases and air pollutants emitted from vehicles and
houses, air and surface temperature, and other environmental
variables that affect human health, comfort, and safety. How-
ever, due to the assumption that sources are in the canopy
layer where sensors operate, the proposed methodology is
not necessarily transferable to emissions whose sources are
not well represented, such as fugitive natural gas emissions
(methane) or volatile organic compounds or large industrial
sources (tall stacks).

The development of smaller, more affordable mobile sen-
sor systems can facilitate new methodological approaches
to monitoring the urban environment. With a fleet of mo-
bile sensors and the methodologies for processing the de-
rived datasets, the possibility to map and consequently val-
idate emissions inventories is promising, as is the derivation
or real-time pollution and climate data in cities.

Code and data availability. Data from the two campaigns in the
City of Vancouver, BC, Canada are archived under https://doi.
pangaea.de/10.1594/PANGAEA.872702 (Lee et al., 2017). The
datasets include individual measurements from all five sensors,
gridded mixing ratios, and measured and modelled grids of CO2
emissions in the various resolutions discussed in the text.
Instructions and source code to build your own DIYSCO2 sen-
sor can be found under https://diysco2.github.io (Micrometerology
Group, 2017). In this repository, you will find the code used in the
data analysis and for developing the traffic emission inventories de-
scribed in Appendix B1.
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Appendix A: Testing of sensor system

Several key system specifications of the DIYSCO2 were
evaluated during the prototyping, namely linearity, accuracy
and drift, measurement lag time between sampling and mea-
surement, and the effects of inlet location on measurement
variability.

A1 Sensor accuracy and linearity

The accuracy of the Li-820 is ensured using a two-point cal-
ibration, performed in the lab using a zero gas and a stan-
dard span gas in the range of assumed measurement. In the
current study, all standard tanks have been calibrated against
primary CDML/NOAA WMO-traceable tanks with a typical
error between standard and primary tanks in r of< 0.15 ppm.
For the current application, accuracy and linearity of the Li-
820 sensor are relevant in the range 400 to 500 ppm to enable
comparisons between different DIYSCO2s operated simulta-
neously and also to properly compare rmobile− rtower.

To test the linearity in the range 400 to 500 ppm, a test
was performed using six standard gases of known r at 400
(two tanks), 413 (one tank), 457 (two tanks), and 504 ppm
(one tank). All Li-820 sensors were first left running for 2 h
to account for the warm-up time. The DIYSCO2s were con-
nected to a calibration gas using a Union Tee connector. For
each of the six gases, the calibration protocol called for an
initial 2-min system flush and then a recording of the values
for at least 1 min each. A minimum of 60 points per gas sam-
ple were used to calculate the average mixing ratios per tank
measured by the system.

The Li-820 contained in the DIYSCO2 showed strong lin-
earity (R2 of 0.9999) and a RMSE of 0.233 ppm for the four
different r . This indicates that the IRGA is operating well
within its factory specifications of 1 ppm when calibrated and
linearity and accuracy are not the limiting factor for this type
of study.

A2 Sensor drift

Sensor drift is assessed to determine the DIYSCO2’s ability
to properly resolve the variability of mixing ratios during the
duration of the campaign. Sensor drift was tested over the
course of 7 days, with five sensors drawing in air from the
same point outdoors at ≈ 3 m in an urban context.

The RMSE between the five systems at a 1 min resolu-
tion ranged between 0.2 and 3 ppm for the 7-day period and
is therefore time dependent. The drift in the lab was up to
±3.32 ppm per day for individual sensors and days. Given
that the field campaign was planned to be 3 to 3.5 h long,
the maximum drift of any sensor in any 3 h was determined
at most −0.31 and +0.51 ppm relative to the mean of all
five sensors. During the field experiments, however, we ob-
served a maximum drift of +0.95 ppm relative to the mean

of all sensors, which was greater than what was found in the
lab test.

A3 Time constant and lag time

The system measurement lag time is the time delay from
when a measurement first enters the sample inlet of the
system to when the signal is registered by the sensor. The
DIYSCO2’s measurement lag time is important to correctly
attribute measurements to their geographic space.

