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Abstract. The distribution of ice, liquid, and mixed phase
clouds is important for Earth’s planetary radiation budget,
impacting cloud optical properties, evolution, and solar re-
flectivity. Most remote orbital thermodynamic phase mea-
surements observe kilometer scales and are insensitive to
mixed phases. This under-constrains important processes
with outsize radiative forcing impact, such as spatial parti-
tioning in mixed phase clouds. To date, the fine spatial struc-
ture of cloud phase has not been measured at global scales.
Imaging spectroscopy of reflected solar energy from 1.4 to
1.8 µm can address this gap: it directly measures ice and wa-
ter absorption, a robust indicator of cloud top thermodynamic
phase, with spatial resolution of tens to hundreds of meters.
We report the first such global high spatial resolution sur-
vey based on data from 2005 to 2015 acquired by the Hyper-
ion imaging spectrometer onboard NASA’s Earth Observer 1
(EO-1) spacecraft. Seasonal and latitudinal distributions cor-
roborate observations by the Atmospheric Infrared Sounder
(AIRS). For extratropical cloud systems, just 25 % of vari-
ance observed at GCM grid scales of 100 km was related to
irreducible measurement error, while 75 % was explained by
spatial correlations possible at finer resolutions.

Copyright statement. The author’s copyright for this publication is
transferred to California Institute of Technology. Government spon-
sorship acknowledged.

1 Introduction

The distribution of ice, liquid, and mixed phase clouds is
important for Earth’s climate and planetary radiation budget
(Chylek et al., 2006; Martins et al., 2011). Cloud thermody-
namic phase affects radiative forcing by modulating absorp-
tion of incoming solar radiation, particle evolution, and life-
time (Ehrlich et al., 2008; Tan and Storelvmo, 2016). Previ-
ous satellite observational studies have shown that clouds are
shifting poleward in the northern and southern hemispheric
extratropical storm tracks (Bender et al., 2012; Marvel et al.,
2015; Norris et al., 2016). Within these shifting storm tracks,
climate model experiments with forcing from increased CO2
have shown losses of cloud ice phase and gains of cloud liq-
uid phase (Ceppi and Hartmann, 2015; McCoy et al., 2015).
This makes cloud phase an important property for accurate
and continuous monitoring. Moreover, recent studies indi-
cate that spatial partitioning of ice and liquid particles within
clouds has outsized influence on climate, affecting global cli-
mate model (GCM) predictions of future warming by over
1 ◦C (Tan et al., 2016). However, current observing systems
cannot reduce this uncertainty; they are unable to resolve
differences at critical sub-100 m scales or are insensitive to
mixed phase clouds altogether.

Imaging reflectance spectroscopy from 1.4 to 1.8 µm could
address this gap. Prior work used this spectral interval to
measure cloud phase based on the optical absorption prop-
erties of liquid and ice (Pilewskie and Twomey, 1987). The
fraction of the total path absorption due to liquid (the liquid
thickness fraction, or LTF) had high sensitivity to pure and
mixed phases (Thompson et al., 2016). Liquid and ice show
highly diagnostic absorption shapes which are robust to po-
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tential confounding effects such as surface reflectance, obser-
vation geometry, and mismatch in particle modeling assump-
tions. Remote imaging spectrometers measure these spectra
from cloud tops at millions of spatial locations, resolving
cloud phase at scales of tens of meters (Thompson et al.,
2016). This could constrain characteristic spatial lengths of
these processes. However, global spectroscopic datasets have
not yet been analyzed in this way.

Here we report a global spectroscopic survey of cloud
phase from 2005 to 2015 based on data from the Hyperion
imaging spectrometer instrument onboard NASA’s Earth Ob-
server 1 (EO-1) spacecraft. Hyperion also provides two novel
contributions beyond prior records. First, its full spectrum fit-
ting discriminates mixed phases by directly measuring the
relative contributions of physical cloud top liquid and ice
absorption. Second, Hyperion measures phase at horizontal
scales of 30 m. These properties allow the first rigorous char-
acterization of the spatial scales governing cloud top ther-
modynamic phase. The article first describes our estimation
method, and reports seasonal and latitudinal changes of cloud
thermodynamic phase. We then compare these distributions
to measurements by NASA’s Atmospheric Infrared Sounder
(AIRS) (Kahn et al., 2014). Finally, we show the spatial scal-
ing properties of both extratropical and tropical cloud pop-
ulations. The study lays the groundwork for future orbital
imaging spectrometers (Mouroulis et al., 2016) that can mon-
itor cloud characteristics when cloud cover precludes their
primary mission. Imaging spectroscopy investigations typi-
cally treat clouds as contamination, when in fact cloudy data
can be exploited to dramatically increase these instruments’
useful data yield.

