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Abstract. This paper presents an exploratory study on the
aerosol layer height (ALH) retrieval from the OMI 477 nm
O2−O2 spectral band. We have developed algorithms based
on the multilayer perceptron (MLP) neural network (NN) ap-
proach and applied them to 3-year (2005–2007) OMI cloud-
free scenes over north-east Asia, collocated with MODIS
Aqua aerosol product. In addition to the importance of
aerosol altitude for climate and air quality objectives, our
long-term motivation is to evaluate the possibility of retriev-
ing ALH for potential future improvements of trace gas re-
trievals (e.g. NO2, HCHO, SO2) from UV–visible air qual-
ity satellite measurements over scenes including high aerosol
concentrations. This study presents a first step of this long-
term objective and evaluates, from a statistic point of view,
an ensemble of OMI ALH retrievals over a long time pe-
riod of 3 years covering a large industrialized continental re-
gion. This ALH retrieval relies on the analysis of the O2−O2
slant column density (SCD) and requires an accurate knowl-
edge of the aerosol optical thickness, τ . Using MODIS Aqua
τ(550nm) as a prior information, absolute seasonal differ-
ences between the LIdar climatology of vertical Aerosol
Structure for space-based lidar simulation (LIVAS) and aver-
age OMI ALH, over scenes with MODIS τ(550nm)≥ 1.0,
are in the range of 260–800 m (assuming single scatter-
ing albedo ω0 = 0.95) and 180–310 m (assuming ω0 = 0.9).

OMI ALH retrievals depend on the assumed aerosol single
scattering albedo (sensitivity up to 660 m) and the chosen
surface albedo (variation less than 200 m between OMLER
and MODIS black-sky albedo). Scenes with τ ≤ 0.5 are ex-
pected to show too large biases due to the little impact of
particles on the O2−O2 SCD changes. In addition, NN al-
gorithms also enable aerosol optical thickness retrieval by
exploring the OMI reflectance in the continuum. Compar-
isons with collocated MODIS Aqua show agreements be-
tween −0.02 ± 0.45 and −0.18 ± 0.24, depending on the
season. Improvements may be obtained from a better knowl-
edge of the surface albedo and higher accuracy of the aerosol
model. Following the previous work over ocean of Park et al.
(2016), our study shows the first encouraging aerosol layer
height retrieval results over land from satellite observations
of the 477 nm O2−O2 absorption spectral band.

1 Introduction

The ability to monitor air quality and climate from
ultraviolet–visible (UV–vis) satellite spectral measurements
requires accurate trace gas (e.g. NO2, SO2, HCHO, O3) and
aerosol observations. Aerosols and trace gases often share
similar anthropogenic sources, and their concentrations, as
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shown by the satellite observations, often exhibit significant
correlations (Veefkind et al., 2011). The reason is that trace
gases are often precursors for aerosols. The importance of
measuring vertical distribution of atmospheric aerosols on
a global scale is threefold. Firstly, aerosols directly impact
the radiation budget of the Earth–atmosphere system through
the scattering and absorption of solar and terrestrial radia-
tion (Feingold et al., 1999). High concentrations of fine par-
ticles lead to reduced cloud droplet size, enhanced cloud re-
flectance (Twomey et al., 1984) and reduced precipitation
(Rosenfeld, 2000; Ramanathan et al., 2001; Rosenfeld et al.,
2002). Therefore, large uncertainties of aerosol optical prop-
erties limit our climate predictive capabilities (IPCC, 2007).
In spite of more robust climate predictions in the last years,
radiative forcing (RF) induced by aerosols is still the largest
uncertainty to the total RF estimate (IPCC, 2014). The verti-
cal distribution and relative location are determining factors
of aerosol radiative forcing in the long-wave spectral range
(Dufresne et al., 2002; Kaufman et al., 2002).

Secondly, aerosols play a significant role in air quality, in
particular near the surface. Due to the rapid growth of both
population and economic activity, such as in Asia, the in-
crease in fossil fuel emissions gives rise to concerns about
fine particle formation and dispersion. Aerosols include a va-
riety of hazardous organic and inorganic substances that re-
duce visibility, lead to reductions in crop productivity and
strongly affect the health of inhabitants in urban regions
(Chameides et al., 1999; Prospero, 1999; Eck et al., 2005).

Thirdly, slant column densities (SCDs) of trace gases, de-
rived from UV–vis air quality space-borne sensors, have a
high sensitivity to aerosol heights. For partly cloudy condi-
tions, clouds are the main error source of trace gas measure-
ments. But, in the absence of clouds, vertical distribution of
aerosols, combined with their scattering and absorbing prop-
erties, modifies the length of the average light path of the
detected photons and therefore affects trace gas air mass fac-
tors (AMFs). The application of AMFs is crucial for the con-
version of SCDs from satellite line-of-sight measurements
into vertical column densities. Then, aerosols strongly con-
tribute to the uncertainties of trace gas retrievals from space-
borne observations. For example, the magnitude of the er-
ror on the Ozone Monitoring Instrument (OMI) tropospheric
NO2 retrieval is, over polluted areas, mostly determined by
the AMF uncertainty, not by the SCD uncertainty. It results
from the combination of aerosols, clouds and the shape of
the NO2 profile (Boersma et al., 2007). Negative biases on
OMI tropospheric NO2 columns, between −26 and −50 %,
are found in urban and very polluted areas in cases of high
aerosol pollution and particles located at elevated altitude
(Shaiganfar et al., 2011; Ma et al., 2013; Kanaya et al., 2014).
HCHO AMF for GOME-2 and SCanning Imaging Absorp-
tion spectroMeter for Atmospheric CHartographY (SCIA-
MACHY) shows about 20–50 % sensitivity to aerosols, de-
pending whether they are located within or above the bound-
ary layer (Barkley et al., 2012; Hewson et al., 2015). Dust

aerosols (large particles, with strong absorption in UV) can
reduce the AMF in the SO2 wavelengths (310–330 nm) by
half, thus doubling the retrieved SO2 (Krotkov et al., 2008).
This impacts the ability of sensors like OMI to monitor plan-
etary boundary layer (PBL) SO2 with a sensitivity to local
anthropogenic sources. Over regions of enhanced columns,
aerosols highly contribute to the total SO2 AMF error (Lee
et al., 2009). Therefore, aerosol parameters (or retrievals) are
a prerequisite before retrieving trace gas vertical column den-
sities.

State-of-the-art trace gas retrieval algorithms correct for
aerosol effects either explicitly using modelled aerosol verti-
cal profiles (e.g. Barkley et al., 2012, 2013; Kuhlmann et al.,
2015; Lin et al., 2014, 2015) or implicitly via cloud algo-
rithms. For example, the OMI O2−O2 absorption band at
477 nm has been widely exploited to derive cloud informa-
tion (Acarreta et al., 2004; Sneep et al., 2008). However,
the OMI cloud algorithm is sensitive to aerosols, and thus
the retrieved effective cloud parameters are modified in their
presence (Boersma et al., 2007; Castellanos et al., 2015; Chi-
mot et al., 2016). The OMI O2−O2 spectral band at 477 nm
contains significant information on aerosol properties and
height. The retrieved effective clouds are then used to correct
the computed AMF (de Smedt et al., 2008; Boersma et al.,
2011). In spite of these well-considered perturbations, the use
of the effective cloud parameters, assuming that the opaque
Lambertian cloud model can reproduce the distribution of
scattering fine particle effects, does not yet completely cor-
rect for the aerosol effects when computing the AMF, in par-
ticular for the tropospheric NO2 columns (Castellanos et al.,
2015; Chimot et al., 2016).

Characterizing the aerosol vertical distribution, in addi-
tion to the associated optical properties, using passive space-
borne measurements is challenging due to the absence of
spectral features in the aerosol optical properties and the
combined influences of surface and cloud reflection. Con-
trary to effective cloud retrievals, aerosol retrieval is a more
complex problem mainly because of the variability of par-
ticle microphysical properties and the lower optical thick-
ness (typically 1–2 orders of magnitude). As a consequence,
methods assuming large multiple scattering contributions,
such as a simple cloud model with Lambertian properties,
cannot be used. Passive radiometers like the Moderate Res-
olution Imaging Spectroradiometer (MODIS) can only re-
trieve a limited amount of independent information from
their measurements, usually aerosol optical thickness, τ , and
the extinction Ångström exponent, α, as a proxy for the par-
ticle size distribution (Levy et al., 2007, 2013). The near-UV
technique has been widely used to map the daily global distri-
bution of UV-absorbing aerosols such as desert dust particles
as well as carbonaceous aerosols generated by anthropogenic
biomass burning and wildfires. It allows us to retrieve τ , sin-
gle scattering albedo ω0 and the qualitative aerosol absorbing
index (AAI) in the 330–388 nm of the Total Ozone Mapping
Spectrometer (TOMS) and OMI sensors (Torres et al., 1998,
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2002, 2007). However, this technique is highly affected by
the dependency of the measured radiances on the height of
the absorbing aerosol layer (Torres et al., 1998; de Graaf
et al., 2005). OMAERUV has been upgraded by integrat-
ing a monthly climatology of CALIOP aerosol heights to re-
trieve aerosol parameters from OMI UV measurements (Tor-
res et al., 2013). The Cloud-Aerosol Lidar with Orthogo-
nal Polarization (CALIOP) has been providing vertical pro-
files of aerosols but with limited spatial coverage because
of its measurements characteristics (Omar et al., 2009). Park
et al. (2016) evaluated the sensitivity of the O2−O2 slant col-
umn density to changes in aerosol layer height (ALH) over
ocean. It is demonstrated that the O2−O2 spectral band at
477 nm is the most sensitive to the aerosol layer effective
height (compared to the O2−O2 absorption bands at 340,
360 and 380 nm) due to the largest O2−O2 absorption and
reduced Rayleigh scattering. Veihelmann et al. (2007) deter-
mined that the complete OMI UV–vis reflectance measure-
ments contain between 2 and 4 degrees of freedom of sig-
nal (DFS). The 477 nm O2−O2 band adds by itself about
1 degree and therefore contains more information than any
other individual band. This relative large number of DFS for
UV–vis satellite solar backscatter observations is explained
by the sensitivity of the reflectance to the ALH. Detailed
O2−O2 radiative transfer simulations performed by Dirksen
et al. (2009) revealed the availability of the altitude informa-
tion about smoke aerosol plume, released by intense forest
fires and transported over long distance, under specific con-
ditions: high AAI and no clouds. In spite of all these efforts,
no aerosol height retrieval has been done at this moment from
O2−O2 satellite measurements at 477 nm over land.

Since aerosol altitude, in addition to τ , is one of the key
parameters affecting the computation of AMF for trace gases
retrievals such as NO2 (Leitão et al., 2010; Chimot et al.,
2016), our long-term motivation is to evaluate the capability
of retrieving it from the satellite O2−O2 absorption band at
477 nm. This exploratory study is the first step and statisti-
cally analyses an ensemble of OMI observations over a 3-
year period (from 2005 to 2007) and covering a large indus-
trialized continental region (i.e. north-east Asia). This study
follows the conclusions of previous works focused on the
sensitivity of this spectral band and the observed links be-
tween the O2−O2 effective cloud retrievals and aerosol pa-
rameters. In this paper, quite a few algorithm concepts are
developed, based on the neural network (NN) approach, and
then tested on a high number of OMI observations over land.
Our primary focus is the retrieval performance of aerosol
layer pressure (ALP) associated with scattering and fine par-
ticles over large urban, industrialized and highly polluted
area and cloud-free scenes. In addition, the sensitivity of
the algorithms to τ knowledge is investigated and, there-
fore, the capability of τ retrievals from the same OMI band
is evaluated. The considered satellite observations and input
data set are described in Sect. 2. Section 3 focuses on the
available OMI O2−O2 differential optical absorption spec-

troscopy (DOAS) parameters and their link with ALH and
τ . The development of the different NN algorithms is de-
scribed in Sect. 4. Their performances are evaluated in Sect. 5
on a synthetic and independent data set with a characteriza-
tion of the main limiting factors. Finally, these algorithms
are applied in Sect. 6 to cloud-free OMI observation over
north-east Asia, where large amounts of aerosols are emit-
ted from both natural and anthropogenic sources (Lee et al.,
2012). They are then compared with other observation prod-
ucts, namely MODIS Aqua τ and the LIdar climatology of
vertical Aerosol Structure for space-based lidar simulation
(LIVAS).