For a given tube length and flow rate, the lag time will dif-
fer and therefore affect the system response characteristics.
The values here are for a tube length of 3 m. Lab measure-
ments were performed in which a solenoid switch was used
to pass nitrogen gas with 0 ppm CO2 into the sample tube in-
let while simultaneously logging the exact second in which
the solenoid was triggered. To calculate the lag time value
for the system, the number of seconds were counted from
when the sample enters the tube until 50 % of the change
was reached.

The measurement lag time of the DIYSCO2 system was
determined to be 18.2 s. The measurement lag time is the sum
of the 16 s sample travel time from the inlet to the IRGA and
the IRGA’s time constant of 3.2 s. We consequently used a
value of 18 s in the post-processing to shift the GPS and ob-
served rmobile time series to properly attribute measurements
spatially. However, as the time constant with 3.2 s was higher
than the nominal sampling frequency of 1 Hz, the actual sam-
pling frequency was less than 1 s, leading to a positional stan-
dard deviation of the signal of 10 m, not 5 m (at a typical
speed of 20 km h−1).

A4 Effects of inlet location

Two tests were performed to examine possible sampling bi-
ases due to different sample inlet locations on a vehicle.
First, a test was done with five DIYSCO2 in the same vehi-
cle, where all the inlet tubes were bundled together at 2.2 m
height, measuring at the same location (within a few cm
of each other) of the vehicle (referred to as “Grouped Inlet
Test”). A second test was done again with five DIYSCO2 in
the same vehicle, but with each of the inlet tubes located at
different locations on the vehicle (referred to as “Ungrouped
Inlet Test”). Locations tested were all again at 2.2 m height:
one each above the driver’s side front, driver’s side back,
passenger side front, and passenger side back window. Both
test were performed in the city of Vancouver using a Toy-
ota Tacoma Truck along a route with traffic volumes ranging
from 300 to 850 vehicles per hour.

In areas with a well-mixed atmosphere and on roads with
little traffic, the DIYSCO2 systems for the grouped inlet test
showed a range within±0.5 ppm of the mean all five sensors
for 1 s data. For the ungrouped inlet test under those same
conditions, the range deteriorated to ±5 ppm of the mean.
Adding the higher traffic road segments, with observations
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of higher CO2 mixing ratios, the standard deviation between
all five of the DIYSCO2 locations increases for the 1 Hz
data. With inlets grouped together, 48.9, 81.16, and 90.14 %
of the 1 s data have a standard deviation within 5, 15, and
25 ppm. The results of the ungrouped inlet test showed that
54.98, 79.08, and 87.49 % of the data have a standard de-
viation within 5, 15, and 25 ppm, respectively, for the data
collected at 1 s. When aggregated to 1 min, the data showed
66.67, 91.66, and 94.44 % of the data have a standard devia-
tion within 5, 15, and 25 ppm of each other, respectively.

This indicates that slightly less than half of the 1 s data
measured by the sensors are within 5 ppm of each other and
that we can expect a majority of the data (> 88.85 %) to have
errors up to 15 ppm depending on where the inlet is mounted
on the car. When examining the variability of the observed
values for the 1 min data, 86.3 and 98.63 % of the data have
a standard deviation within 5 and 25 ppm. In summary, the
sampling location is a source of much greater uncertainty
than instrument accuracy, drift, or linearity in the context of
this work.

Appendix B: Emissions inventories

This appendix described the derivation of the independent
building and traffic emissions inventory that were compared
against the measured CO2 emissions.

B1 Traffic emissions inventory

The fine-scale gridded traffic emissions inventory was based
on hourly averaged directional traffic count data from 2008 to
2013 provided by the city of Vancouver (City of Vancouver,
2015).

For each hour of the day, traffic counts were spatially
attributed to the Open Street Map (OSM) road network.
The city of Vancouver provides traffic counts collected from
pneumatic road tubes which are attributed to an approximate
address of where the traffic counters were located. The traffic
counts do not distinguish between different vehicle classes
and are aggregated to the street level, meaning that, for this
analysis, the traffic counts did not take into account the di-
rection of travel.

