Supplement of

Evaluation of linear regression techniques for atmospheric applications: the importance of appropriate weighting

Cheng Wu and Jian Zhen Yu
Correspondence to: Cheng Wu (wucheng.vip@foxmail.com) and Jian Zhen Yu (jian.yu@ust.hk)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

This document contains three supporting tables, nine supporting figures.

1 Comparison of three York regression implementations

A variety of York regression implementations are compared using the Pearson's data with York's weights according to York (1966) (abbreviated as "PY data" hereafter). The dataset is given in Table S2.Three York regression implementations are compared using the PY data, including spreadsheet by Cantrell (2008), Igor program by this study and a commercial software (OriginPro ${ }^{\text {TM }} 2017$). The three York regression implementations yield identical slope and intercept as shown in the highlighted areas (in red) in Figure S6. These crosscheck results suggest that the codes in our Igor program can retrieve consistent slopes and intercepts as other proven programs did.

2 Impact of two primary sources in OC/EC regression

A sampling site is often influenced by multiple combustion sources in the real atmosphere. In section 1 and 2 of the main text we evaluate the performance of OLS, DR, WODR and YR in scenarios of two primary sources and arbitrarily dictate that the (OC/EC) pri of source 1 is lower than that of source 2 . By varying feCl (proportion of source 1 EC to total EC) from test to test, the effect of different mixing ratios of the two sources can be examined. Two scenarios are considered (Wu and Yu, 2016): two correlated primary sources and two independent primary sources. Common configurations include: $\mathrm{EC}_{\text {total }}=2 \mu \mathrm{gC} \mathrm{m}{ }^{-3}$; fECl varies from 0 to 100%; ratio of the two $\mathrm{OC} / \mathrm{EC}_{\text {pri }}$ values ($\gamma_{_}$pri) vary in the range of $2 \sim 8$. Studies by Chu (2005) and Saylor et al. (2006) both suggest ratio of averages (ROA) being the best estimator of the expected primary OC/EC ratio when SOC is zeroed. Since the overall $\mathrm{OC} / \mathrm{EC}_{\text {pri }}$ from the two sources varies by $\gamma_{_}$pri, ROA is considered as the reference OC/ECpri to be compared with slope regressed by of OLS, DR, WODR and YR. The abbreviations used for the two primary sources study are listed in Table S3.

2.1 Impact of two correlated primary sources

Simulations considering two correlated primary sources are performed, to examine the effect on bias in the regression methods. The basic configuration is: $(O C / E C)_{\text {pril }}=0.5$, $(\mathrm{OC} / \mathrm{EC})_{\text {pri2 }}=5, \gamma_{U n c}=30 \%, \mathrm{~N}=8000$, intercept $=0$, and the following terms are compared:
ratio of averages (ROA here refers to the ratio of averaged OC to averaged EC , which is considered as the true value of slope when intercept $=0$), DR, WODR, WODR' (through origin) and OLS. As shown in Figure S7, when R^{2} (EC1 vs. EC2) is very high, DR, WODR and WODR' can provide a result consistent with ROA. If the R^{2} decreases, the bias of the slope and intercept in DR and WODR is larger. OLS constantly underestimates the slope.

2.2 Impact of two independent primary sources

Simulations of two independent primary sources are also conducted. If $\mathrm{RSD}_{\mathrm{EC} 1}=\mathrm{RSD}_{\mathrm{EC} 2}$, slopes and intercepts may be either overestimated or underestimated (Figure S8), and the degree of bias depends on the magnitude of $\mathrm{RSD}_{\mathrm{EC} 1}$ and $\mathrm{RSD}_{\mathrm{EC} 2}$. Larger RSD results in larger bias. Uneven RSD between two sources leads to even more bias (Figure S8 a and b). The degree of bias also shows dependence on $\gamma _$pri. If $\gamma _$pri decreases, the bias becomes smaller (FigureS8 $\mathrm{c} \sim \mathrm{f}$). These results indicate that the scenario with two independent primary sources poses a challenge to $(\mathrm{OC} / \mathrm{EC})$ pri estimation by linear regression.

For the EC tracer method, if EC comes from two primary sources and contribution of the two sources is comparable, the regression slope is no longer suitable for (OC/EC) pri estimation and the subsequent SOC calculation, and making EC a mixture that violates the property of a tracer. For such a situation, pre-separation of EC into individual sources by other tracers (if available) by the Minimum R Squared (MRS) method can provide unbiased SOC estimation results (Wu and $\mathrm{Yu}, 2016$).