2 Aerosol and surface albedo satellite data

In this section, we describe the three main aerosol satel-
lite data sets that are used in this study: OMI visible mea-
surements, MODIS aerosol product and the LIVAS clima-
tology database. In addition, the two considered surface
albedo databases: OMI Lambert equivalent spectral surface
reflectance (OMLER) and MODIS black-sky albedo are also
detailed.

2.1 OMI satellite data

The Dutch–Finnish mission OMI (Levelt et al., 2006) is
a nadir-viewing push-broom imaging spectrometer launched
on the National Aeronautics and Space Administration
(NASA) Earth Observing System (EOS) Aura satellite. It
provides daily global coverage of key air quality compo-
nents through observations of the backscattered solar radi-
ation that are captured in the UV–vis spectral domain. Based
on a two-dimensional detector array concept, radiance spec-
tra are simultaneously measured on a 2600 km wide swath
within a nadir pixel size of 13× 24 km2 (28× 150 km2 at ex-
treme off-nadir). OMI has a higher spatial resolution than any
other UV–vis hyperspectral spectrometers. It measures in the
wavelength range of 270 to 500 nm with a spectral resolution
of 0.45 in the UV-2 band (310–360 nm) and 0.63 nm in the
visible band (360–500 nm).

Starting mid-2007, the so-called “row anomaly” has been
perturbing OMI measurements of the Earthshine radiance at
all the wavelengths. Details are given at http://www.knmi.
nl/omi/research/product/rowanomaly-background.php. For
practical reasons, this study only used the OMI data acquired
during 2005–2007, i.e. before the development of this
anomaly.

OMI has not been optimized for aerosol monitoring. How-
ever, the OMI near-UV aerosol algorithm (OMAERUV) in-
dependently retrieves atmospheric total columns of τ and ω0
from two UV wavelengths, 354 and 388 nm (Torres et al.,
2007, 2013). In comparison to 44 Aerosol Robotics Network
(AERONET) sites, evaluated OMAERUV τ yields a root
mean square error (RMSE) of 0.16 and a correlation coef-
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ficient of 0.81 over the years 2005–2008 (Ahn et al., 2014).
About 65 % of these retrievals lie within the expected uncer-
tainty. The OMAERUV ω0 product agrees with AERONET
to within 0.03 in 46,% of the collocated pairs and to within
0.05 in 69 % of the cases (Jethva et al., 2014).

The OMI O2−O2 477 nm absorption band is currently op-
erationally exploited by the OMI O2−O2 cloud algorithm to
derive effective cloud fraction and pressure (Acarreta et al.,
2004; Veefkind et al., 2016). Park et al. (2016) applied a look-
up table (LUT) approach on this band to retrieve aerosol ef-
fective height over ocean, close to East Asia, within the error
range of 1 km (compared to CALIOP). This approach was
applied to seven case studies, each of them covering a few
days. No τ was retrieved. No study has yet explicitly used
this satellite band to directly retrieve ALH and τ over land.
This band is available not only on OMI but also on vari-
ous sensors such GOME-2, OMPS and the next space-borne
TROPOspheric Monitoring Instrument (TROPOMI).

2.2 MODIS aerosol product

The MODIS instrument, launched on the NASA EOS Aqua
platform in May 2002, is a spectrometer delivering contin-
uous images of the Earth in the visible, solar and thermal
infrared approximately 15 min prior to OMI on board EOS
Aura. The considered MODIS Aqua Level 2 (L2) aerosol
product is the collection 6 of MYD04_L2, based on the Dark
Target (DT) land algorithm with a high enough quality flag
(Xiao et al., 2016). While the MODIS measurement is ac-
quired at the resolution of 1 km, the MODIS aerosol product
is available at both 3 km× 3 km and 10 km× 10 km. Since
this last one is relatively close to the OMI nadir spatial res-
olution, it is then used in the work below (see Sect. 7). The
improved calibration of MODIS Aqua instrument is included
in the reprocessing of the collection 6 aerosol product (Levy
et al., 2013; Lyapustin et al., 2014).

The availability of the MODIS aerosol products is gen-
erally a good confirmation of cloud-free scenes as MODIS
Aqua τ variable is exclusively given provided a high amount
of cloud-free sub-pixels is available (i.e. the MODIS mea-
surement resolution of 1 km).

The expected error of MODIS DT τ is about±0.05+15%
over land (Levy et al., 2013). The Deep Blue retrieval algo-
rithm has been developed to complement the DT algorithm
by retrieving τ over bright arid land surfaces (e.g. deserts).
The typical associated uncertainties are about ±0.03 on av-
erage (Sayer et al., 2013).

2.3 LIVAS climatology database

LIVAS is a 3-D multi-wavelength global aerosol and cloud
optical database (Amiridis et al., 2015). This database pro-
vides averaged profiles of aerosol optical properties over
9 years (1 January 2007–31 December 2015) from the Cloud
Aerosol Lidar and Infrared Pathfinder Satellite Observations

(CALIPSO) data on a uniform grid of 1◦× 1◦. LIVAS ad-
dresses the wavelength dependency of aerosol properties for
many laser operating wavelengths including 532 nm. The
LIVAS data set has been evaluated against AERONET in
Amiridis et al. (2015), showing realistic and representative
mean state aerosol optical depth values in 532 nm and mak-
ing this data set ideal for synergistic use with other satellite
products.

The LIVAS ALH is derived from the given averaged verti-
cal profile of aerosol extinction (532 nm) σ(l) over each ver-
tical layer l defined by its altitude h(l) as follows:

ALH(LIVAS)=

∑
l
h(l)σ (l)∑
l
σ(l)

. (1)

Since LIVAS also provides the standard deviation associ-
ated with each averaged vertical profile of aerosol extinction
(532 nm) ∂σ(l), the equivalent standard deviation ∂ALH of
each LIVAS ALH is derived as follows:

∂ALH(LIVAS)=

∑
l
∂h(l)∂σ (l)∑

l
σ(l)

. (2)

where ∂h(l) is the geometric thickness of each vertical layer
l.

2.4 Surface albedo data set

The standard and reference surface albedo product is the
OMLER climatology derived from several years of OMI ob-
servations at the spatial resolution of 0.5◦× 0.5◦ longitude–
latitude grid for each calendar month (Kleipool et al., 2008).
The OMLER algorithm is based on temporal histograms of
the observed Lambert equivalent spectral surface reflectance
(LER) values per grid box. Potential small residual cloud
and aerosol contaminations are expected to remain in the
OMLER product. As an alternative, the global and spatially
complete MODIS black-sky surface albedo in the band 3
(459–479 nm) is considered. It is defined as the directional
hemispherical reflectance and is a function of solar zenith
angle θ0 (Schaaf et al., 2002). It is derived by integrating
the atmospheric corrected bidirectional reflectance distribu-
tion function (BRDF), derived from combined MODIS Aqua
and Terra observations over every 16-day period. The down-
welling flux in the MODIS black-sky albedo has no diffuse
component. Collection 6 of MCD43C3 product is given on
a 0.05◦ (5.6 km) latitude–longitude climate modelling grid
(CMG). Note that Kleipool et al. (2008) demonstrated that
the OMLER data set is closer to the black sky than to the
white sky by evaluating the ratio between diffuse and direct
illumination.
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3 OMI O2−O2 DOAS analysis and aerosols

3.1 DOAS analysis of the OMI O2−O2 477 nm
absorption band

In this paper, the aerosol NN retrieval algorithms allow the
conversion of the continuum reflectance Rc(475nm) and the
O2−O2 SCD N s

O2−O2
into τ(550nm) and ALP (in hPa). As

a consequence, the NN retrievals rely on the way that the
aerosol parameters modify these two variables and thus the
photons average light path.

Prior to this conversion, a spectral DOAS fit must be per-
formed to derive Rc(475nm) and N s

O2−O2
from the OMI

O2−O2 477 nm absorption band. The various DOAS tech-
niques rely on the same key concept: a simultaneous fit of
several trace gas slant column densities from the fine spec-
tral features due to their absorption (i.e. the high frequency
part) present in passive UV–vis spectral measurements of at-
mospheric radiation (Platt and Stutz, 2008). Here, the DOAS
fit follows the same approach as in the OMI O2−O2 cloud
algorithm (Acarreta et al., 2004; Veefkind et al., 2016): i.e.
the absorption cross-section spectrum of O2−O2 is fitted to-
gether with a first-order polynomial:

− ln(R(λ))= γ1+ γ2 · λ+N
s
O2−O2

(λ) · σO2−O2

+N s
O3
(λ) · σO3 , (3)

where γ1+γ2×λ defines the first-order polynomial, σO2−O2

and σO3 are the O2−O2 and O3 absorption cross-section
spectra, respectively, convoluted with the OMI slit function
and N s

O3
is the O3 slant column density. σO2−O2 is based

on measurements of the cross section made by C. Her-
mans (see http://www.aeronomie.be/spectrolab/o2.htm – file
O4.txt). The O3 cross-section spectrum is included because
it overlaps with the O2−O2 spectrum. The fitted parameters
are γ1, γ2, N s

O2−O2
, and N s

O3
. In the absence of absorbers,

one may define the continuum reflectance Rc at the reference
wavelength λ0:

Rc = exp(−γ1− γ2 · λ0). (4)

The reference wavelength is specified as the middle of the
DOAS fit window at λ0= 475 nm.

3.2 On the impact of aerosols on Rc and O2−O2 SCD

Figure 1 illustrates how aerosol particles directly drive the
OMI O2−O2 DOAS parameters at 477 nm assuming cloud-
free space-borne observations. These effects are obtained
from radiative transfer simulations including aerosols and
no clouds. The detailed generation of such simulations is
given in Sect. 4.2. The DOAS fit equations following Eqs. (3)
and (4) are then applied to these simulations. In this paper,
the aerosol layer is assumed to be one single scattering layer
(i.e. “box layer”) with a constant geometric thickness (about
1 km). All the particles included in this layer are supposed to

Figure 1. Continuum reflectance Rc(475nm) and O2−O2 slant
column density N s

O2−O2
as a function of τ(550nm) and aerosol

layer pressure for the following conditions: climatology mid-
latitude summer temperature, NO2, O3 and H2O profiles, θ0= 32◦,
θ = 32◦, surface pressure of 1010 hPa and fine aerosol particles
(α= 1.5, g= 0.7): (a, b) surface albedo of 0.07 and aerosol ω0 of
0.95; (c, d) surface albedo of 0.03 and aerosol ω0 of 0.95; (e, f) sur-
face albedo of 0.07 and aerosol ω0 of 0.9.

be homogeneous (i.e. same size and optical properties). ALH
is then expressed by ALP, in hPa, defined as the mid-pressure
of this scattering layer.