The city also provides a geospatial representation of the
locations of the traffic counters with the address, but with-
out the count data attached. The geospatial data were merged
with the count data. However, because spatial traffic counts
do not align with the OSM road network, the centroids of the
spatial traffic count data were computed and then “snapped”
to the OSM road network. Before joining the traffic count
data by the matching locations of the two datasets, the OSM
road network was split into segments using the 50× 50 m
vector grid. A small (0.5 m) buffer was applied to the traf-
fic count centroids to ensure that they spatially match onto

the OSM road network and then were merged to the OSM
dataset.

An algorithm was used to match the street names in the
traffic count dataset to those in the OSM street network. Man-
ual mapping of traffic counts was necessary to attribute traffic
counts to streets that were not sampled in the traffic counts. A
rule of proximity and local understanding of the traffic pat-
terns for each of the streets was used to manually map the
traffic counts to the unsampled streets. Using the OSM street
classifications, traffic counts for paths unnavigable by vehi-
cles were given a value of “0” traffic counts, namely “steps”,
“trail”, “footpath”, and “service”. Lastly, the traffic counts
for forked roads in the dataset which would have doubled the
count for a particular street were divided in half.

With a complete model of the traffic counts for the tran-
sect, it was then possible to generate a gridded traffic emis-
sions inventory map of CO2 (now referred to as “traffic emis-
sions inventory”). The length of each of the street segments
which had been split in the earlier steps were calculated and
then summed up per 50, 100, 200, and 400 m grid cell. Next,
the length of navigable roads per grid cell were multiplied by
the hourly traffic counts along each road, resulting in an esti-
mate of total distance of vehicle travelled per grid cell. Each
grid cell’s hourly travel distance was then multiplied by the
NRCAN fleet standard fuel consumption (Natural Resources
Canada, 2014) for urban driving (12.9 L 100 km−1) and af-
ter by a CO2 emissions factor (2.175 kg L−1 fuel burned)
(British Columbia Ministry of Transportation, 2014) to gen-
erate the traffic emissions estimate map of CO2. In this study,
the traffic count data provided by the city of Vancouver are
averaged across all of the years that the traffic count data
have been collected. The data are then scaled by a factor
0.9985 and 1.0216 to reflect the seasonally changing relative
traffic volumes for March and May based on automatic and
continuous highway counts (weekday only) at five locations
throughout Metro Vancouver.

B2 Building emissions inventory

The fine-scale gridded building emission inventory was de-
veloped in previous research and is documented in detail
in van der Laan (2011). It integrates lidar data, building
simulation software, and a building typology database to
model CO2 emissions attributed to building energy use; the
original building emissions inventory is on a per-building
scale in carbon dioxide equivalent (CO2 eq., reported in
kg CO2 eq. year−1). In this research, it is assumed that
CO2 eq. and CO2 are the same for building heating systems.
This is then converted to a 1 m raster using building foot-
prints derived from lidar and property perimeters. The 1 m
raster was then averaged to the 50, 100, 200, and 400 m vec-
tor grids and scaled to their estimated hourly values for both
campaigns.

Because the inventory by van der Laan (2011) reports an-
nual estimates (in kg CO2 eq. m−2 year−1), a scaling factor
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based on monthly city emissions inventory was used in this
study to account for the winter and summer building emis-
sions fraction. In the months of March and May, the building
emissions for a sample of the city of Vancouver were esti-
mated to be 99.85 and 63.63 % of the annual average building
emissions (reported in Christen et al., 2011). The final build-
ing emissions inventory was reported in kg CO2 ha−1 h−1. In
this case, it is assumed that the building emissions are con-
stant over the course of the day.

Each grid cell of the total emissions inventory is simply
the sum of the building emissions inventory and the traf-
fic emissions inventory in kg CO2 ha−1 h−1. Other emission
processes such as human respiration or biological processes
are not considered in the inventory.

Appendix C: Effect of grid size

In addition to the 100× 100 m grid, the raw data points were
also gridded to 50, 200, and 400 m vector grids for both the
winter and summer campaigns to explore the sensitivity of
choosing different grid sizes.

C1 Effects on spatially averaged mixing ratios

Changes in grid size affected the study area mean rmobile by
6.1 ppm in the summer and only 1.1 ppm in the winter. Ta-
ble C1 summarizes the statistics for different grid cell sizes.
The grid maximum values for the 50, 100, 200, and 400 m
grids were 529.8, 518.0, 488.2, and 447.7 ppm for the sum-
mer and 643.1, 560.5, 529.4, and 492.5 ppm for the winter,
respectively.

