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Abstract. Linear regression techniques are widely used in at-
mospheric science, but they are often improperly applied due
to lack of consideration or inappropriate handling of mea-
surement uncertainty. In this work, numerical experiments
are performed to evaluate the performance of five linear re-
gression techniques, significantly extending previous works
by Chu and Saylor. The five techniques are ordinary least
squares (OLS), Deming regression (DR), orthogonal dis-
tance regression (ODR), weighted ODR (WODR), and York
regression (YR). We first introduce a new data generation
scheme that employs the Mersenne twister (MT) pseudoran-
dom number generator. The numerical simulations are also
improved by (a) refining the parameterization of nonlinear
measurement uncertainties, (b) inclusion of a linear measure-
ment uncertainty, and (c) inclusion of WODR for compari-
son. Results show that DR, WODR and YR produce an ac-
curate slope, but the intercept by WODR and YR is overesti-
mated and the degree of bias is more pronounced with a low
R2 XY dataset. The importance of a properly weighting pa-
rameter λ in DR is investigated by sensitivity tests, and it is
found that an improper λ in DR can lead to a bias in both
the slope and intercept estimation. Because the λ calculation
depends on the actual form of the measurement error, it is es-
sential to determine the exact form of measurement error in
the XY data during the measurement stage. If a priori error
in one of the variables is unknown, or the measurement error
described cannot be trusted, DR, WODR and YR can provide

the least biases in slope and intercept among all tested regres-
sion techniques. For these reasons, DR, WODR and YR are
recommended for atmospheric studies when both X and Y
data have measurement errors. An Igor Pro-based program
(Scatter Plot) was developed to facilitate the implementation
of error-in-variables regressions.

1 Introduction

Linear regression is heavily used in atmospheric science to
derive the slope and intercept of XY datasets. Examples
of linear regression applications include primary OC (or-
ganic carbon) and EC (elemental carbon) ratio estimation
(Turpin and Huntzicker, 1995; Lin et al., 2009), MAE (mass
absorption efficiency) estimation from light absorption and
EC mass (Moosmüller et al., 1998), source apportionment
of polycyclic aromatic hydrocarbons using CO and NOx as
combustion tracers (Lim et al., 1999), gas-phase reaction
rate determination (Brauers and Finlayson-Pitts, 1997), inter-
instrument comparison (Bauer et al., 2009; Cross et al., 2010;
von Bobrutzki et al., 2010; Zieger et al., 2011; Wu et al.,
2012; Huang et al., 2014; Zhou et al., 2016), inter-species
analysis (Yu et al., 2005; Kuang et al., 2015), analytical pro-
tocol comparison (Chow et al., 2001, 2004; Cheng et al.,
2011; Wu et al., 2016), light extinction budget reconstruc-
tion (Malm et al., 1994; Watson, 2002; Li et al., 2017), com-
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parison between modeling and measurement (Petäjä et al.,
2009), emission factor study (Janhäll et al., 2010), retrieval
of shortwave cloud forcing (Cess et al., 1995), calculation
of pollutant growth rate (Richter et al., 2005), estimation of
ground-level PM2.5 from MODIS data (Wang and Christo-
pher, 2003), distinguishing OC origin from biomass burning
using K+ as a tracer (Duan et al., 2004) and emission type
identification by the EC /CO ratio (Chen et al., 2001).

Ordinary least squares (OLS) regression is the most widely
used method due to its simplicity. In OLS, it is assumed that
independent variables are error-free. This is the case for cer-
tain applications, such as determining a calibration curve of
an instrument in analytical chemistry. For example, a known
amount of analyte (e.g., through weighing) can be used to
calibrate the instrument output response (e.g., voltage). How-
ever, in many other applications, such as inter-instrument
comparison,X and Y (from two instruments) may have com-
parable degrees of uncertainty. This deviation from the un-
derlying assumption in OLS would produce biased slope and
intercept when OLS is applied to the dataset.