Qualitatively, aerosols have two separate effects on the av-
erage light path and therefore on the O2−O2 absorption sig-
nal at the top of the atmosphere (TOA). These two effects
are similar to that of aerosols and clouds on NO2 absorp-
tion signal (Leitão et al., 2010; Chimot et al., 2016): (1) a
shielding effect, i.e. a decreased sensitivity within and be-
low the aerosol layer due to a reduced amount of photons
coming from the TOA and reaching the lowest part of the
atmosphere compared to an aerosol-free scene; (2) an en-
hancement (albedo) effect, i.e. an increased sensitivity within
and above the aerosol layer as more photons are scattered
back towards the sensors, and thus a larger fraction of de-
tected photons that samples the part of the atmosphere above

www.atmos-meas-tech.net/10/783/2017/ Atmos. Meas. Tech., 10, 783–809, 2017

http://www.aeronomie.be/spectrolab/o2.htm


788 J. Chimot et al.: Aerosol retrievals from the OMI O2−O2 spectral band

the aerosol layer. Shielding then leads to a reduced O2−O2
absorption while enhancement may increase the O2−O2 ab-
sorption, especially for low cloud or aerosol layers. The over-
all effect (enhancement vs. shielding) depends on the aerosol
optical properties, the total column τ and ALP.

OMI Rc(475nm) is directly and primarily affected by the
total column τ of particles present in the observed scene. In-
deed, Rc increases with increasing τ independently of the
ALP (see Fig. 1a). This mostly results from the influence of
aerosols on the number of detected photons and on the addi-
tional scattering effects observed in the scene compared to
an aerosol-free scene. However, the magnitude of this in-
crease relies on aerosol optical properties and the surface
brightness. As a consequence, Rc is also affected by aerosol
ω0, phase function and the surface albedo A. Indeed, Rc de-
creases with decreasing ω0 and over a darker surface (i.e.
smaller A value) for all the τ values (see Fig. 1c and e).
The importance of these parameters is further discussed in
Sects. 5 and 6. Note that, in addition, the reflectance is also
driven by the geometry angles: i.e. viewing zenith angles θ ,
θ0 and relative azimuth angle defined as the difference be-
tween viewing and zenith azimuth angles φ−φ0. An increase
of θ or θ0 will lead to longer average light path and thus
will amplify aerosol related additional scattering effects (for
a given τ ).

OMI N s
O2−O2

relies on the O2−O2 absorption magnitude
along the average light path in the whole atmosphere. It is
driven by the overall shielding or enhancement effect of pho-
tons by the O2−O2 complex in the visible spectral range due
to the presence of particles. As depicted in Fig. 1b, N s

O2−O2
decreases with decreasing ALP. This is a direct consequence
of a larger shielding effect applied by aerosols located at
higher altitudes (i.e. part of the O2−O2 complex located be-
low the aerosol layers are shielded). Nevertheless, in the case
of low τ values (i.e. ≤ 0.5), N s

O2−O2
does not significantly

vary with respect to ALP. This shows that a low amount of
aerosols has very little impact on O2−O2 absorption mea-
surements.

However, as depicted in Fig. 1b, d and f, not only ALP
but also τ directly influences the slant O2−O2 absorption
since both parameters simultaneously affect the average path
followed by the photons, and therefore the overall shielding
or enhancement effect. At a given altitude, an increase of τ
leads to a decrease of N s

O2−O2
. The slope of this decrease de-

pends on the aerosol altitude (i.e. higher for particles at high
altitude). Note that both ω0 and A also affect N s

O2−O2
, but

this effect is smaller than τ . For example, a reduced ω0 and
A lead to a small decrease of N s

O2−O2
(see Fig. 1d and f).

As a consequence, (1) the single parameter N s
O2−O2

con-
tains information on both τ and ALP. These parameters can-
not be separated from this unique variable alone. Therefore,
if τ is not accurately known, there will likely be an ambigu-
ity when analysing N s

O2−O2
to retrieve ALP. (2) if an exter-

nal or prior τ estimate is not available, then the two parame-
tersN s

O2−O2
andRc(475nm) could be simultaneously and di-

rectly combined to retrieve ALP provided that one can accu-
rately and independently retrieve τ from Rc(475nm). Then,
in that condition, OMI Rc(475nm) may help to distinguish
both τ and ALP contributions in N s

O2−O2
. However, the si-

multaneous effects of aerosol ω0 and A on Rc (as discussed
above), and therefore their associated uncertainties, will im-
pact the feasibility of retrieving τ from OMI measurements.
It may then degrade the retrieved ALP performances. (3) τ ,
Rc and N s

O2−O2
have a non-negligible correlation. Indeed, an

increase of τ results in a simultaneous increase of Rc and
N s

O2−O2
. Therefore, it has to be noted that these two last pa-

rameters are not independent and combining them does not
provide two independent pieces of information.

Overall, the impact of aerosol particles on the OMI
O2−O2 spectral band is similar to cloud particles. This
explains in part the difficulty to distinguish aerosols from
clouds. In cases with a mix of aerosols and clouds, there is an
ambiguity between Rc, τ and the OMI effective cloud frac-
tion on the one hand and N s

O2−O2
, ALP, τ , the OMI effec-

tive cloud pressure and fraction on the other hand (Boersma
et al., 2011; Castellanos et al., 2015; Chimot et al., 2016).
Therefore, this study only focuses on cloud-free reflectance
to avoid this complexity.

4 Design of the neural network retrieval algorithms

The retrieval algorithms developed for this paper are based
on the PyBrain software (Schaul et al., 2010). PyBrain is a
versatile machine learning library written in Python designed
to facilitate both the application of and research on premier
learning algorithms such as recurrent NNs. It includes sev-
eral functions such as supervised learning algorithms, feed
forward network design and error back-propagation compu-
tations. Only the main developments specific to the present
study are explained and discussed in the next subsections.
For more details related to the PyBrain specificities, the
reader is encouraged to read Schaul et al. (2010).

The multilayer perceptron (MLP) neural networks have
been widely used and acknowledged for decades in the field
of remote sensing (Atkinson and Tatnall, 1997). Indeed, most
retrieval problems in this field are ill posed and non-linear.
Thus, the associated inverse problems can only be addressed
by including a priori information and relying on statistical
analysis. Since aerosol retrieval from passive spectral mea-
surements is well known as a non-linear inverse problem, the
MLP technique represents a powerful approach to design a
retrieval algorithm in a fast and robust way. The basic idea is
to build an optimal interpolator system to make the link be-
tween OMI 477 nm O2−O2 measurements and the retrieved
ALP and τ(550nm) (see Fig. 1). However, knowledge must
be acquired by the NNs by means of a supervision database.
The following sections summarize then the design of the de-
veloped algorithms (see Sect. 4.1), the generated supervision
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Figure 2. Diagram of multilayer perceptron (MLP) neural net-
work (NN) architecture designed for aerosol layer pressure (ALP)
and aerosol optical thickness τ retrieval algorithms from the OMI
O2−O2 spectral band at 477 nm. The input parameters are based on
the list given in Table 1. The different considered approaches for
the MLP design and their applications are more detailed in Sect. 3.
Each circle represents a specific processor (named neuron) includ-
ing either an input–output variable (in the input–output layer) or
the activation function (i.e. sigmoid function in the hidden layer).
The synaptic weights ω ensure the connections of neurons between
two consecutive layers. A weighted sum

∑
is performed before

the transport through the activation function. Note the presence of
the bias neurons, prior to the activation functions in the hidden lay-
ers. For simplicity, bias neurons are commonly visualized as val-
ues added to each neuron in the input and hidden layers of a net-
work, but in practice are treated in exactly the same manner as other
weights: all biases are simply weights associated with vectors that
lead from a single node whose location is outside of the main net-
work and whose activation is always 1. While the synaptic weights
essentially change the steepness of the activation functions, the bias
neurons allow to modify the origin of these functions from 0 to pos-
itive or negative values.

database (see Sect. 4.2) and the employed learning process
(Sect. 4.3).

4.1 MLP network approach: application to the OMI
O2−O2 aerosol retrievals

Artificial NNs are a family of models related to the machine
learning and the artificial intelligence domain (Luger and
Stubblefield, 1998). They are used to reduce the number of
calculations of functions requiring a large number of inputs

and being generally unknown (or not well defined). The idea
is to approximate them by parameterized and more simple
functions. Input and output signals are then interconnected
by a set of activation functions and a set of weights associ-
ated with each of them (Luger and Stubblefield, 1998). In the
context of this work, no invertible analytical function exists
that describes the dependence of slant columns and contin-
uum reflectances on aerosols (see Sect. 2.3). Thus, the idea of
developing neural networks here is to identify input–output
relationships directly from a well-known training ensemble.
The choice of an NN approach relies on its advantages com-
pared to more conventional methods such as linear regres-
sion, linear interpolation in a LUT or the optimal estimation
method (OEM). In particular, it enables (1) very fast com-
putations with modern computers in spite of the number of
required parameters; (2) optimized interpolation technique
even in the case of non-linear statistical modelling and so,
potentially, lower systematic biases compared to a linear in-
terpolation; and (3) reduced memory use compared to a LUT
with a very high sampling.

As illustrated in Fig. 2, the designed NNs rely on a multi-
layer architecture, based on the MLP technique, composed
of parallel processors (i.e. neurons) organized in distinct lay-
ers (Rumelhart et al., 1986). Such an architecture allows us
to separate non-linear data and generally consists of three (or
more) types of layers. The first layer includes all the required
input variables. The last layer includes all the desired output
data (or here retrievals). The intermediate layers are usually
referred as hidden layers and contain the activation functions.
All these layers are connected via neural links: two nodes or
neurons i and j between two consecutive layers have synap-
tic connections associated with a synaptic weight ωij . Each
neuron j computes a weighted sum of its N xi information
sent from the neurons of the previous layer (see Eq. 6). Then,
this weighted sum is transported through a non-linear math-
ematical function before being passed to the next layer (see
Eqs. 5 and 6). Here use is made of the classical sigmoid func-
tion:

σ(x)=
1

1+ exp(−x)
. (5)

The output zj of the neuron j in the hidden layer is thus
given by

zj = σ

(
N∑
i=1

ωij · xi

)
. (6)

The overall set W of synaptic weights ωij contains all the
information about the network (i.e. its neural architecture de-
fined by a specified number of layers, neurons and connec-
tions). When the transport reaches the output layer, it forms
the network output.

The chosen neural architecture is the following (see
Fig. 2). The input layer is composed of seven parameters that
include (1) θ , θ0, φ−φ0, surface pressure Ps, surface albedo
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A, and (2) either Rc(475nm) and N s
O2−O2

for τ(550nm)
and ALP retrieval (named NNRc,N

s
O2−O2

) or τ(550nm) and
N s

O2−O2
for ALP retrieval (named NNτ,N s

O2−O2
).

The output layer is, for each NN retrieval algorithm, com-
posed of only one output variable: either τ(550nm) or ALP.
In total, three NN retrieval algorithm configurations are then
selected and used at the end: NNRc,N

s
O2−O2

for τ(550nm) re-
trieval and NNRc,N

s
O2−O2

and NNτ,N s
O2−O2

for ALP retrieval.
The choice to use either NNRc,N

s
O2−O2

or NNτ,N s
O2−O2

will impact the accuracy of the ALP retrieval results (see
Sects. 5.2 and 5.3).

4.2 Generation of the supervision database: aerosol
properties and simulations

The MLP neural networks must be accurately trained from
a well-known data set. They are then able to generalize the
inverse problem by predicting the aerosol retrievals from in-
put observations that have never been seen before. For that
purpose, a learning database must be carefully designed and
generated. It must be representative of the entire distribution
of (input–output) values that can likely be encountered in
the OMI observations. As a consequence for the MLP al-
gorithms, a large quantity of data are often required for the
learning process. However, very large learning data set can
be extremely time-consuming in terms of generation and then
NN training.