2 Cloud phase estimation

2.1 Method

The Hyperion imaging spectrometer operated on the sun syn-
chronous EO-1 spacecraft for over a decade prior to decom-
missioning in 2017. Hyperion measured reflected solar en-
ergy from approximately 400 to 2450 nm with approximately
10 nm spectral sampling. It performed targeted acquisitions
for specific regions of interest, with occasional pointing off
nadir. Most targets were on land, with a high concentration
in the midlatitude Northern Hemisphere. There was sparser
coverage of extreme latitudes and oceans, but several island
targets offered a view into cloud systems over ocean (Fig. 1).
Many targets of interest were revisited multiple times during
the mission. Each targeted acquisition had a ground sampling
distance of approximately 30 m over a cross-track width of
approximately 7.5 km, and a typical along-track distance of
approximately 120 km. The Jet Propulsion Laboratory (JPL)
Hyperion archive included most normal science acquisitions
from 2005 through 2015, with over 4.8× 104 scenes and
3.7× 1010 distinct spectra.
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Figure 1. The JPL Hyperion archive comprised over 45 000 scenes,
represented here by red dots. The majority were over land. A green
arrow indicates the Ross Island acquisition of Fig. 2.

The archive was stored as standard calibrated unorthorec-
tified data. We first applied the cloud phase retrieval algo-
rithm of Thompson et al. (2016), validated in the prior work
by coincident remote and in situ aircraft measurements. We
defined the TOA reflectance, ρ:

ρ(λ)= πL(λ)/(F (λ)cos(θ0)) , (1)

where λ was the wavelength, L was the wavelength-
dependent radiance at sensor, F was the extraterrestrial so-
lar irradiance, and θ0 was the solar zenith angle. Over short
intervals we modeled ρ by a linear continuum with an offset
a and slope b, attenuated by one or more Beer–Lambert ab-
sorbers j . Each absorber had a bulk absorption coefficient kj
and a nonnegative thickness uj :

ρ(λ)= (a+ bλ)exp

[
−

∑
j

kj (λ)uj

]
for uj ≥ 0. (2)

We modeled three absorbers: atmospheric water vapor (j =
1), liquid water (j = 2), and ice (j = 3). As in Thompson
et al. (2015, 2016) we applied a logarithmic transformation
resulting in a nonnegative least-squares problem (Lawson
and Hanson, 1974):

− log(ρ(λ))≈ l+mλ+
∑
j

kj (λ)uj

for l ≥ 0, uj ≥ 0 ∀ j. (3)

Here m permitted a log-linear continuum. We represented
this to the solver as two nonnegative coefficients for up-
ward and downward slopes, one of which would evaluate to
zero. The nonnegative least-squares solution provided stable
global solutions without sensitivity to initialization.

We calculated the H2O vapor absorption coefficients us-
ing the HITRAN 2012 line list (Rothman et al., 2013) via
the Oxford Reference Forward Model (Dudhia, 2014). We
initialized the vapor abundance using a band ratio retrieval
as in Thompson et al. (2015) and used this to calculate an
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“effective” absorption coefficient of band-aggregated vapor
lines for use in the least-squares retrieval. Other atmospheric
gases did not significantly impact the shape of vapor absorp-
tion features. We calculated liquid and ice absorption coef-
ficients using the complex index of refraction measured by
Kou et al. (1993). These bulk absorption spectra were molec-
ular properties of H2O, independent of particle size and scat-
tering – a common practice for shortwave infrared observa-
tions of clouds (Kokhanovsky, 2004). Combined with a free
continuum, they fit the observed spectra of opaque clouds
over short spectral intervals without precise knowledge of
particle properties (Thompson et al., 2016).