To overcome the drawback of OLS, a number of error-in-
variables regression models (also known as bivariate fittings;
Cantrell, 2008) or total least-squares methods (Markovsky
and Van Huffel, 2007) arise. Deming (1943) proposed an ap-
proach by minimizing sum of squares of X and Y residu-
als. A closed-form solution of Deming regression (DR) was
provided by York (1966). Method comparison work of vari-
ous regression techniques by Cornbleet and Gochman (1979)
found significant error in OLS slope estimation when the rel-
ative standard deviation (RSD) of measurement error in “X”
exceeded 20 %, while DR was found to reach a more ac-
curate slope estimation. In an early application of the EC
tracer method, Turpin and Huntzicker (1995) realized the
limitation of OLS since OC and EC have comparable mea-
surement uncertainty and thus recommended the use of DR
for (OC /EC)pri (primary OC to EC ratio) estimation. Ay-
ers (2001) conducted a simple numerical experiment and
concluded that reduced major axis regression (RMA) is more
suitable for air quality data regression analysis. Linnet (1999)
pointed out that when applying DR for inter-method (or inter-
instrument) comparison, special attention should be paid to
the sample size. If the range ratio (max /min) is relatively
small (e.g., less than 2), more samples are needed to obtain
statistically significant results.

In principle, a best-fit regression line should have greater
dependence on the more precise data points rather than
the less reliable ones. Chu (2005) performed a comparison
study of OLS and DR specifically focusing on the EC tracer
method application and found that the slope estimated by DR
is closer to the correct value than OLS but may still over-
estimate the ideal value. Saylor et al. (2006) extended the
comparison work of Chu (2005) by including a regression
technique developed by York et al. (2004). They found that
the slope overestimation by DR in the study of Chu (2005)
was due to improper configuration of the weighting parame-

ter, λ. This λ value is the key to handling the uneven errors
between data points for the best-fit line calculation. This ex-
ample demonstrates the importance of appropriate weighting
in the calculation of best-fit line for error-in-variables regres-
sion model, which is overlooked in many studies.

In this study, we extend the work by Saylor et al. (2006)
to achieve four objectives. The first is to propose a new data
generation scheme by applying the Mersenne twister (MT)
pseudorandom number generator for evaluation of linear re-
gression techniques. In the study of Chu (2005), data gen-
eration is achieved by a varietal sine function, which has
limitations in sample size, sample distribution, and nonad-
justable correlation (R2) between X and Y . In comparison,
the MT data generation provides more flexibility, permitting
adjustable sample size, XY correlation and distribution. The
second is to develop a nonlinear measurement error parame-
terization scheme for use in the regression method. The third
is to incorporate linear measurement errors in the regression
methods. In the work by Chu (2005) and Saylor et al. (2006),
the relative measurement uncertainty (γUnc) is nonlinear with
concentration, but a constant γUnc is often applied on atmo-
spheric instruments due to its simplicity. The fourth is to in-
clude weighted orthogonal distance regression (WODR) for
comparison. Abbreviations and symbols used in this study
are summarized in Table B1 for quick reference.

2 Description of regression techniques compared in
this study

Ordinary least squares (OLS) method

OLS only considers the errors in dependent variables (Y ).
OLS regression is achieved by minimizing the sum of
squares (S) in the Y residuals (i.e., distance of AB in Fig. S1
in the Supplement):

S =

N∑
i=1
(yi −Yi)

2, (1)

where Yi are observed Y data points, while yi are regressed
Y data points of the regression line. N represents the number
of data points that is used for regression.

Orthogonal distance regression (ODR)

ODR minimizes the sum of the squared orthogonal distances
from all data points to the regressed line and considers equal
error variances (i.e., distance of AC in Fig. S1):

S =

N∑
i=1

[
(xi −Xi)

2
+ (yi −Yi)

2
]
. (2)

Weighted orthogonal distance regression (WODR)

Unlike ODR, which considers even error inX and Y , weight-
ings based on measurement errors in both X and Y are con-
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sidered in WODR when minimizing the sum of squared or-
thogonal distance from the data points to the regression line
(Carroll and Ruppert, 1996) as shown by AD in Fig. S1:

S =
∑N

i=1

[
(xi −Xi)

2
+ (yi −Yi)

2/η
]
, (3)

where η is the error variance ratio, which determines the an-
gle θ shown in Fig. S1. Implementation of ODR and WODR
in Igor Pro (WaveMetrics, Inc. Lake Oswego, OR, USA) was
done by the computer routine ODRPACK95 (Boggs et al.,
1989; Zwolak et al., 2007).