Training a neural network based on a large ensemble of
synthetic data set has been widely employed in atmospheric
retrieval science such as for CO2 and CH4 (Crevoisier et al.,
2009a, b), aerosol (Di Noia et al., 2015) and cloud properties
(Loyola, 2004; Loyola et al., 2007, 2010). This study created
our own training data set based on simulations from the De-
termining Instrument Specifications and Analyzing Methods
for Atmospheric Retrieval (DISAMAR) software of KNMI
(de Haan, 2011). DISAMAR includes a radiative transfer
model and different retrieval methods. The radiative transfer
model is based on the Doubling Adding KNMI (DAK) model
(de Haan et al., 1987; Stammes, 2001) and thus computes
the reflectance and transmittance in the atmosphere using the
adding/doubling method. This method calculates the internal
radiation field in the atmosphere at levels to be specified by
the user and takes into account Rayleigh, aerosol and cloud
scattering and trace gas and aerosol absorption. Scattering
by aerosols is simulated with a Henyey–Greenstein scatter-
ing phase function 8(2) (Hovenier and Hage, 1989):

8(2)=
1− g2

(1+ g2− 2g cos2)3/2
, (7)

where 2 is the scattering angle. The phase function is then
parameterized by the asymmetry parameter g, which is the
average of the cosine of the scattering angle. It can vary be-
tween−1 and 1, from back-scattering through isotropic scat-
tering to forward scattering. Following the DISAMAR con-

figuration, τ values in the simulations are specified at the ref-
erence wavelength of 550 nm. The Ångström exponent α de-
scribes the spectral dependence of τ .

ALP is the main target parameter since this is one of the
main parameters describing the average light path distribu-
tion in the tropospheric NO2 AMF computation. The sec-
ond target is τ(550nm) since this information may be re-
quested for a good ALP retrieval quality. We thus assume that
we do not need at this level to define more realistic aerosol
models for every aerosol scene. With a reference asymme-
try parameter of g = 0.7, the intermediate value typically ob-
served (Dubovik et al., 2002), the Henyey–Greenstein func-
tion is known to be smooth and reproduce the Mie scatter-
ing functions reasonably well for most of aerosol types. This
approach is also used for the preparation of the operational
aerosol layer height retrieval algorithm from Sentinel-5 Pre-
cursor (Sanders et al., 2015) and for explicit aerosol correc-
tions in the AMF calculation when retrieving trace gases such
as tropospheric NO2 (Spada et al., 2006; Wagner et al., 2007;
Castellanos et al., 2015).

The ensemble of parameters and associated values used
for generating the learning database is detailed in Table 1.
About 460 000 spectral simulations, over the O2−O2 spec-
tral band (460–490 nm), were generated, assuming different
satellite viewing and solar geometries,A, Ps and aerosol pol-
lution levels. Scenes with too large angles (i.e. θ0 ≥ 65◦) and
too-bright surfaces (i.e. A> 0.1) are excluded. For each of
these simulations, Rc(475nm) and N s

O2−O2
were deduced

from the DOAS fit equations Eqs. (3) and (4). Aerosols are
specified for a standard case, assuming fine particles with a
unique value of α= 1.5 and g = 0.7. Aerosol profiles are pa-
rameterized by scattering layers with constant aerosol vol-
ume extinction coefficient and ω0 and with a fixed pressure
thickness. In order to investigate the assumptions related to
the single scattering albedo properties ω0, two typical val-
ues are considered: ω0= 0.95 and 0.9. Contrary to the other
variables, ω0 is not known for each OMI pixel and thus can-
not be used as an explicit input parameter by the designed
NNs. Moreover, it cannot be retrieved from this band since it
is supposed to affect Rc(475nm) andN s

O2−O2
, similarly to τ .

Therefore, two sets of NN models are developed for different
purposes:

– one set of three MLP NN algorithms (NNRc,N
s
O2−O2

for τ(550nm) retrieval, NNRc,N
s
O2−O2

and NNτ,N s
O2−O2

for ALP retrieval) is trained with a learning database
including aerosol spectral simulations assuming
ω0= 0.95;

– one set of three MLP NN algorithms (NNRc,N
s
O2−O2

for
τ(550nm) retrieval, NNRc,N

s
O2−O2

and NNτ,N s
O2−O2

for
ALP retrieval) is trained with a learning database in-
cluding aerosol spectral simulations assuming ω0= 0.9.

The choice to use one of these sets will impact the accu-
racy of the retrieval results.
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Table 1. Ensemble of parameters and values associated with the synthetic learning data set (see Sect. 3.2). Aerosols are simulated with a
Henyey–Greenstein scattering phase function (Hovenier and Hage, 1989).

Parameter List of values

Solar zenith angle (θ0) (◦) 9.267, 21.167, 32.892, 44.217, 54.940, 64.814
Viewing zenith angle (θ ) (◦) 0.0, 9.267, 21.167, 32.892, 44.217
Relative azimuth angle (φ−φ0) (◦) 0., 30., 60., 90., 120., 150., 180.
Surface pressure (Ps) (hPa) 1013., 963.
Surface albedo (A) 0.025, 0.05, 0.075, 0.1
τ(550nm) 0.0, 0.05, 0.1, 0.2, 0.4, 0.5, 0.6, 0.9, 1.25, 2.0, 3.0
Aerosol layer pressure (ALP) (hPa) 975., 925., 850., 750., 700., 650., 550., 350., 150.
Aerosol single scattering albedo (ω0) 0.9, 0.95
Ångström coefficient (α) 1.5
Asymmetry parameter (g) 0.7

4.3 Optimization of the learning process and selection
of the best NN architecture

Prediction of the optimal NN architecture (i.e. number of
neurons and hidden layers) is generally not possible as these
values are strongly specific to the given problem (Atkinson
and Tatnall, 1997). While it has been theoretically proven
that a single-hidden-layer MLP network with non-linear ac-
tivation functions may represent any non-linear continuous
function (Haykin, 1999), a two-hidden-layer MLP may ap-
proximate any function to any degree of non-linearity taking
also into account discontinuities (Sontag, 1992). To identify
the best NN architecture for each aerosol retrieval parame-
ter (τ and ALP) and for each configuration (NNRc,N

s
O2−O2

or
NNτ,N s

O2−O2
; see Sect. 3.1), several architectures are trained

and then evaluated: one single hidden layer with a variable
number of neurons (between 9 and 70) and two hidden layers
(between 15 and 70 neurons on the first layer and between 10
and 40 on the second layer). Then, the optimal NN architec-
ture is selected based on the best computed evaluation score.
In total, about 96 different MLP architectures, for each con-
figuration, were evaluated.

For one given NN architecture, the training process is the
optimization technique that estimates the optimal network
parameters W of synaptic weights σij (see Sect. 3.1). For
that purpose, an error function E must be minimized. This
error function measures, for a set of p representative situa-
tions for which inputs and outputs (i.e. τ(550nm) and ALP)
are known, the mismatch between the neural network outputs
oi and the true outputs ti as follows:

E =
1
2

p∑
i=1
(oi− ti)2. (8)

This error function minimization follows here the error
back-propagation algorithm as specified by Rumelhart et al.
(1986). It is a stochastic steepest descent algorithm well
adapted to the MLP hierarchical architecture. The learning
step is made sample by sample, iteratively and stochastically

selected in the training data set. The network is initialized
with random synaptic weights. At each iteration, the error is
computed and then propagated backwards from the output
layer. The processes of error back-propagating and feeding
forward signals are repeated iteratively until the error func-
tion is minimized or the maximum number of iterations is
reached (i.e. 500).

During the training phase, the considered network archi-
tecture must obtain an optimal generalization performance:
i.e. the network performance should not degrade significantly
when data set other than the training one is analysed. Stan-
dard NN architectures, like the fully connected MLP, gener-
ally have a too large parameter space and are prone to overfit-
ting. Although the network performance seems to constantly
improve on the training sets at each iteration, it can actu-
ally begin to worsen (in terms of errors) on unseen data sets.
Therefore, a verification step is performed, over the last 15
iterations, to detect this overfitting moment (i.e. no signifi-
cant variation of E) and stop the training phase. This process
is called early stopping. Finally, to ensure that the system is
not trapped in local minima during the error function min-
imization, the learning phase (training plus verification) is
repeated three times, the synaptic weights being randomly
initialized at the beginning of each training phase. The net-
work system presenting the best evaluation score (see Eq. 8)
is then selected. All these precautions are carried out by ran-
domly splitting the learning data (see Table 1) into three inde-
pendent sets: training, verification and evaluation. They con-
sisted of 70, 15 and 15 %, respectively.

Figure 3 depicts the box–whisker plots of the square of
errors obtained over the ensemble of training–verification–
evaluation data set for τ(550nm) and ALP retrieval and
for NNRc,N

s
O2−O2

configuration, assuming ω0 = 0.95. For
τ(550nm) retrievals, although the NNs with 40 and 70 neu-
rons on one hidden layer do reasonably well, the scores
show improved values when two hidden layers are used.
The ALP retrieval scores are significantly larger than for τ
(a factor of 100). This is a direct consequence that ALP is
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less well constrained by the spectral measurements: lower
pieces information are available compared to τ , in particu-
lar for scenes dominated by low τ values. While the NNs
with one hidden layer do not show any significant improve-
ments when increasing number of neurons, better scores are
only obtained with two hidden layers. Overall, the similar
behaviour of training–verification–evaluation scores validate
that the trained NNs are generalized enough to be able to re-
produce similar variation of the scores on other independent
data set. The identified best NN algorithms are thus found
with two hidden layers, including between 25 and 70 neu-
rons on the first layer and between 10 and 20 neurons on the
second layer, depending on the considered configuration and
retrieved parameter (see Sect. 2.3).

5 Sensitivity analyses on synthetic data set

The robustness of the trained and selected NN retrieval al-
gorithms is assessed by applying them to independent sim-
ulations not present in the learning (training–verification–
evaluation) database. Simulated spectra are noise free and
only include aerosol particles (no clouds). The sensitivity of
τ(550nm) and ALP retrievals is verified for different A and
aerosol properties (ω0, τ , ALP). Rc(475nm) andN s

O2−O2
are

derived from the spectra and provided as inputs to the NNs.
The impact of uncertainties on surface albedo, aerosol model
and N s

O2−O2
are analysed. Consistent geophysical conditions

(temperature, NO2 and O3 profiles) are considered between
these simulations and those included in the learning database.
All the analyses performed here are summarized in Table 2.

5.1 Aerosol optical thickness retrievals

Figure 4 compares the retrieved to the true τ(550nm) values
of the simulated spectra, and how uncertainties on ω0, g and
A degrade the retrieval quality. Overall, retrieved and true
τ(550nm) values are very well correlated for all the types of
surface, assuming no error in the assumed surface albedo and
aerosol properties. This confirms the success of the learning
process implemented in Sect. 4.2 and 4.3 and the use of the
NN approach.