In summary, following Eq. (3) we modeled the entire inter-
val from 1.4 to 1.8 µm with five free parameters: a continuum
offset l; a slope, represented by a single degree of freedom in
the variables m and n; and the vapor, ice, and liquid thick-
nesses uj . These thicknesses represented the length of the
optical path through an equivalent homogeneous volume, as
in the equivalent water thickness (Gao and Goetz, 1995). As
in previous work, we wrote the absorption path length u2 as
the equivalent water thickness due to liquid in millimeters,
EWTliquid. Similarly, u3 was the equivalent water thickness
due to ice, EWTice. We then defined the liquid thickness frac-
tion as

LTF=
EWTliquid

EWTliquid+EWTice
. (4)

Prior in situ validation had demonstrated a robust relation-
ship between the LTF and thermodynamic phase (Thomp-
son et al., 2016). We emphasize that “thickness” referred to
the absorption along the optical path; clouds were heteroge-
neous, so the LTF was not necessarily related to their verti-
cal dimension. In opaque clouds the measurement would be
most sensitive to the upper layers.

We calculated the LTF of locations flagged by the Hy-
perion cloud detection algorithm of Griffin et al. (2003).
In the Griffin et al. approach, a decision tree of thresh-
old tests sorted spectra into different cloud types (includ-
ing low and high clouds) as well as different land cover
types (including snow, open terrain surfaces, and vegetation).
This favored opaque clouds and generally ignored ambigu-
ous translucent clouds that would be difficult to distinguish
from land. The Griffin et al. algorithm defined tests using the
top-of-atmosphere (TOA) reflectance ρ and three intermedi-
ate quantities, the normalized difference snow index (NDSI),
the desert sand index (DSI), and the vegetation index (VI):

NDSI= [ρ(0.55)− ρ(1.65)]/ [ρ(0.55)+ ρ(1.65)] , (5)
DSI= [ρ(0.86)− ρ(1.65)]/ [ρ(0.86)+ ρ(1.65)] , (6)
VI= ρ(0.66)/ρ(0.86). (7)

The method was originally formulated as a flowchart but
was tantamount to an ordered sequence of tests (Table 1).
It evaluated each spectrum independently, applying appro-
priate thresholds depending on whether the scene was over

Table 1. Hyperion cloud detection algorithm (Griffin et al., 2003).
We test each criterion in sequence, starting from the top, and ascribe
a classification based on the first test that evaluates to true.

Criterion

Test Over ocean Over land If true

1 ρ(1.38)> 0.1 ρ(1.38)> 0.1 Cloud
2 ρ(0.66)< 0.15 ρ(0.66)< 0.15 Clear
3 VI< 0.6 VI< 0.7 Clear
4 DSI< 0.01 DSI< 0.05 Clear
5 −0.2<NDSI< 0.2 0<NDSI< 0.2 Cloud
6 0.6<NDSI 0.6<NDSI Clear
7 ρ(1.25)< 0.35 ρ(1.25)< 0.35 Clear
8 0.1<ρ(1.38) 0.1<ρ(1.38) Clear

ocean or land. It ascribed a classification based on the first
test that evaluated to true. Random manual validation of se-
lected scenes demonstrated adequate performance, outside
the brightest glacial scenes in Antarctica.

After calculating LTF maps over all cloud areas, we aggre-
gated counts of liquid and ice clouds. LTF was a continuous-
valued quantity so the maps revealed both pure and mixed
phases. We binned LTF values in 10 % graduations but also
calculated binary classification using a 50 % threshold. This
facilitated comparisons with historical datasets of hard cate-
gorical classifications. We then analyzed zonal distributions,
estimating confidence intervals with nonparametric bootstrap
variance estimation (Wasserman, 2006) that resampled the
dataset 10 000 times with replacement.

Evaluating the model fit to the spectrum demanded spe-
cial care, since the global catalogue included many observ-
ing geometries, terrain surface types, and potential variability
in instrument calibration over the decadal record. To account
for this, we estimated the noise level independently for each
integration timestep and each spectral channel. We used the
common method of pairwise differences between spectra at
neighboring locations (Boardman and Kruse, 2011). Since
the spatial field was mostly uniform over small distances,
these differences conservatively estimated the measurement
noise σ in each channel. For n cross-track locations, we ap-
plied the nonparametric variance estimate of von Neumann
(1941), reprised in Brown and Levine (2007):

σ̂ 2
=

1
2(n− 1)

n−1∑
i=1

(ρi+1− ρi)
2. (8)