Deming regression (DR)

Deming (1943) proposed the following function to minimize
both the X and Y residuals as shown by AD in Fig. S1,

S =
∑N

i=1

[
ω(Xi)(xi −Xi)

2
+ω(Yi)(yi −Yi)

2
]
, (4)

where Xi and Yi are observed data points and xi and yi are
regressed data points. Individual data points are weighted
based on errors in Xi and Yi ,

ω(Xi)=
1
σ 2
Xi

, ω (Yi)=
1
σ 2
Yi

, (5)

where σXi and σYi are the standard deviation of the error
in measurement of Xi and Yi , respectively. The closed-form
solutions for slope and intercept of DR are shown in Ap-
pendix A.

York regression (YR)

The York method (York et al., 2004) introduces the correla-
tion coefficient of errors in X and Y into the minimization
function.

S =
∑N

i=1

[
ω(Xi)(xi −Xi)

2
− 2ri

√
ω(Xi)ω(Yi)

(xi −Xi)(yi −Yi)+ω(Yi)(yi −Yi)
2
] 1

1− r2
i

, (6)

where ri is the correlation coefficient between measurement
errors in Xi and Yi . The slope and intercept of YR are calcu-
lated iteratively through the formulas in Appendix A.

Summary of the five regression techniques is given in Ta-
ble S1 in the Supplement. It is worth noting that OLS and DR
have closed-form expressions for calculating slope and inter-
cept. In contrast, ODR, WODR and YR need to be solved
iteratively. This need to be taken into consideration when
choosing regression algorithm for handling huge numbers of
data.

A computer program (Scatter Plot; Wu, 2017a) with a
graphical user interface (GUI) in Igor Pro (WaveMetrics, Inc.
Lake Oswego, OR, USA) was developed to facilitate the im-
plementation of error-in-variables regression (including DR,

WODR and YR). Two other Igor Pro-based computer pro-
grams, Histbox (Wu, 2017b) and Aethalometer data proces-
sor (Wu, 2017c), are used for data analysis and visualization
in this study.

3 Data description

Two types of data are used for regression comparison. The
first type is synthetic data generated by computer programs,
which can be used in the EC tracer method (Turpin and
Huntzicker, 1995) to demonstrate the regression application.
The true “slope” and “intercept” are assigned during data
generation, allowing quantitative comparison of the bias of
each regression scheme. The second type of data comes from
ambient measurement of light absorption, OC and EC in
Guangzhou for demonstration in a real-world application.

3.1 Synthetic XY data generation

In this study, numerical simulations are conducted in Igor Pro
(WaveMetrics, Inc. Lake Oswego, OR, USA) through custom
codes. Two types of generation schemes are employed: one
is based on the MT pseudorandom number generator (Mat-
sumoto and Nishimura, 1998) and the other is based on the
sine function described by Chu (2005).

The general form of linear regression on XY data can be
written as

Y = kX+ b, (7)

where k is the regressed slope and b is the intercept. The
underlying meaning is that, Y can be decomposed into two
parts. One part is correlated with X, and the ratio is defined
by k. The other part of Y is constant and independent of X
and regarded as b.

To make the discussion easier to follow, we intentionally
avoid discussion using the abstract general form and instead
opt to use a real-world application case in atmospheric sci-
ence. Linear regression had been heavily applied on OC and
EC data, here we use OC and EC data as an example to
demonstrate the regression application in atmospheric sci-
ence. In the EC tracer method, OC (mixture) is Y and EC
(tracer) is X. OC can be decomposed into three components
based on their formation pathway:

OC= POCcomb+POCnon-comb+SOC, (8)

where POCcomb is primary OC from combustion.
POCnon-comb is primary OC emitted from non-combustion
activities. SOC is secondary OC formed during atmospheric
aging. Since POCcomb is co-emitted with EC and well corre-
lated with each other, their relationship can be parameterized
as

POCcomb = (OC/EC)pri×EC. (9)
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By carefully selecting an OC and EC subset when SOC is
very low (considered as approximately zero), the combina-
tion of Eqs. (8) and (9) becomes

POC= (OC/EC)pri×EC+POCnon-comb. (10)

The regressed slope of POC (Y) against EC (X) represents
(OC /EC)pri (k in Eq. 7). The regressed intercept become
POCnon-comb (b in Eq. 7). With known (OC /EC)pri and
POCnon-comb, SOC can be estimated by

SOC= OC− ((OC/EC)pri×EC+POCnon-comb). (11)

The data generation starts from EC (X values). Once EC is
generated, POCcomb (the part of Y that is correlated with
X) can be obtained by multiplying EC by a preset con-
stant, (OC /EC)pri (slope k). Then the other preset constant
POCnon-comb is added to POCcomb and the sum becomes POC
(Y values). To simulate the real-world situation, measure-
ment errors are added on X and Y values. Details of syn-
thesized measurement error are discussed in the next section.
Implementation of data generation by two types of mathe-
matical schemes is explained in Sect. 3.1.2 and 3.1.3, respec-
tively.