The assumed aerosol properties (ω0 and phase function
through g), and so the choice of the trained NN algorithm,
are of high importance. They change the slope between re-
trieved and true τ values and drastically affect the retrieved
τ(550nm) accuracy. If the assumed ω0 (i.e. 0.95) through
the simulations in the learning database is too high (true
ω0 = 0.9), retrieved τ is then underestimated: i.e. a bias of
−0.8 for τ(550nm)= 2 and −0.1 for τ(550nm)≤ 0.5 (see
Fig. 4a). This is a direct consequence of reduced scatter-
ing efficiency as more photons are absorbed instead of be-
ing scattered back towards the satellite sensor. The measured
Rc(475nm) is then lower (see Fig. 1). Reciprocally, an as-
sumed too low aerosol ω0 (i.e. true ω0 = 1.0) leads to an

overestimation of retrieved τ(550nm): i.e. a bias of 1.0 for
τ(550nm)= 2 (see Fig. 4a).

Figure 4b illustrates retrieved τ(550nm) bias due to the
difference between the assumed g in the learning database
and in the synthetic spectra. While g = 0.7 is the reference
value for most of aerosols, scenes with g = 0.6 are related
to finer and weakly absorbing particles with a somewhat
reduced forward scattering direction such as carbonaceous
aerosols, desert dust and volcanic dash models as given by
the ESA aerosol CCI project (de Leeuw et al., 2013). Val-
ues of g = 0.8 are associated with larger particles and an in-
creased forward scattering direction such as cirrus (Sanders
et al., 2015). An overestimation of g (i.e. assumed g= 0.7
while true g= 0.6) leads to an increased retrieved τ value
(i.e. positive bias) because of less photons scattered towards
the surface, and therefore more photons scattered back to-
wards the satellite sensor, compared to what is theoretically
assumed. Reciprocally, an underestimation of g (i.e. assumed
g= 0.7 while true g= 0.8) leads to a decreased retrieved τ
value (i.e. negative bias) due to less photons scattered back
towards the satellite sensor and more towards the surface
compared to the assumption. Absolute bias values can ex-
ceed 0.5 for τ(550nm)= 1.5 while they stay close to 0.25
for τ(550nm)= 0.5.

Errors in surface albedo also lead to biases in retrieved
τ(550nm) (see Fig. 4c). Overall, biases are larger over
scenes with small τ(550nm) values. The reason is the dom-
inance of surface reflection in this regime. Only in cases of
high amount of aerosols do aerosol scattering signals become
dominant and surface reflection uncertainties have less im-
pact. An underestimated (overestimated) surface albedo re-
sults in a negative (positive) retrieved τ(550nm) bias. This is
directly related to the change in the measured OMI Rc (see
Fig. 1). Surface albedo uncertainties in the range of 0.025–
0.05 lead to absolute biases close to 0.5 for τ(550nm) in
the range of 0.0–0.5, smaller than 0.25 for τ(550nm)= 2.0.
Typical differences in climatological surface albedo from
the TOMS and the global ozone monitoring experiment
(GOME; Koelemeijer et al., 2003), or between OMLER and
the MODIS black-sky albedo (Kleipool et al., 2008), are
known to be up to 0.02.

5.2 Aerosol layer pressure retrievals

Figures 5 and 6 depict the expected performances of the de-
veloped NN algorithms for ALP retrievals. Over scenes with
τ(550nm) in the range of 0.5–1.0, and assuming no error in
prior A and the employed aerosol model, ALP retrievals are
relatively stable presenting biases close to 100 hPa. Only for
τ(550nm)≥ 1.0, biases are smaller than 50 hPa. The accu-
racy of the retrieved ALP generally increases with increasing
τ . Indeed, assuming true ALP of 850 hPa (see Fig. 6), pos-
itive biases larger than 400 hPa are found for τ(550nm)≤
0.5. Note that this behaviour is observed for all the NN con-
figurations (NNRc,N

s
O2−O2

and NNτ,N s
O2−O2

). A box–whisker
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Figure 3. Box–whisker plots of the square of errors (see Eq. 7) obtained for different neural network (NN) configurations, at the end of
their training, over the supervised data set (training validation test). The NNs XX have one hidden layer, where XX indicate the number
of neurons. The NNs YYXX have two hidden layers, where YY and XX are the number of neurons in the first and second hidden layer,
respectively: (a) NNs for τ retrieval and (b) NNs for ALP retrieval. Note that errors are computed over normalized output and true τ(550nm)
and ALP values (between −1 and 1) due to the definition of the sigmoid functions (see Sect. 3.1).

plot, in Fig. 7, illustrates the variability of the ALP NN bi-
ases as a function of τ(550nm) over all the simulations con-
tained in the entire learning database (as defined and used
in Sect. 3). This confirms that, in spite of the strict training–
verification–evaluation process achieved in Sect. 4.3, the NN
ALP retrievals are not expected to be accurate for small
τ(550nm) values, especially below 0.5. The reason is di-
rectly linked to the magnitude of the O2−O2 shielding ef-
fect and its combined dependence on aerosol amount (or τ )
and aerosol altitude (see Fig. 1 and Sect. 3.2). Because low
amount of aerosols have very limited effects on the O2−O2
absorption (see Sect. 3.2), even advanced interpolation tech-
niques like NNs have difficulties to interpret the associated
signal. When τ increases, the O2−O2 shielding effect am-
plifies and the algorithms are more able to link the O2−O2

absorption signal to ALP. Overall, even for small τ(550nm)
values (like 0.5), the retrieved aerosol pressures correlate
with the true values in spite of very poor accuracy (see Fig. 6a
and c) .

A very accurate prior τ information as input is required
to generally improve the ALP retrieval performances. As ex-
plained in Sect. 3.2, using NNRc,N

s
O2−O2

implicitly relies on
the τ(550nm) retrieval capability from OMI Rc(475nm).
Using NNτ,N s

O2−O2
with the true τ(550nm) value as input

(thus no error) is expected to deliver higher performances.
Firstly, it allows us to improve the accuracy of the ALP re-
trieval over scenes with low τ and particles located at high
altitude (above 800 hPa or ∼ 2 km). Indeed, in Fig. 5b, for
τ(550nm)= 0.5 and ALP between 750 and 850 hPa, ALP
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Table 2. Summary of OMI τ(550nm) and ALP retrieval error sources (either from NNRc,N
s
O2−O2

or from NNτ,N s
O2−O2

combined with

MODIS τ(550nm)) and budget as evaluated by the sensitivity analyses on synthetic data set (see Sect. 5) or on 3-year (2005–2007) observa-
tion measurements over north-east Asia (see Sect. 6).

Error source τ(550 nm) From NNRc,N
s
O2−O2

: From NNτ,N s
O2−O2

ALP in hPa ALP in hPa
ALH in m ALH in m

τ(550nm):
True τ(550 nm)≤ 0.5 (see Sect. 5) – [250 : 400] hPa [150 : 400] hPa
True τ(550 nm)= [0.5 : 1.0] (see Sect. 5) – 100 hPa 100 hPa
True τ(550 nm)≥ 1.0 (see Sect. 5) – ≤ 50 hPa ≤ 50 hPa
MODIS τ(550nm)≥ 1.0 (see Sect. 6) – 650–1140 m 260–800 m

∂τ(550 nm)= 0.25 (see Sect. 5) – – 50 hPa(true τ = 0.6–1.0)
– – Almost zero (true τ ≥ 1.0)

Surface albedo:
∂A= 0.05 (see Sect. 5) 0.25–0.5 > 100 hPa (true τ = 0.5–1.0) 50–100 hPa (true τ = 0.5–1.0)

0–50 hPa (true τ ≥ 1.0)
OMLER vs. MODIS black sky (see Sect. 6) 0.05–0.1 ≤ 730 m (MODIS (τ ≥ 1.0) ≤ 180 m (MODIS (τ ≥ 1.0)

Aerosol single scattering albedo (∂ω0 = 0.05)
(see Sect. 5) 0.8 (true τ = 2) > 100 hPa (true τ = 0.5–1.5) 0–50 hPa (true τ ≥ 0.5)

0.1 (true τ = 0.5) 0–100 hPa (true τ ≥ 1.0)
(see Sect. 6) 0.5 (MODIS τ = 1.5) 540–1200 m (MODIS (τ ≥ 1.0) 560–660 m (MODIS τ ≥ 1.0)

Asymmetry parameter (∂g = 0.1) (see Sect. 5) 0.5 (true τ = 1.5) 200–400 hPa (true τ = 0.5–1.0) 0–50 hPa (true τ ≥ 0.5)
0.25 (true τ = 0.5) 50 hPa (true τ ≥ 1.0)

O2−O2 SCD (∂N s
O2−O2

) (see Sect. 5):
∂N s

O2−O2
= 0.05 mol2cm−5 – 19 ± 29 hPa 19 ± 29 hPa

∂N s
O2−O2

= 0.25 mol2cm−5 – 57 ± 31 hPa 57 ± 31 hPa

O2−O2 SCD temperature correction (see Sect. 6) – 50–300 m (MODIS (τ ≥ 1.0) 50–300 m (MODIS τ ≥ 1.0)

biases are reduced from 250–350 hPa with NNRc,N
s
O2−O2

to
150–250 hPa with NNτ,N s

O2−O2
and true τ(550nm) value. For

particles higher than 650 hPa (or ∼ 3.5 km), however, no im-
provements are observed. The low sensitivity to retrieve ALP
when particles are located at a very high altitude is directly
due to the O2−O2 complex and its vertical distribution. This
was demonstrated by Park et al. (2016): O2−O2 concentra-
tion exponentially decreases with increasing atmospheric al-
titude.

Secondly, impacts due to uncertainties on the chosen sur-
face albedo and aerosol model are reduced. Assumptions on
aerosol ω0 drive the interpretation of the shielding of the
O2−O2 dimers by aerosols. ω0 can perturb ALP retrievals
obtained with NNRc,N

s
O2−O2

more than 100 hPa (see Fig. 5a).
These perturbations are reduced to the range of 0–100 hPa
over scenes with high τ(550nm) values (larger than 1) only
for particles close to the surface, i.e. true ALP≥ 850hPa (see
Fig. 6a and c). Using NNτ,N s

O2−O2
with true τ(550nm) value

helps to mitigate these biases. All the ALP retrievals present
the same behaviours with respect to the particles altitude and
τ and biases lie in the range of 0–50 hPa (see Fig. 5b). Similar
conclusions are observed regarding uncertainties on g (see

Fig. 5c and d). Too high g values impact the ALP retrievals
from NNRc,N

s
O2−O2

over scenes with τ(550nm)≤ 1.0. Such
a bias is largely reduced with the NNτ,N s

O2−O2
configuration.

Surface albedo contributes to the length of the average
light path and thus affects N s

O2−O2
. Retrieved ALP biases

are maximum (several hundreds hPa) for τ(550nm)≤ 0.5
(see Fig. 8a and b). For τ(550nm) in the range of 0.5–
1.0, retrieved ALP are impacted by lower absolute values
(between 50 and 100 hPa on average) with NNτ,N s

O2−O2
,

while they remain too high with NNRc,N
s
O2−O2

. Over scenes
with τ(550nm)≥ 1.0, biases are reduced to 0–50 hPa since
aerosol scattering signals dominate over surface reflection.
The main cause of all these improvements is that using an
accurate prior τ information (or at least more than retrieved
OMI τ(550nm) from Rc(475nm)) allows a better distinction
of τ and ALP effects on the O2−O2 slant column density and
reduce impacts of A and ω0 uncertainties.