We then characterized the fit for each spectrum using the re-
duced χ2 measure (Eldering et al., 2017), a statistical sum-
mary of the residual relative to the expected measurement er-
rors. Specifically, it was the chi-squared score per degree of
freedom, with χ2

= 1 equivalent to estimated measurement
noise. This was more appropriate than a classical chi-squared
test for our spectroscopic observations where errors could be
correlated across adjacent wavelengths. For ` spectral chan-
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Figure 2. Typical fragment of a top-of-atmosphere
reflectance image, drawn from Hyperion product
ID EO1H2221282005350110KF over Ross Island, Antarctica,
and displayed in visible red, green, and blue channels.

nels, with measured TOA reflectance ρ and the model esti-
mate ρ̂, the reduced χ2 error was

χ2
=

∑
`

(
ρ− ρ̂

)2∑
`σ̂

2 . (9)

The summations ran over all ` spectral channels.

2.2 Results

The retrievals clearly revealed distinct cloud phases. Figure 2
shows an example sub-image drawn from a larger flight-
line. Figure 3 is the corresponding EWTliquid and EWTice
mapped to green and blue channels, respectively. LTF val-
ues in the mixed phase region range from 0.5 to 0.75, and
values in ice areas are typically 0–0.2. Both regions were
well-distinguished without significantly overlapping values,
but also showed sub-kilometer interior spatial structure. Fig-
ure 4 shows normalized histograms of χ2 scores for the entire
scene, calculated independently for liquid and ice clouds. Fits
were generally quite good, with χ2 scores below the conser-
vative noise estimate, χ2

= 1. In other words, the algorithm
fit these cloud spectra to within the measurement accuracy,
showing applicability of the Thompson et al. (2016) three
absorber model o Hyperion data.

Figure 5 shows typical spectrum fits from locations in this
sub-image, with mixed cloud and ice cloud. The top rows
show the model fit to spectrum, confirming that the five-
parameter model fit the 1.4–1.8 µm interval. The middle rows
show transmittance due to each absorbing component in the
model. The continuum component is not shown. The three
absorbers together were sufficient to explain observed spec-
trum shapes. Finally, the bottom rows show residual error,
which was again below the estimated measurement noise
level.

Figure 6 shows the entire distribution of mixed and pure
phase clouds for all 10 years of observations and binned in
10◦ increments, ranging from pure ice (LTF< 0.2) to pure
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phase 
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Figure 3. Thermodynamic phase map corresponding to Fig. 2, with
green indicating equivalent liquid thickness and blue indicating
equivalent ice thickness.
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Figure 4. Normalized histogram of χ2 spectrum fit scores for the
entire scene of Figs. 2 and 3. Low χ2 values indicate good fits;
χ2
= 1 is a conservative estimate of measurement noise.

liquid (LTF> 0.8). Note that Hyperion sampling is nonuni-
form across histogram bins, and Sect. 3 quantifies uncertainty
for different latitudes. The dataset clearly resolved key fea-
tures apparent in records from other sensors like MODIS and
CALIPSO (Hirakata et al., 2014; Hu et al., 2010). A band of
ice clouds peaked in the Intertropical Convergence Zone at
approximately 5–10◦ latitude, and other seasonally depen-
dent maxima appeared at approximately 60 and −60◦. The
population associated with the LTF range from 0.6 to 0.8 was
fairly large and possibly included some pure water pixels that
were misclassified due to estimation noise. The mixed phase
clouds were most numerous in the middle and extreme high
latitudes and less abundant in the tropics. There was a general
increase in the occurrence of liquid clouds at middle and high
latitudes, with a strong asymmetry near the solstice: a sea-
sonal peak in liquid cloud coverage for the summer months
was apparent in both hemispheres.