3.1.1 Parameterization of synthesized measurement
uncertainty

Weighting of variables is a crucial input for errors-in-
variables linear regression methods such as DR, YR and
WODR. In practice, the weights are usually defined as the
inverse of the measurement error variance (Eq. 5). When
measurement errors are considered, measured concentrations
(Conc.measured) are simulated by adding measurement uncer-
tainties (εConc.) to the true concentrations (Conc.true):

Conc.measured = Conc.true+ εConc., (12)

where εConc. is the random error following an even distribu-
tion with an average of 0, the range of which is constrained
by

−γUnc×Conc.true ≤ εConc. ≤+γUnc×Conc.true. (13)

The γUnc is a dimensionless factor that describes the frac-
tional measurement uncertainty relative to the true concen-
tration (Conc.true). γUnc could be a function of Conc.true
(Thompson, 1988) or a constant. The term γUnc×Conc.true
defines the boundary of random measurement errors.

Two types of measurement error are considered in this
study. The first type is γUnc−nonlinear. In the data genera-
tion scheme of Chu (2005) for the measurement uncertain-
ties (εPOC and εEC), γUnc−nonlinear is nonlinearly related to
Conc.true:

γUnc−nonlinear =
1

√
Conc.true

, (14)

and thus Eq. (13) for POC and EC becomes

−
1

√
POCtrue

×POCtrue ≤ εPOC ≤+
1

√
POCtrue

×POCtrue, (15)

−
1

√
ECtrue

×ECtrue ≤ εEC ≤+
1

√
ECtrue

×ECtrue. (16)

In Eq. (14), the γUnc decreases as concentration increases,
since low concentrations are usually more challenging to
measure. As a result, the γUnc−nonlinear defined in Eq. (14)
is more realistic than the constant approach, but there are
two limitations. First, the physical meaning of the uncer-
tainty unit is lost. If the unit of OC is µg m−3, then the
unit of εOC becomes

√
µgm−3. Second, the concentra-

tion is not normalized by a consistent relative value, mak-
ing it sensitive to the X and Y units used. For exam-
ple, if POCtrue = 0.9 µg m−3, then εPOC =± 0.95 µg m−3 and
γUnc = 105 %, but by changing the concentration unit to
POCtrue = 900 ng m−3, εOC =± 30 ng m−3 and γUnc = 3 %.
To overcome these deficiencies, we propose to modify
Eq. (14) to

γUnc =

√
LOD

Conc.true
×α, (17)

where LOD (limit of detection) is introduced to generate a
dimensionless γUnc. α is a dimensionless adjustable factor to
control the position of γUnc curve on the concentration axis,
which is indicated by the value of γUnc at LOD level. As
shown in Fig. 1a, at different values of α (α = 1, 0.5 and 0.3),
the corresponding γUnc at the same LOD level would be 100,
50 and 30 %, respectively. By changing α, the location of the
γUnc curve on x axis direction can be set, using the γUnc at
LOD as the reference point. Then Eq. (7) for POC and EC
becomes

−

√
LODPOC

POCtrue
×αPOC×POCtrue ≤ εPOC ≤

+

√
LODPOC

POCtrue
×αPOC×POCtrue, (18)

−

√
LODEC

ECtrue
×αEC×ECtrue ≤ εEC ≤

+

√
LODEC

ECtrue
×αEC×ECtrue. (19)

With the modified γUnc−nonlinear parameterization, concen-
trations of POC and EC are normalized by a corresponding
LOD, which maintains unit consistency between POCtrue and
εPOC and ECtrue and εEC and eliminates dependency on the
concentration unit.