3 Igor programs for error in variables linear regression and simulated OC EC data generation using MT

An Igor Pro (WaveMetrics, Inc. Lake Oswego, OR, USA) based program (Scatter plot) with graphical user interface (GUI) is developed to make the linear regression feasible and user friendly (Figure 8). The program includes Deming and York algorithm for linear regression, which considers uncertainties in both X and Y , that is more realistic for atmospheric applications. It is packed with many useful features for data analysis and plotting, including batch plotting, data masking via GUI, color coding in Z axis, data filtering and grouping by numerical values and strings.

Another program using MT can generate simulated OC and EC concentration through user defined parameters via GUI as shown in Figure S9.

Both Igor programs and their operation manuals can be downloaded from the following links:
https://sites.google.com/site/wuchengust
https://doi.org/10.5281/zenodo. 832417

References

Cantrell, C. A.: Technical Note: Review of methods for linear least-squares fitting of data and application to atmospheric chemistry problems, Atmos. Chem. Phys., 8, 5477-5487, 10.5194/aср-8-5477-2008, 2008.

Chu, S. H.: Stable estimate of primary OC/EC ratios in the EC tracer method, Atmos. Environ., 39, 1383-1392, 10.1016/j.atmosenv.2004.11.038, 2005.

Saylor, R. D., Edgerton, E. S., and Hartsell, B. E.: Linear regression techniques for use in the EC tracer method of secondary organic aerosol estimation, Atmos. Environ., 40, 75467556, 10.1016/j.atmosenv.2006.07.018, 2006.
Wu, C. and Yu, J. Z.: Determination of primary combustion source organic carbon-toelemental carbon (OC/EC) ratio using ambient OC and EC measurements: secondary OCEC correlation minimization method, Atmos. Chem. Phys., 16, 5453-5465, 10.5194/acp-16-5453-2016, 2016.

York, D.: Least-squares fitting of a straight line, Can. J. Phys., 44, 1079-1086, 10.1139/p66-090, 1966.

Table S1. Summary of the five linear regression techniques.

Approach	Sum of squared residuals (SSR)	Calculation
Ordinary least squares (OLS)	$S=\sum_{i=1}^{N}\left(y_{i}-Y_{i}\right)^{2}$	closed form
Orthogonal distance regression (ODR)	$S=\sum_{i=1}^{N}\left[\left(x_{i}-X_{i}\right)^{2}+\left(y_{i}-Y_{i}\right)^{2}\right]$	iteration
Weighted orthogonal distance regression (WODR)	$S=\sum_{i=1}^{N}\left[\left(x_{i}-X_{i}\right)^{2}+\left(y_{i}-Y_{i}\right)^{2} / \eta\right]$	iteration
Deming regression (DR)	$S=\sum_{i=1}^{N}\left[\omega\left(X_{i}\right)\left(x_{i}-X_{i}\right)^{2}+\omega\left(Y_{i}\right)\left(y_{i}-Y_{i}\right)^{2}\right]$	closed form
York regression (YR)	$\begin{gathered} S=\sum_{i=1}^{N}\left[\omega\left(X_{i}\right)\left(x_{i}-X_{i}\right)^{2}-2 r_{i} \sqrt{\omega\left(X_{i}\right) \omega\left(Y_{i}\right)}\left(x_{i}-X_{i}\right)\left(y_{i}\right.\right. \\ \left.\left.-Y_{i}\right)+\omega\left(Y_{i}\right)\left(y_{i}-Y_{i}\right)^{2}\right] \frac{1}{1-r_{i}^{2}} \end{gathered}$	iteration

Table S2. Pearson's data with York's weights according to York (1966).

X_{i}	$\omega\left(X_{i}\right)$	Y_{i}	$\omega\left(Y_{i}\right)$
0	1000	5.9	1
0.9	1000	5.4	1.8
1.8	500	4.4	4
2.6	800	4.6	8
3.3	200	3.5	20
4.4	80	3.7	20
5.2	60	2.8	70
6.1	20	2.8	70
6.5	1.8	2.4	100
7.4	1	1.5	500

Table S3. Abbreviations used in two primary sources study.