An accuracy better than 0.2 must be required on prior τ
information (see Fig. 8c). Indeed, a τ(550nm) bias of 0.25
can impact, in absolute, the retrieved ALP up to 50 hPa for
τ(550nm) in the range of 0.6–1.0. For τ(550nm)≥ 1.0, im-
pact on ALP becomes almost null. Therefore, using MODIS
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Figure 4. Simulated τ (550 nm) retrievals, based on noise-free syn-
thetic spectra with aerosols, as a function of true τ(550nm). The
assumed geophysical conditions are temperature, H2O, O3 and
NO2 from climatology mid-latitude summer; θ0= 25◦, θ = 25◦ and
Ps= 1010 hPa. All particles are located between 800 and 900 hPa
and α= 1.5. Note that the scenarios with lines and similar sym-
bols general tend to fall on top of each other. The reference aerosol
scenario is plotted with continuous lines and circle symbols and
includes consistent aerosol optical properties with the supervision
data set used to train the neural network algorithm: i.e. ω0= 0.95,
g= 0.7. All the retrievals are achieved with the NN algorithm
trained with ω0= 0.95: (a) sensitivity of τ (550 nm) retrievals to the
aerosol single scattering albedo (true ω0= 0.95, 0.9 or 1.0); (b) sen-
sitivity of τ (550 nm) retrievals to the aerosol asymmetry parameter
(true g= 0.6, 0.7 or 0.8); (c) sensitivity of τ (550 nm) retrievals to
a surface albedo bias (∂Alb= 0.0, 0.025, −0.05) with ω0= 0.95,
g= 0.7.

τ as prior to NNτ,N s
O2−O2

is likely expected to show retrieved
ALP with a higher quality than with NNRc,N

s
O2−O2

. Indeed,
the current retrieved OMI τ(550nm) from Rc(475nm) does
not present a better accuracy than MODIS τ(550nm).

Figure 9 depicts the box–whisker distribution of ALP pre-
cision ε(∂N s

O2−O2
) due toN s

O2−O2
precision. Estimations are

obtained for fine and scattering particles (α= 1.5, ω0= 0.95,
g= 0.7). ε(∂N s

O2−O2
) is obtained from the half of ALP dif-

ferences between adding and deducting uncertainties of the

variables as follows:

ε(∂N s
O2−O2

)=
1
2
| ALP(N s

O2−O2
+ ∂N s

O2−O2
)

−ALP(N s
O2−O2

− ∂N s
O2−O2

) |, (9)

where ∂N s
O2−O2

is the uncertainty applied to N s
O2−O2

.
ε(∂N s

O2−O2
) values are computed for all combinations of

surface albedo 0.03–0.05–0.07 and θ0–θ = [25–25, 50–25,
25–45◦]. The reason to use this approach here is that, since
N s

O2−O2
precision is a random error (opposite to systematic),

it will directly impact the retrieved ALP precision instead of
leading to a systematic bias. A precision of N s

O2−O2
lying in

the range of 0.05–0.25 10−43 mol2cm−5 (i.e. at a first or-
der, 2–7 % of N s

O2−O2
) results in ALP uncertainties between

19 ± 29 and 57 ± 31 hPa on average for both NN configura-
tions (see Fig. 5c).

Overall all the estimated NN retrieval uncertainties are in
line with the theoretical sensitivity analyses of Park et al.
(2016), who found that the O2−O2 at 477 nm is signifi-
cantly influenced by aerosol optical properties (including
ω0), τ , particle size and A. In particular, a ω0 uncertainty of
10 % was demonstrated to lead to the aerosol effective height
(AEH) retrieval error ranging from 270 to 1440 m, depending
on the aerosol types. Errors were found larger for high par-
ticle altitude and low τ cases. A surface albedo uncertainty
of 0.02 was expected to impact AEH retrievals between 154
and 434 m on average. AEH error was frequently larger only
for low τ(550nm) (≤ 0.4) and high AEH (≥ 1 km).

6 Application to OMI observation measurements

6.1 Methodology

Aerosol retrievals, as described in the previous sections, are
performed on the OMI O2−O2 477 nm observations over
large industrialized continental areas in north-east Asia over
3 years, 2005–2007, and cloud-free scenes. All the asso-
ciated results are summarized in Table 2. The considered
north-east Asia area is defined by the range of latitude 25–
40◦ N and longitude 110–130◦ E, excluding the part over the
Gobi desert which presents a too-bright surface (as further
explained below).

Only OMI observations collocated with MODIS Aqua L2
aerosol product collection 6 are considered (see Sect. 2.2).
The reason is threefold: (1) to maximize the probability of
the selection of cloud-free OMI observation pixels domi-
nated by aerosol pollution; (2) to evaluate the retrieved OMI
τ(550nm) products by comparing with collocated MODIS
τ(550nm); and (3) to use the MODIS τ(550nm) as input of
the NNτ,N s

O2−O2
algorithm for retrieving the OMI ALP prod-

uct, assuming then this is the most accurate τ information
available for each collocated OMI observation pixel–MODIS
aerosol grid cell.
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Figure 5. Simulated ALP retrievals, based on noise-free synthetic spectra with aerosols, as a function of true τ . All the retrievals are achieved
with the two NN configurations (NNRc,N

s
O2−O2

and NNτ,N s
O2−O2

; see Sect. 3.1) trained with ω0= 0.95. The assumed geophysical conditions

are temperature, H2O, O3 and NO2 from climatology mid-latitude summer, θ0= 25◦, θ = 25◦ and Ps= 1010 hPa. The reference aerosol
scenario assumes fine scattering particles (α= 1.5, ω0= 0.95, g= 0.7) located between 800 and 900 hPa: (a, b) sensitivity of ALP retrievals
to the aerosol single scattering albedo (true ω0= 0.95 or 0.9) in the synthetic spectra; (c, d) sensitivity of ALP retrievals to the aerosol
asymmetry parameter (true g= 0.6, 0.7 or 0.8) in the synthetic spectra.

MODIS data are paired on a OMI pixel-by-pixel basis
when the distance between OMI pixel centre and MODIS
aerosol grid cell is smaller than 5 km and when both obser-
vation and product are acquired within 15 min. A threshold of
0.1 is applied to both OMI and MODIS cloud fraction: i.e. if
the OMI effective cloud fraction and/or the MODIS geomet-
ric cloud fraction (given in the same MODIS aerosol product
at 10 km resolution) has a cloud fraction value higher than
0.1, the OMI pixels are filtered out. However, since the OMI
effective cloud fraction is sensitive to the scattering aerosols,
it is well recognized that cloud-free observations with large
presence of scattering aerosols are frequently excluded as
well. In addition, a threshold of 0.1 is applied to the OM-
LER database in order to filter out too-bright surfaces (either
desert or snow-covered pixels).

The NN retrieval algorithms developed and selected in
Sect. 3 are used and evaluated here: NNRc,N

s
O2−O2

for
τ(550nm) and ALP retrievals and NNτ,N s

O2−O2
with MODIS

τ(550nm), from DT algorithm over land, as input for ALP
retrieval. As a reminder, retrieving ALP from NNRc,N

s
O2−O2

is implicitly similar than from NNτ,N s
O2−O2

but with the re-
trieved OMI τ(550 nm) as input (see Sects. 3.2 and 5.2). All
the NNs designed and trained with the two different ω0 (i.e.

0.9 and 0.95) are considered in order to investigate the impact
of ω0 assumptions.

These algorithms are applied on the OMI DOAS O2−O2
observations, available in the OMCLDO2 product (Acarreta
et al., 2004) which can be downloaded at http://disc.sci.gsfc.
nasa.gov/Aura/data-holdings/OMI/omcldo2_v003.shtml. As
explained in Veefkind et al. (2016), N s

O2−O2
depends on the

temperature profile due to the nature of dimers of which the
absorption scales with the pressure-squared instead of being
linear with pressure. Therefore, a simple temperature correc-
tion is here applied by using seasonal mean temperature pro-
files given by the National Centers for Environmental Pre-
diction (NCEP) analysis data. This correction is performed
through the computation of the γ factor (Veefkind et al.,
2016):

γ =
N s Ref

O2−O2
(λ)

N s Meas
O2−O2

(λ)
, (10)

with N sRef
O2−O2

, the O2−O2 SCD associated with the reference
temperature profile employed in the learning database, and
N sMeas

O2−O2
, the measured O2−O2 SCD related to the actual tem-

perature conditions. As a first and simple approximation, no
prior knowledge on aerosols is considered here. The main
reason is the low sensitivity to aerosol loading and altitude of
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Figure 6. Simulated ALP retrievals vs. true ALP for 2 τ values (0.5 and 1.5) and the two NN configurations (see Sect. 3.1) and for
the following conditions: temperature, H2O, O3 and NO2 from climatology mid-latitude summer, θ0 = 25◦, θ = 25◦, surface pressure of
1010 hPa and fine scattering aerosol particles (α= 1.5, ω0= 0.95, g= 0.7): (a) NNRc,N

s
O2−O2

and τ(550nm)= 0.5; (b) NNτ,N s
O2−O2

with

true τ(550nm) value as input and τ(550nm)= 0.5; (c) NNRc,N
s
O2−O2

and τ(550nm)= 1.5; (d) NNτ,N s
O2−O2

with true τ(550nm) value as

input and τ(550nm)= 1.5.

Figure 7. Box–whisker plots of retrieved aerosol layer pressure
(ALP) biases as a function of true τ(550nm) from NNRc,N

s
O2−O2

configuration over the whole learning data set.

this γ factor, for τ(550nm)≤ 2.0, compared to the change of
temperature profiles for the considered OMI observations.

Finally, retrievals are performed based on different as-
sumed surface albedo databases: either OMLER or MODIS
black-sky albedo (see Sect. 2.4). The MODIS black-sky
albedo is resampled to match the OMI pixel resolution by
calculating the average of all MODIS pixels falling within
the processed OMI pixel.

6.2 Aerosol optical thickness accuracy: on the
importance of the surface albedo and the assumed
aerosol properties

Figure 10 compares collocated retrieved OMI and MODIS
τ (550 nm). Similarly to the analyses on synthetic cases (see
Sect. 5.1), the change of assumed ω0 mostly perturbs re-
trievals of high τ values and thus the slope between OMI and
MODIS τ (550 nm). Increasing ω0 from 0.9 to 0.95 reduces
the retrieved τ values of about 0.5 for MODIS τ = 1.5. Over-
all a very good agreement is obtained assuming ω0= 0.9
for the seasons spring, autumn and winter (see Figs. 10
and 13): differences (OMI-MODIS) of τ (550 nm) lie be-
tween −0.18 ± 0.24 in winter and −0.02 ± 0.45 in spring.
In summertime, the best agreements are found by assuming
ω0= 0.95 with differences in the range of−0.06± 0.31 (see
Figs. 8 and 12).

From the end of autumn to spring, westerly winds trans-
port mineral dust from the Taklimakan and Gobi deserts in
northern China and Mongolia. These dust particles are then
frequently mixed with the local anthropogenic aerosols re-
leased from the industrial activities, vehicle emissions and
coal burning (Eck et al., 2005). South-east Asia is affected in
spring by biomass-burning activity (mostly over the penin-
sular), which is a major source of carbonaceous aerosols in
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Figure 8. Simulated ALP retrievals, based on noise-free synthetic spectra with aerosols, as a function of true τ . The retrievals are achieved
with the NN configurations (NNRc,N

s
O2−O2

and/or NNτ,N s
O2−O2

; see Sect. 3.1) trained with ω0= 0.95. The assumed geophysical conditions

are temperature, H2O, O3 and NO2 from climatology mid-latitude summer, θ0= 25◦, θ = 25◦ and Ps= 1010 hPa. The reference aerosol
scenario assumes fine scattering particles (α= 1.5, ω0= 0.95, g= 0.7) located between 800 and 900 hPa: (a) and (b) sensitivity of ALP
retrievals to a surface albedo bias (∂Alb= 0.0, 0.025, −0.05) with NNRc,N

s
O2−O2

and NNτ,N s
O2−O2

; (c) sensitivity of ALP retrievals to a

τ(550nm) bias (∂τ(550nm)= 0.0, 0.15, −0.25) with NNτ,N s
O2−O2

.