Atmos. Meas. Tech., 11, 1019–1030, 2018 www.atmos-meas-tech.net/11/1019/2018/



D. R. Thompson et al.: Global spectroscopic survey of cloud phase 1023

1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75 1.8
0.1

0.2

0.3

0.4

0.5

TO
A 

re
fle

ct
an

ce

Measured
Modeled

1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75 1.8
0

0.5

1

Tr
an

sm
itt

an
ce

Vapor
Liquid
Ice

1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75 1.8
Wavelength (microns)

-0.1

-0.05

0

0.05

0.1

Re
sid

ua
l

1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75 1.8

0.1
0.2
0.3
0.4
0.5

TO
A 

re
fle

ct
an

ce

Measured
Modeled

1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75 1.8
0

0.5

1

Tr
an

sm
itt

an
ce

Vapor
Liquid
Ice

1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75 1.8
Wavelength (microns)

-0.1

-0.05

0

0.05

0.1

Re
sid

ua
l

(a)

(b)

(c)

Figure 5. Spectrum fits from the region of mixed and ice cloud in Fig. 2. (a) Model fit to spectrum. (b) Transmittances for each absorber.
(c) Residual error.
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Figure 6. Zonal average cloud phase, partitioned by season, for all 10 years of observations. Sampling is nonuniform across latitudes; Sect. 3
quantifies uncertainty due to finite sample sizes.
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3 AIRS comparison

3.1 Method

Next, we compared the resulting thermodynamic phase re-
trievals to a decadal dataset of cloud phase retrievals by the
AIRS instrument (Pagano et al., 2003). This was a dramati-
cally different measurement obtained from thermal infrared
spectra with a coarse 13.5 km footprint rather than reflected
solar energy at fine spatial resolution. Kahn et al. (2014) de-
tail the algorithm, and Jin and Nasiri (2014) validate it us-
ing pixel-scale comparisons with CALIPSO data. We filtered
clouds using an AIRS sensitivity threshold (effective cloud
fraction, or ECF) of 0.1 and binned AIRS phases by latitude
and season for direct comparison.

We anticipated several differences in the result. First,
AIRS sampled uniformly over the Earth’s surface while Hy-
perion imaged only during the day and favored land areas.
We also expected differences in sensitivity; AIRS was far
more sensitive to optically thin clouds, while the Hyper-
ion analysis intentionally excluded thin clouds with a strict
detection threshold. To help account for these differences,
we normalized the relative cloud abundances of both instru-
ments. We designated a reference latitude band from −60 to
60◦ (the area of densest Hyperion coverage) to have a mean
occurrence of unity and compared zonal changes relative to
this standard.

Additionally, the AIRS algorithm classified ambiguous
clouds as “unknown”. This population likely contained
mixed phase clouds but also a large fraction of supercooled
liquid clouds due to the current AIRS phase algorithm. The
liquid tests are based on warm liquid water indices of refrac-
tion rather than the supercooled liquid indices of refraction
(Rowe et al., 2013). Following from results of Jin and Nasiri
(2014), we reassigned some of the unknown clouds to form
10 % of total ice and 60 % of total liquid. For liquid clouds,
we defined a corrected occurrence L′ in each latitude bin and
took just 40 % of this to be from the original AIRS estimate
L:

(1− 0.6)
∑

L′ =
∑

L, (10)

where summations ran over all latitude bins. This allowed a
unique correction for each latitude bin, given as the product
of its unknown cloud fraction U and a global multiplicative
coefficient α:

L′ = L+αU. (11)

Equations (10) and (11) gave

α =
0.6

∑
L

(1− 0.6)
∑
U
. (12)

We defined a similar relation for ice cloud with a miss-
ing fraction of 0.1 rather than 0.6. Together, the two ad-
justments (magnitude normalization and reassignment of un-

known clouds) accounted for known biases, which permit-
ted a comparison of zonal gradients between the two instru-
ments. While we expected some discrepancies due to differ-
ences in instruments and sampling, the comparison provided
a useful check between two very different measurement tech-
niques.

3.2 Results

Figures 7 and 8 show liquid and ice cloud phase spatial
distributions across latitudes, partitioned by season, for all
10 years of observations binned in 10◦ increments. Error bars
show 95 % confidence intervals for the mean. Thin lines in-
dicate decadal averages derived from the AIRS dataset. Dis-
tributions from the two instruments generally agreed – par-
ticularly for ice, to which AIRS was very sensitive. Tropi-
cal ice clouds showed the best agreement, as in prior studies
comparing AIRS and CALIPSO (Jin and Nasiri, 2014). Dif-
ferences may be related to the much stronger sensitivity to
thin ice cloud, coarse spatial resolution and near-global daily
sampling, and ambiguity of the unknown category with re-
spect to how many liquid, ice, and mixed phase clouds are
contained within that categorization. Another potential con-
tributor to the discrepancy is sensitivity to different altitudes
in large or multilayer cloud systems. Multilayered clouds are
abundant in tropical regions and midlatitude storm tracks. In
cases where, for example, a translucent ice cloud overlays an
optically thin liquid cloud, the two instruments would mea-
sure different thermodynamic phase. For reference, we place
a non-normalized comparison of the two instrument datasets
in Appendix A.