Abbreviation	Definition
$\mathrm{EC}_{1}, \mathrm{EC}_{2}$	EC from source 1 and source 2 in the two sources scenario
$\mathrm{f}_{\mathrm{EC} 1}$	fraction of EC from source 1 to the total EC
ROA	ratio of averages (Y to X, e.g., averaged OC to averaged EC)
$\gamma _$pri	ratio of the (OC/EC) pri of source 2 to source 1
RSD	relative standard deviation
$\mathrm{RSD}_{\mathrm{EC}}$	RSD of EC
$\varepsilon_{\mathrm{EC}}, \varepsilon_{\mathrm{OC}}$	measurement uncertainty of EC and OC
γ_{unc}	relative measurement uncertainty
$\gamma_{-} \mathrm{RSD}$	the ratio between the RSD values of $(\mathrm{OC} / \mathrm{EC})_{\text {pri }}$ and EC

Figure S1. Relationships between data point A and fitting line L. Fitting line by OLS minimizes the distance of AB (AB is perpendicular to the x axis). Fitting line by ODR and $\mathrm{DR}(\lambda=1)$ minimizes the distance of AC (AC is perpendicular to L). Fitting line by WODR, $\mathrm{DR}\left(\lambda=\frac{\omega\left(X_{i}\right)}{\omega\left(Y_{i}\right)}\right)$ and YR minimizes the distance of AD. AD has a θ degree angle relative to AB and the θ depends on the weights of measurement errors in Y and X .

Data generation steps by the sine functions of Chu (2005)

Figure S2. Flowchart of data generation steps using the sine functions of Chu (2005).

Figure S3. Example of bias in slope and intercept due to improper λ assignment. Data generation: Slope $=4$, Intercept $=0$; linear $\gamma_{U n c}(30 \%)$. (a)\&(b) Slopes and intercepts when proper λ is input following linear $\gamma_{U n C}\left(\lambda=\frac{P O C^{2}}{E C^{2}}\right)$; (c) \&(d) Slopes and intercepts when improper λ is input following non-linear $\gamma_{U n c}\left(\lambda=\frac{P O C}{E C}\right)$.

Figure S4. Sensitivity tests of λ calculated by mean, median and mode.

OC/EC Ratio

Figure S5. Regression slopes as a function of OC/EC percentile. OC/EC percentile range from 0.5% to 100%, with an interval of 0.5%.
(a) Cantrell, C. A 2008 ACP Supplement spreadsheet

Bivariate:	m	-0.480533407446
	b	5.479910224033
	std err m	0.070620269529
	std err b	0.359246522551
	Goodness of fit	1.483294149258

(b) Wu and Yu 2017 AMT Scatterplot Igor program

Figure S6. York regression implementations comparison using data shown in Table S2, including (a) spreadsheet by Cantrell (2008), (b) Igor program by this study and (c) a commercial software (OriginPro ${ }^{\circledR}$ 2017).

Figure S7. Study of two correlated sources scenario by different R^{2} between the two sources. (a) $\mathrm{R}^{2}=1$ (b) $\mathrm{R}^{2}=0.86$ (c) $\mathrm{R}^{2}=0.75$ (d) $\mathrm{R}^{2}=0.49$.

Figure S8. Study of two independent sources scenario by different parameters. (a) $\gamma _$pri $=10, \operatorname{RSD}_{\mathrm{EC} 1}=0.2, \operatorname{RSD}_{\mathrm{EC} 2}=0.2(\mathrm{~b}) \gamma _\mathrm{pri}=10, \operatorname{RSD}_{\mathrm{EC} 1}=0.1, \operatorname{RSD}_{\mathrm{EC} 2}=0.2$ (c) $\gamma _\mathrm{pri}=10$, $\operatorname{RSD}_{\mathrm{EC} 1}=0.1, \operatorname{RSD}_{\mathrm{EC} 2}=0.1$ (d) $\gamma _\mathrm{pri}=8, \operatorname{RSD}_{\mathrm{EC} 1}=0.1, \operatorname{RSD}_{\mathrm{EC} 2}=0.1(\mathrm{e}) \gamma _\mathrm{pri}=6, \operatorname{RSD}_{\mathrm{EC} 1}=0.1$, $\operatorname{RSD}_{\mathrm{EC} 2}=0.1$ (f) $\gamma _\mathrm{pri}=4, \mathrm{RSD}_{\mathrm{EC} 1}=0.1, \operatorname{RSD}_{\mathrm{EC} 2}=0.1$.

Figure S9. MT Igor program. OC and EC data following log-normal distribution can be generated for statistical study purpose (no time series information). User can define mean and RSD of $\mathrm{EC},(\mathrm{OC} / \mathrm{EC})_{\text {pri }}$, SOC/OC ratio, measurement uncertainty, sample size, etc. MT Igor program can be downloaded from the following link: https://sites.google.com/site/wuchengust.