Uniform distribution has been used in previous studies
(Cox et al., 2003; Chu, 2005; Saylor et al., 2006) and is
adopted in this study to parameterize measurement error. For
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Figure 1. (a) Example γUnc−nonlinear curves by different α val-
ues (Eq. 17). The x axis is concentration (normalized by LOD)
in log scale and the y axis is γUnc. Black, blue and green line
represents α equal to 1, 0.5 and 0.3, respectively, corresponding
to the γUnc−nonlinear at LOD level equals to 100, 50 and 30 %,
respectively. The red line represents γUnc−linear of 10 %. (b) Ex-
ample of measurement uncertainty generation of γUnc−nonlinear
and γUnc−linear. The blue circles represent γUnc−nonlinear follow-
ing Eq. (17) (LODEC = 1, aEC = 1). The red circles represent
γUnc−linear (30 %).

a uniform distribution in the interval [a,b], the variance is
1
12 (a− b)

2. Since εPOC and εEC follow a uniform distribution
in the interval as given by Eqs. (18) and (19), the weights in
DR and YR (inverse of variance) become

ω(Xi)=
1
σ 2
Xi

=
3

ECtrue×LODEC×α
2
EC
, (20)

ω(Yi)=
1
σ 2
Yi

=
3

POCtrue×LODPOC×α
2
POC

. (21)

The parameter λ in Deming regression is then determined:

λ=
ω(Xi)

ω(Yi)
=

POCtrue×LODPOC×α
2
POC

ECtrue×LODEC×α
2
EC

. (22)

Besides the γUnc−nonlinear discussed above, a second type
measurement uncertainty parameterized by a constant pro-
portional factor, γUnc−linear, is very common in atmospheric

applications:

− γPOCunc×POCtrue ≤ εPOC ≤+γPOCunc×POCtrue, (23)
− γECunc×ECtrue ≤ εEC ≤+γECunc×ECtrue. (24)

where γPOCunc and γECunc are the relative measurement
uncertainties, e.g., for relative measurement uncertainty of
10 %, γUnc = 0.1. As a result, the measurement error is lin-
early proportional to the concentration. An example compar-
ison of γUnc−nonlinear and γUnc−linear is shown in Fig. 1b. For
γUnc−linear, the weights become

ω(Xi)=
1
σ 2
Xi

=
3

(γECunc×ECtrue)
2 , (25)

ω(Yi)=
1
σ 2
Yi

=
3

(γPOCunc×POCtrue)
2 , (26)

and λ for Deming regression can be determined:

λ=
ω(Xi)

ω(Yi)
=
(γPOCunc×POCtrue)

2

(γECunc×ECtrue)
2 . (27)

3.1.2 XY data generation by the Mersenne twister
generator following a specific distribution

The Mersenne twister (MT) is a pseudorandom num-
ber generator (PRNG) developed by Matsumoto and
Nishimura (1998). MT has been widely adopted by main-
stream numerical analysis software (e.g., MATLAB, SPSS,
SAS and Igor Pro) as well as popular programing languages
(e.g., R, Python, IDL, C++ and PHP). Data generation us-
ing MT provides a few advantages: (1) frequency distribution
can be easily assigned during the data generation process, al-
lowing straightforward simulation of the frequency distribu-
tion characteristics (e.g., Gaussian or lognormal) observed in
ambient measurements; (2) the inputs for data generation are
simply the mean and standard deviation of the data series and
can be changed easily by the user; (3) the correlation (R2)

between X and Y can be manipulated easily during the data
generation to satisfy various purposes; and (4) unlike the sine
function described by Chu (2005), which has a sample size
limitation of 120, the sample size in MT data generation is
highly flexible.

In this section, we will use POC as Y and EC as X as an
example to explain the data generation. Procedure of apply-
ing MT to simulate ambient POC and EC data can be found
in our previous study (Wu and Yu, 2016). Details of the data
generation steps are shown in Fig. 2 and described below.
The first step is generation of ECtrue by MT. In our previous
study, it was found that ambient POC and EC data follow a
lognormal distribution in various locations of the Pearl River
Delta (PRD) region. Therefore, lognormal distributions are
adopted during ECtrue generation. A range of average con-
centration and relative standard deviation (RSD) from am-
bient samples is considered in formulating the lognormal
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distribution. The second step is to generate POCcomb. As
shown in Fig. 2, POCcomb is generated by multiplying ECtrue
with (OC /EC)pri. Instead of having a Gaussian distribution,
(OC /EC)pri in this study is a single value, which favors di-
rect comparison between the true value of (OC /EC)pri and
(OC /EC)pri estimated from the regression slope. The third
step is generation of POCtrue by adding POCnon-comb onto
POCcomb. Instead of having a distribution, POCnon-comb in
this study is a single value, which favors direct compari-
son between the true value of POCnon-comb and POCnon-comb
estimated from the regression intercept. The fourth step is
to compute εPOC and εEC. As discussed in Sect. 3.1.1, two
types of measurement errors are considered for εPOC and
εEC calculation: γUnc−nonlinear and γUnc−linear. In the last
step, POCmeasured and ECmeasured are calculated following
Eq. (12), i.e., applying measurement errors on POCtrue and
ECtrue. Then POCmeasured and ECmeasured can be used as Y
and X, respectively, to test the performance of various re-
gression techniques. An Igor Pro-based program with a GUI
was developed to facilitate the MT data generation for OC
and EC. A brief introduction is given in the Supplement.