4 Spatial scale analysis

4.1 Method

We next characterized spatial scaling properties of the ther-
modynamic phase maps. A variogram (Garrigues et al.,
2006) estimated the expected squared differences between
LTF at any two locations x and x′ in the map as a function
v(d) of the lag distance d between the paired points. We used
the classical estimator based on the sample variance at each
lag distance:

v(d)=
1

2N(d)

∑
‖x−x′‖=d

(
LTF(x)−LTF(x′)

)2
, (13)

where N(d) was the number of such points in the sam-
ple. The näive formulation involving calculations of all point
pairs would have required over 1010 squared differences per
scene, an intractable number. Instead, we calculated the same
quantity efficiently in the Fourier domain using the method
of Marcotte (1996), with a spatial mask to ensure that only
cloud pixels influenced the calculation.
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Figure 7. Comparison of Hyperion and AIRS cloud statistics, both normalized by the −60 to 60◦ latitude range to account for differences
in cloud mask cutoff thresholds. The 10-year seasonal observations are shown separately for the liquid phase. Here Hyperion uses a hard
classification; i.e., liquid thickness fractions less than 0.5 are considered ice clouds. Error bars show 95 % confidence intervals calculated via
nonparametric bootstrap estimation. The corresponding AIRS error bars would be far smaller due to the large number of samples, so we omit
them for clarity.

Figure 8. As in Fig. 7, for the ice phase.

We fit the resulting variogram with a power law of the
form v(d)= adb+ c, subsampling the data to achieve log-
constant point density and optimizing free parameters with
the Levenberg–Marquardt method. We considered the hy-
pothesis that tropical clouds would have different spatial
scaling from extratropical clouds because of the dominant in-
fluence of convective versus baroclinic systems. To test this,
we analyzed the scenes in three segments: a tropical band
within 20◦ of the Equator and extratropical scenes poleward
of 30◦ north and south latitudes. We used cloud fields larger

than a 3 km cutoff, excluding variograms that evaluated to
zero at shorter lag distances due to the lack of sufficient cloud
pixels in the scene.

4.2 Results

Finally, Fig. 9 shows variograms over all years. Each data
point corresponds to a lag distance for an aggregate var-
iogram, so separation between the curves does not imply
complete separation between populations. However, statisti-
cal analysis does reveal some significant differences in scal-
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Table 2. Model parameters of tropical and extratropical clouds, for v = adb + c, with confidence bounds and R squared coefficients.

Subset Latitudes a (±95 %) b (±95 %) c (±95 %) R2

Northern Hemisphere 30 to 90 0.0058 (0.0052, 0.0064) 0.419 (0.399, 0.440) 0.0118 (0.0111, 0.0125) 0.995
Southern Hemisphere −90 to −30 0.0046 (0.0040, 0.0051) 0.441 (0.414, 0.467) 0.0098 (0.0091, 0.0106) 0.995
Tropics −20 to 20 0.0026 (0.0024, 0.0028) 0.619 (0.599, 0.639) 0.0056 (0.0052, 0.0060) 0.996

Figure 9. Variogram for all clouds in the Hyperion dataset, showing
the variance as a function of separation between points. The curve
suggests a power law relationship. Dotted lines indicate 95 % con-
fidence intervals on the coefficients.

ing properties. Table 2 shows the best-fitting coefficients
for variance v in the liquid thickness fraction of tropical
clouds, northern hemispheric extratropical clouds, and south-
ern hemispheric extratropical clouds, as a function v(d)=
adb+ c of distance d in kilometers. R2 values indicate the
power law is an excellent least-squares fit. Parenthesis indi-
cate 95 % confidence intervals on the parameters.