Figure 9. Box–whisker plots of ALP retrieval biases induced by
O2−O2 SCD N s

O2−O2
uncertainties. The assumed conditions are

fine scattering aerosols (α= 1.5, ω0= 0.95, g= 0.7), climatology
mid-latitude summer temperature, NO2, O3 and H2O profiles, sur-
face pressure of 1010 hPa, surface albedo of [0.03–0.05–0.07] and
combination of θ0− θ of [25–25, 50–25, 25–45◦].

the world. Jethva et al. (2014) show that AERONET and
OMAERUV retrieve aerosol ω0 values on average between
0.9 and 0.95 in these regions: most of the sulfate particles
have ω0 close to 0.95, while smoke and dust present lower

values (closer to 0.9, even below in some cases). These anal-
yses confirm that the assumption of ω0 = 0.95 should be con-
sidered as an upper limit for the OMI τ retrievals in autumn,
winter and spring, while a lower ω0 (i.e. 0.9) is likely more
appropriate and thus allows, on average, more reliable τ re-
trievals. In summertime, because of reduced amounts of dust
particles, τ values are more representative of local anthro-
pogenic urban pollution, with a higher daily variability in
the optical and scattering properties. Lee et al. (2007) and
Lin et al. (2015) also found higher ω0 values over north-east
Asia in summer (0.95–0.96) and lower for the other seasons
(0.88–0.92). Overall, assuming the same constant value (i.e.
average) for all the acquired OMI pixels probably leads to
some errors since aerosol scattering and absorption proper-
ties likely vary day to day and even month to month.

Figure 11 depicts the dependence of the retrieved OMI
τ(550nm) on the OMLER surface albedo values. As dis-
cussed in Sect. 5.1, error in surface albedo directly creates
a bias on the retrieved τ . Most of the retrievals depict higher
values over darker surfaces or lower surface albedo. In the
range of OMI surface albedo values 0.05–0.1, such behaviour
should not be observed assuming no systematic bias on the
surface properties. Moreover, OMI τ(550nm) shows values
that are too small for scenes with MODIS τ(550nm)≤ 0.4
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Figure 10. Collocated MODIS Aqua and retrieved OMI τ (550 nm) based on the OMLER surface albedo over East China for cloud-free
scenes and summer, winter and spring seasons. Statistics are computed over 3 years, 2005–2007: (a, c, e) assumed aerosol model with
ω0= 0.95; (b, d, f) assumed aerosol model with ω0= 0.9.

Figure 11. Collocated retrieved OMI retrieval and MODIS Aqua τ(550nm) from Dark Target algorithm over land, over north-east Asia for
cloud-free scenes in autumn. Retrievals are depicted as a function of OMLER surface albedo ranges (Kleipool et al., 2008; see Sect. 5.1).
The dotted black line is the reference 1 : 1. Statistics are computed over 3 years, 2005–2007: (a) OMI retrievals based on OMLER; (b) OMI
retrievals based on MODIS black-sky surface albedo.

in autumn and winter using OMLER (see Figs. 11 and 14).
MODIS black-sky surface albedo allows us to reduce this
dependence in summer and spring and reasonably increases

OMI τ retrievals over scenes with low MODIS τ values in
autumn and winter (see Fig. 14). Furthermore, the standard
deviation of differences (OMI-MODIS) τ (550 nm) shows a
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Figure 12. Standard deviation of the differences between OMI
τ(550nm) retrievals and MODIS τ(550nm) from Dark Target land
algorithm over land for all the individual cloud-free observations
over north-east Asia. The retrievals are obtained over 3 years, 2005–
2007, and for the four seasons. Aerosol single scattering albedo
ω0= 0.95 and ω0= 0.9 are assumed. OMLER and MODIS black-
sky surface albedo is alternatively considered.

net improvement of the retrievals precision, with a mean
reduction of 0.05 from OMLER to MODIS black-sky (see
Fig. 12). An exception is, however, noticed in winter, which
may be due to remaining snow-covered pixels in spite of the
applied filtering. Overall, spatial patterns better match be-
tween collocated MODIS and OMI products when employ-
ing MODIS black-sky albedo with higher values over the
high density population areas (i.e. north-east and south-west
of selected Chinese regions, south-western Korea) and lower
values over south-eastern China (see Figs. 13 and 14). These
improvements may be due to a more accurate atmospheric
correction in the MODIS black-sky surface albedo and po-
tential remaining aerosol residuals present in the OMLER
database.

In spite of these improved precisions, using the MODIS
black-sky albedo does not always improve the accuracy of
the OMI τ(550nm) retrievals. In particular, summer and
spring seasons present τ values that are too high compared
to the use of OMLER. This emphasizes that applying the
MODIS black-sky albedo to OMI measurements may be not
fully optimal because (1) MODIS albedo is the integral value
over the full hemisphere, which is not in line with the range
of angles (θ0 and θ ) encountered by OMI; and (2) the MODIS
black-sky albedo is valid for local solar noon zenith angle
of each location, which does not match the 1345 ascending
node equator crossing time of OMI. An ideal surface albedo
database should be aerosol and cloud free, as well as repre-
sentative of the viewing and solar angles encountered by the
space-borne sensor. Problems related to uncertainties in sur-
face albedo climatology for the aerosol retrieval problem are
well known and were recently highlighted by Sanders et al.
(2015), although a different spectral band is used (O2−A at
758–770 nm).

As a conclusion, mostly because uncertainties on assumed
aerosol ω0 parameter and prior surface albedo are dominant,
our retrieved OMI τ(550nm) shows lower performances

than MODIS τ(550nm) from the DT algorithm over land in
collection 6 (see Sect. 2.2). Furthermore, errors in the phase
function or not taking into account the effect of polarization
can play a role. These aspects should be further investigated.

6.3 Long-term analyses of the aerosol layer pressure
retrievals

Figure 15 shows the retrieved OMI ALP as a function of col-
located MODIS τ (550 nm). MODIS τ(550nm) is considered
for OMI ALP retrievals since, at this stage, they are consid-
ered as the best prior information available with higher ac-
curacy than OMI τ(550nm) (see Sect. 6.1). While ALP re-
trievals over scenes with MODIS τ(550nm) ≤ 0.5 exhibit
large variability (more than 400 hPa) and are systematically
very high, they start converging to more realistic values with
increasing MODIS τ . At MODIS τ(550nm)≥ 1.0, retrieved
ALP lies in the range of 800–1000 hPa depending on the
season, with lower variability (between 50 hPa and 200 hPa
maximum). As discussed in Sect. 5.2, scenes with τ ≤ 0.5
are expected to present substantial large biases because of the
minor impact on the O2−O2 changes. Part of the variability
can be related to uncertainties of surface albedo and non-
constant and inhomogeneous aerosol properties from OMI
pixel-to-pixel (e.g. aerosol ω0 in the OMI observations).

When considering NNτ,N s
O2−O2

with MODIS τ (550 nm),
from DT algorithm over land, as input, the retrievals glob-
ally show a reduced variability, especially for τ(550nm) val-
ues in the range of 0.6–2.0 compared to the NNRc,N

s
O2−O2

configuration (see Fig. 16). Over scenes with MODIS
τ(550nm) ≥ 1.0, the variability of the OMI ALH, derived
from Eq. (11) as explained in the next subsection, greatly
decreases from the range of 1.1–2.7 km (NNRc,N

s
O2−O2

) to
0.7–1.9 km (NNτ,N s

O2−O2
) depending on the season. When

the OMLER is replaced by the MODIS black-sky albedo
database, the ALH variability continues to decrease of about
0.1 km (see Fig. 16).

6.4 Comparison of OMI aerosol layer height with
LIVAS climatology

The results of 3 years of OMI ALP retrievals over north-
east Asia can be statistically compared to a climatology.
Although the years of the OMI “climatology” and LIVAS
do not strictly overlap, the average ALH is assumed not to
change significantly between both periods. The comparison
is done per season. Spatial average of LIVAS ALH is done
over the same area where retrievals are performed. Since
large biases are expected at low τ , only OMI retrievals ac-
quired for MODIS τ(550nm)≥ 1.0 are taken into account
and then spatially and temporally averaged per season. About
17 % in summer and spring, and between 5 and 6 % in win-
ter and autumn, of the OMI retrievals over the 3 years were
then selected. As a first and simple approximation, OMI ALP
retrievals are converted into ALH in km above sea level, as-
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Figure 13. Spatial averages of τ (550 nm) values over north-east Asia for cloud-free scene. Statistics are computed over 3 years, 2005–2007,
for summer.

Figure 14. Spatial averages of τ (550 nm) values over north-east Asia for cloud-free scenes. Statistics are computed over 3 years, 2005–2007,
for the three seasons, autumn, winter and spring.

suming the atmosphere is in hydrostatic balance, scale height
of 8 km and a surface pressure at the sea level of 1013 hpa:

ALH (OMI)=−8× ln(ALP/1013). (11)

Assumptions on the forward aerosol model (used then in
the creation of the supervision database) lead to the highest
impact on the spatial–seasonal averaged ALH retrievals. This
is mostly related to the ability of the corresponding NN algo-

rithm to interpret the scattering vs. absorption aerosol effects
on the N s

O2−O2
. Assuming OMLER surface albedo, differ-

ences between average ALH retrievals with ω0 = 0.95 and
ω0 = 0.9 are in the range of 540–1200 m with NNRc,N

s
O2−O2

and 560–660 m with NNτ,N s
O2−O2

using MODIS τ(550nm).
Assumptions on prior surface albedo (OMLER vs. MODIS
black-sky albedo) also affect the spatial–seasonal averaged
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Figure 15. Collocated retrieved OMI ALP (assumed aerosol model with ω0= 0.95 and based on the OMLER surface albedo) and MODIS
Aqua τ (550 nm) over north-east Asia for cloud-free scenes and summer, winter and spring seasons. Statistics are computed over 3 years,
2005–2007: (a, c, e) OMI retrievals are from the NNRc,N

s
O2−O2

configuration; (b, d, f) OMI retrievals are from the NNτ,N s
O2−O2

configuration

with MODIS Aqua τ (550 nm), from Dark Target land algorithm, as input (see Sect. 5.1).

ALH retrievals. Related differences are in the range of 0–
730 m with NNRc,N

s
O2−O2

and 0–180 m with NNτ,N s
O2−O2

.
Note that a remarkable change is noticed using MODIS
black-sky albedo in winter with NNRc,N

s
O2−O2

, which is likely
due to non-filtered snow-covered pixels. Associated impacts
are then lower than those related to assumed ω0. Since only
scenes with MODIS τ(550nm)≥ 1.0 are selected, aerosol
scattering signal is expected to dominate over the surface
brightness. Although not shown here, we remarked that ap-
plying the temperature correction on N s

O2−O2
is crucial as it

corrected the retrievals between 50 and 300 m.
Because MODIS τ (550 nm) has a better accuracy than

OMI τ (550 nm), seasonal-spatial average ALH retrievals
from NNτ,N s

O2−O2
combined with this first product shows a

clear reduced impact and higher stability with respect to un-
certainties on surface albedo and aerosol model. This is be-
cause using the most accurate prior information on aerosol
amount provides then with the best ALH retrieval perfor-
mance.