The highest grid maximums were observed in the 50 m
grid size. This is expected because the most extreme rmobile
are spatially averaged out by larger grid cell sizes.

C2 Effects on spatially averaged emissions

In the summer campaign, the differences between the mea-
sured emissions and the inventory emissions increases as the
grid size increase (Table C2). The smallest difference is seen
in the 50 m grid at 6.88 kg CO2 ha−1 h−1. In the winter cam-
paign, the differences between the measured and inventory
emissions are smallest in the 100 m (2.84 kg CO2 ha−1 h−1)
and 200 m (0.9 kg CO2 ha−1 h−1) grid sizes and are greatest
in the 50 m grid size at 7.8 kg CO2 ha−1 h−1.

In both campaigns, the spatial error (expressed RMSE) be-
tween measurements and inventory decreases as grid sizes
become coarser. In the summer campaign, 80.05, 86.71,
85.31, and 95.45 % of the cells have measured emissions that
are within a factor of±10 of the total emissions inventory for
the 50, 100, 200, and 400 m grids, respectively. In the winter
campaign, 91.16, 93.74, 94.20, and 100 % of the cells have
measured emissions within±10 of the total emissions inven-
tory.

Table C1. Summary data of the measured mixing ratios for all grid
sizes for the summer and winter campaigns. The table shows the
mean, minimum, median, and maximum CO2 mixing ratio rmobile
for the gridded data.

Grid size Min Median Mean Max
(ppm) (ppm) (ppm) (ppm)

Summer

50 m 393.1 409.4 417.3 529.8
100 m 393.1 410.0 417.9 518.0
200 m 397.0 412.9 419.6 488.2
400 m 399.6 417.5 419.0 447.7

Winter

50 m 408.4 434.5 442.6 643.1
100 m 408.4 435.0 442.5 560.5
200 m 408.4 436.8 443.7 529.4
400 m 420.5 441.9 443.2 492.5

For the winter campaign, we observe that the mean bias,
i.e. differences between the mean measured emissions and
the mean inventory emissions, decreases as grid size in-
creases, presumably because more sampling points mean we
average out random errors in individual cells. The best match
is found at 200 m resolution. Of course, this is very sensitive
to the calculated aerodynamic resistance and should not be
interpreted as a generality.

For the summer campaign, however, there is an increas-
ing difference between the mean measured emissions and the
mean total emissions. This may be best explained by the bias
towards roads in the sampling methodology. In the summer
campaign, the dominant source are vehicles constrained to
roads. The difference between the average measured emis-
sions and the total emissions inventory is relatively small for
the 50 m grid because the measurements are made mostly
along roads and therefore do not include traffic-free areas
such as in the backyards of homes and within large street
blocks which can have significantly lower concentration of
traffic-related pollutants (Weber and Weber, 2008). As a re-
sult, when comparing the average measured emissions to the
average of the total emissions inventories for the 100, 200,
and 400 m grids, we see that a sampling bias becomes more
apparent. The 50 m grid cell size is a more appropriate reso-
lution for gridding the point measurements collected using
this methodology when traffic emissions dominate. Addi-
tional sampling along alleys and laneways and more repre-
sentative sampling using alternative mobility options such as
bicycles or drones may help to improve the relationship be-
tween measured emissions and the emissions inventory when
gridding at coarser resolutions.
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Table C2. Mean measured emissions versus mean inventory emissions for the winter and summer campaigns.

Grid size Measured emissions Inventory emissions Relative difference RMSE
(kg CO2 ha−1 h−1) (kg CO2 ha−1 h−1) (kg CO2 ha−1 h−1)

Summer

50 m 34.06 27.18 +29 % 32.54
100 m 35.11 22.06 +59 % 27.91
200 m 38.30 19.73 +94 % 29.01
400 m 37.26 15.27 +144 % 28.57

Winter

50 m 25.67 33.47 −23 % 34.23
100 m 25.92 28.76 −10 % 25.39
200 m 27.21 26.31 +3 % 19.58
400 m 26.60 23.33 +14 % 17.71
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