We report scaling exponents in terms of variance; these
could be translated to other conventions using structure func-
tions or the power spectrum domain. Differences between
the power law exponents for tropical and extratropical clouds
were statistically significant. The extratropical scaling expo-
nents of 0.42 and 0.44 are similar to, but slightly in excess
of the classic Kolmogorov scaling of 1/3 (−5/3 in the power
spectral domain). The tropical scaling exponent of 0.62 is in
excess of the classic Kolmogorov scaling of 1/3 but is con-
sistent with tropical cloud reflectance variability reported in
Barker et al. (2017) and mid-tropospheric water vapor mix-
ing ratio in the tropics from the AIRS instrument, e.g., Kahn
et al. (2011). At finer spatial resolutions there is also evi-
dence of scale breaks dependent on altitude. Consequently
the scaling exponent is dependent on the length scale range
calculated (Kahn et al., 2011).

The additive offset c defined the variance at zero dis-
tance, i.e., the irreducible measurement error for each spec-
trum. This implied a noise-equivalent change in liquid wa-
ter fraction of approximately 7.5 % for tropical and 10–11 %
for extratropical clouds. The addend and pre-factor coeffi-
cients differed significantly between extratropical and trop-
ical clouds and to a much smaller degree between the two
extratropical populations. All three populations were sub-
ject to Hyperion’s biased sampling of ocean and land and
of instrument noise conditions dominated by solar zenith an-
gles. We would not ascribe differences between northern and
southern hemispheres to cloud scaling since these discrepan-
cies were small relative to their separation from the tropical
model. In all cases, measurement error was a minor contrib-
utor to observed variance – most variability arose from spa-
tially correlated structure. Outside the tropics, measurement
error accounted for just 25 % of variance observed at GCM
grid scales of 100 km. The remaining 75 % was therefore at-
tributable to spatial structure at subgrid scales.

5 Conclusions

This study reports the first global high spatial resolution sur-
vey of cloud thermodynamic phase. The Hyperion imaging
spectrometer provides two novel contributions beyond prior
records. First, highly diagnostic spectral features permit ac-
curate discrimination of mixed phase clouds. Second, hor-
izontal scales down to 30 m capture the characteristic spa-
tial scaling relationships of the thermodynamic phase field.
Aggregate seasonal and latitudinal changes of cloud thermo-
dynamic phase generally corroborate observations by other
sensing modalities, such as those of AIRS. Variogram analy-
sis reveals a noise-equivalent measurement error of 7.5–11 %
in the liquid thickness fraction for different latitudinal zones.
Spatial correlations follow a power law relationship with ap-
proximately 50 % measurable variance determined at length
scales of 6 km. Significant spatial variability appears at scales
far below the resolution of typical GCMs.

We note an important caveat to these results. The Hyper-
ion datasets were spatially biased and strongly favored land
mass over ocean. Insofar as the latitudinal distributions show
asymmetries across northern and southern hemispheres, this
may be related to the spatial distribution of land mass in
the southern hemispheric midlatitude areas. Southern Hemi-
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sphere observations were often acquired over islands, which
would exhibit a more oceanic influence on cloud cover.

Despite this qualification, the Hyperion results generally
corroborate existing global datasets where there is overlap,
a useful complement to instruments measuring cloud phase
with polarization or thermal emission. They provide a “first
of its kind” observational record at sub-kilometer scales.
These scales are critical for advancing subgrid parameteriza-
tions in GCMs, including the Wegener–Bergeron–Findeisen
timescale of the growth of ice crystals (Tan and Storelvmo,

2016) and numerous other temperature-dependent micro-
physical processes that control ice and liquid water partition-
ing (Ceppi et al., 2016), and for further extending the obser-
vational record to a new extreme of spatial resolution.

Data availability. All Hyperion data can be downloaded via http:
//earthexplorer.usgs.gov (National Aeronautics and Space Admin-
istration, 2018).
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Appendix A: Non-normalized AIRS comparisons

Figures A1 and A2 show AIRS zonal averages for liquid and
ice, respectively, with the correction of Jin and Nasiri (2014)
but without normalization across latitudes. Thin lines indi-
cate AIRS frequencies for ECF thresholds of 0.1 and 0.5.
This indicates the sensitivity of the AIRS result to this choice.
The absolute abundance of the ice phase shows the largest
disparities. This is expected and accountable to very thin ice
clouds to which AIRS is far more sensitive.

Figure A1. A comparison similar to Fig. 7 without normalization across latitudes. Two thin lines represent AIRS retrievals using the standard
effective cloud fraction retrieval threshold of 0.5 and 0.1.
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Figure A2. As in Fig. A1, for the ice phase.
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