By comparing these best ALH results with the seasonal
spatial averaged LIVAS ALH values, maximum differences
in the range of 260–800 m are obtained, depending on the

seasons, assuming ω0 = 0.95 and OMLER surface albedo.
These differences are reduced to 180–310 m with ω0 = 0.9
regardless of the prior surface albedo. Furthermore, when
comparing with the LIVAS ALH variability (see Eq. 2) spa-
tially averaged over the area, the results from NNτ,N s

O2−O2
with MODIS τ (550 nm) and prior MODIS black-sky albedo
have the closest variability with a spread in the range of 0.0–
1.0 km (see Fig. 16).

Consistent seasonal patterns can be observed between av-
eraged OMI and LIVAS ALH with higher values in spring
and summer, probably due to long-range transport during the
dust activity from the desert (see Sect. 6.2) and smaller values
in autumn and winter (see Fig. 17). Nevertheless, while the
LIVAS ALH depicts higher aerosol heights in spring than in
summer, the OMI ALH shows the opposite. Several explana-
tions are possible: (1) exclusion of OMI scenes with strong
aerosol pollution episodes because of a too strict threshold
applied on the OMI effective cloud fraction (see Sect. 6.1),
(2) a more rigorous temperature correction should be ap-
plied on measured N s

O2−O2
(assuming daily instead of sea-

sonal temperature profiles), (3) inaccuracies of MODIS τ , or
(4) remaining small cloud residuals in OMI observations in
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Figure 16. Standard deviation of the OMI ALH retrievals obtained
for the cloud-free scenes with MODIS τ(550nm)≥ 1.0 over north-
east Asia. The retrievals are done for cloud-free scene over 3 years,
2005–2007. Aerosol single scattering albedo ω0= 0.95 is assumed.
OMLER and MODIS black-sky surface albedo, and the NN config-
urations (NNRc,N

s
O2−O2

and NNτ,N s
O2−O2

with MODIS τ (550 nm)

as input) are alternatively considered (see Sect. 6.1).

spite of the strict applied filtering. All these elements should
be further investigated.

Assuming that LIVAS ALH are here the reference, these
results seem to present higher accuracy than the exercise of
Park et al. (2016), showing a bias of 1 km of between re-
trieved OMI and the CALIPSO AEH values over ocean, dur-
ing the Asian dust event on 31 March 2007. The reasons
can be multiple: use of NNs instead of linear interpolation
within a LUT, aerosol retrieved over land instead of ocean
surfaces, consideration of variable surface albedo as inputs
instead of a single value, application of a temperature cor-
rection on N s

O2−O2
, use of longer data records.

7 Conclusions

In this study, different MLP NN algorithms were developed
and evaluated in order to retrieve ALH over land from the
OMI 477 nm O2−O2 spectral band. The aerosol height was
here retrieved as aerosol layer pressure (ALP) and defined
as the mid-pressure of an homogeneous scattering layer with
a constant geometric thickness. The focus was on north-east
Asia and cloud-free scenes dominated by scattering aerosol
fine particles with Ångström coefficient α = 1.5, single scat-
tering albedo ω0 in the range of 0.9–0.95 and asymmetry pa-
rameter g = 0.7. The algorithms were trained with a large
ensemble of synthetic data set and several precautions were
taken into account to avoid overtraining or local minima
problems. The key concept of OMI ALP retrievals is the link
between the measured O2−O2 SCD N s

O2−O2
and the aerosol

altitude as a consequence of shielding effect applied by the

particles on the O2−O2 dimer complexes that are at lower
altitudes. ALP was retrieved from 3 years, 2005–2007, of
OMI cloud-free observations collocated with MODIS Aqua
aerosol product in north-east Asia. The main objective of this
work is first to evaluate the feasibility of a direct retrieval of
this key aerosol parameter from a statistical point of view:
i.e. over a long time period and large industrialized continen-
tal area, and therefore a high number of observations. All the
evaluated performances are summarized in Table 2.

Analysis show that a good ALP retrieval requires an ac-
curate prior knowledge of aerosol optical thickness τ as in-
put information. Indeed, both τ and ALP parameters simul-
taneously contribute to the shielding of O2−O2 dimers. The
analyses of N s

O2−O2
alone lead to an ambiguity since aerosol

extinction and aerosol altitude cannot be distinguished.
Because low amounts of aerosols have very little im-

pact on N s
O2−O2

changes, large biases are expected over
scenes including aerosol particles with τ(550nm)≤ 0.5.
This τ(550nm) value should be considered as a threshold
for a good ALP retrieval quality. Moreover, the algorithms
are expected to present a very low sensitivity to particles lo-
cated at an altitude higher than 4 km. This is because of the
nature of the O2−O2 complex of which the absorption scales
with the pressure-squared instead of being linear with pres-
sure.

Different NN configurations were tested. Sensitivity anal-
yses on synthetic cases show that ALP accuracy with the
best NN configuration (i.e. NNτ,N s

O2−O2
algorithm with true

τ(550nm) value as input) lies in the range of 50–200 hPa (i.e.
about 500 m and 1 km) over aerosol scenes with τ(550nm) in
the range of 0.5–1.0. The accuracy is improved to 0–50 hPa
over scenes with τ(550nm)≥ 1.0. Using the best available
τ information is theoretically expected to limit the impact of
uncertainties due to (1) aerosol model, i.e. bias in the range
of 0–100 hPa if τ(550nm)≤ 1.0, for a difference of 0.05 in
ω0 or for a difference of 0.1 in g, and (2) surface albedo un-
certainty in the range of 0.025–0.05, which leads to absolute
ALP biases in the range of 50–100 hPa for τ between 0.5 and
1.0 and 0–50 hPa for τ(550nm)≥ 1.0. Real ALH retrievals
were performed over 3 years of OMI O2−O2 visible obser-
vations over cloud-free scenes with MODIS τ(550nm)≥ 1.0
and using NNτ,N s

O2−O2
combined with MODIS Aqua τ (550

nm). Comparison of seasonal and spatial averages with the
LIVAS climatology database shows maximum (minimum)
differences in the range of 260–800 (180–310) m, depending
on the season and assuming ω0 = 0.95 (ω0 = 0.9). Aerosol
model assumptions (in particular ω0) are the most critical
as, in that configuration, they impact OMI seasonal-spatial
averaged ALH in the range of 560–660 m. Changes due to
the prior surface albedo database (OMLER or MODIS black
sky) have a second-order impact, up to 200 m.

In addition, algorithms should take into account that the
O2−O2 SCD precision, resulting from the DOAS spectral fit-
ting, affects the ALP retrieval. O2−O2 SCD precision lying
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Figure 17. Comparison of the average of the OMI ALH retrievals obtained over scenes with collocated MODIS τ ≥ 1.0, with the LIVAS
ALH climatology database. The retrievals are achieved over north-east Asia for cloud-free scenes, over 3 years, 2005–2007, and for the four
seasons. OMI and MODIS black-sky surface albedo is alternatively considered. The two NN OMI ALH algorithms are used (see Sect. 5.1):
NNRc,N

s
O2−O2

based on OMI Rc(475 nm) and NNτ,N s
O2−O2

based on MODIS τ (550 nm). A temperature correction is applied to the OMI

N s
O2−O2

prior to the retrievals (see Sect. 6.1): (a) NNRc,N
s
O2−O2

algorithm and OMLER surface albedo, (b) NNRc,N
s
O2−O2

algorithm and

MODIS black-sky surface albedo, (c) NNτ,N s
O2−O2

algorithm, and OMLER surface albedo and (d) NNτ,N s
O2−O2

algorithm and MODIS

black-sky surface albedo.

in the range of 0.05–0.25× 10−43 mol2cm−5 leads to ALP
precision between 19 ± 29 and 57 ± 31 hPa. Due to the na-
ture of the O2−O2 collision complex, a temperature correc-
tion must be applied to the SCD prior to retrievals. Other
parameters should be further investigated such as polariza-
tion effects and assumptions about the vertical distribution
of particles.

An accuracy better than 0.2 must be required on prior
τ(550nm) information. Indeed, a τ(550nm) bias of 0.25
is expected to bias the retrieved ALP up to 50 hPa for
τ(550nm) in the range of 0.6–1.0. For τ(550nm)≥ 1.0, re-
lated ALP impacts become almost null. If no prior accu-
rate τ information, such as from the MODIS aerosol DT
algorithm, is available, then this input parameter can be re-
placed by the OMI continuum reflectance Rc(475nm) (see
the NNRc,N

s
O2−O2

algorithm). Indeed, this parameter is pri-
marily affected by the aerosol amount and therefore con-
tains information on τ(550nm). It may then help to analyse
N s

O2−O2
for retrieving ALP provided that we can retrieve τ

with a good quality.
Similarly to ALP retrieval, a NN algorithm was also de-

veloped to retrieve τ(550nm) information from the OMI

477 nm O2−O2 spectral band. However, its capability is
strongly affected by uncertainties on the assumed aerosol
model. An overestimation of aerosol single scattering albedo,
from ω0 = 0.9 to 0.95, induces a negative bias of 0.8 for
τ(550nm)= 2. The impact is much lower for smaller τ
(lower than 0.1 for τ(550nm)≤ 0.5). Similar conclusions
were found regarding uncertainty of the asymmetry param-
eter and thus the phase function characterization. Another
major challenge when retrieving aerosol properties from pas-
sive satellite sensors is to separate the atmospheric and sur-
face contributions in the total observed reflectance. Simi-
larly to aerosol ω0, an overestimation of surface reflection
leads to an underestimation of retrieved τ(550nm). Surface
albedo uncertainty below 0.025 should limit OMI retrieved
τ(550nm) bias smaller than 0.5 for τ(550nm) in the range of
0.0–0.5, 0.25 for τ(550nm)= 2.0. Comparisons of OMI re-
trievals with collocated MODIS τ(550nm) show agreements
between −0.02± 0.45 and −0.18 ± 0.24 depending on the
seasons. Further improvements should be made before being
able to use these OMI τ(550nm) products as prior informa-
tion to ALP retrievals.
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Using the NNRc,N
s
O2−O2

algorithm for ALP retrieval is,
in practice, similar to NNτ,N s

O2−O2
combined with retrieved

OMI τ(550nm). Since the retrieved OMI τ accuracy is
lower than MODIS τ accuracy from the DT land algorithm,
NNRc,N

s
O2−O2

shows reduced performances and higher sensi-
tivity to aerosol model and surface albedo uncertainties. As-
sociated 3-year OMI ALH retrievals over north-east Asia are
impacted by ω0 uncertainties (0.9–0.95) in the range of 540–
1200 m and by surface albedo (OMLER vs. MODIS black-
sky albedo) up to 730 m.

The NN approach presents, at this stage, quite promising
results for a future operational processing of the OMI O2−O2
spectral band and the next UV–vis satellite missions such as
the TROPOMI (Veefkind et al., 2012). In spite of the high
computing time due to the learning database creation and the
training of these algorithms, very fast operational processing
is allowed. Such processing is much faster than approaches
relying on the OEM and employs more optimized interpola-
tion techniques than a classical linear interpolation within a
LUT. For future processing of the OMI data, the OMLER cli-
matology database should be optimized by filtering out small
aerosol residuals.

Our study indicates that it is worthwhile to design and
evaluate aerosol height retrieval algorithm exploiting the
satellites 477 nm O2−O2 absorption band. Our long-term
motivation is to evaluate the feasibility of replacing the ef-
fective clouds by more explicit aerosol parameters in the
computation of trace gas AMF. This is relevant not only for
OMI but for most of the UV–vis satellite missions devoted
to air quality monitoring. For that purpose, further analyses
must be performed by focusing on significant geophysical
variability cases: e.g. pixel-by-pixel variability over smaller
regions. Furthermore, single OMI ALH retrievals should be
compared with reference aerosol vertical profile measure-
ments (ground-based and/or satellites) over some remarkable
case studies.
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