3.1.3 XY data generation by the sine function of
Chu (2005)

Besides MT, inclusion of the sine function data generation
scheme in this study mainly serves two purposes. First, the
sine function scheme was adopted in two previous studies
(Chu, 2005; Saylor et al., 2006), the inclusion of this scheme
can help to verify whether the codes in Igor for various re-
gression approaches yield the same results from the two pre-
vious studies. Second, the crosscheck between results from
sine function and MT provides circumstantial evidence that
the MT scheme works as expected.

In this section, XY data generation by sine functions is
demonstrated using POC as Y and EC as X. There are
four steps in POC and EC data generation as shown by the
flowchart in Fig. S2. Details are explained as follows. (1) The
first step is to generate POC and EC (Chu, 2005):

POCcomb = 14+ 12
(

sin
(x
τ

)
+ sin(x−φ)

)
, (28)

ECtrue = 3.5+ 3
(

sin
(x
τ

)
+ sin(x−φ)

)
, (29)

where x is the elapsed hour (x = 1,2,3. . .n; n ≤ 120), τ is
used to adjust the width of each peak, and φ is used to ad-
just the phase of the sine wave. The constants 14 and 3.5
are used to lift the sine wave to the positive range of the
y axis. An example of data generation by the sine func-
tions of Chu (2005) is shown in Fig. 3. Dividing Eq. (28)
by Eq. (29) yields a value of 4. In this way the exact relation
between POC and EC is defined clearly as (OC /EC)pri = 4.
(2) With POCcomb and ECtrue generated, the second step is
to add POCnon-comb to POCcomb to compute POCtrue. As
for POCnon-comb, a single value is assigned and added to all
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Figure 2. Flowchart of data generation steps using MT.

POC following Eq. (10). Then the goodness of the regres-
sion intercept can be evaluated by comparing the regressed
intercept with preset POCnon-comb. (3) The third step is to
compute εPOC and εEC, considering both γUnc−nonlinear and
γUnc−linear. (4) The last step is to apply measurement errors
on POCtrue and ECtrue following Eq. (12). Then POCmeasured
and ECmeasured can be used as Y and X, respectively, to eval-
uate the performance of various regression techniques.

3.2 Ambient measurement of σabs and EC

Sampling was conducted from Feb 2012 to Jan 2013
at the suburban Nancun (NC) site (23◦0′11.82′′ N,
113◦21′18.04′′ E), which is situated on top of the high-
est peak (141 m a.s.l.) in the Panyu district of Guangzhou.
This site is located at the geographic center of Pearl River

Atmos. Meas. Tech., 11, 1233–1250, 2018 www.atmos-meas-tech.net/11/1233/2018/
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Figure 3. POCcomb and ECtrue data generated by the sine functions
of Chu (2005). (a) Time series of the 120 data points for POCcomb
and ECtrue. (b) Scatter plot of POCcomb vs. ECtrue.

Delta region (PRD), making it a good location for rep-
resenting the average atmospheric mixing characteristics
of city clusters in the PRD region. Light absorption mea-
surements were performed by a 7λ Aethalometer (AE-31,
Magee Scientific Company, Berkeley, CA, USA). EC
mass concentrations were measured by a real time ECOC
analyzer (model RT-4, Sunset Laboratory Inc., Tigard,
Oregon, USA). Both instruments utilized inlets with a
2.5 µm particle diameter cutoff. The algorithm of Wein-
gartner et al. (2003) was adopted to correct the sampling
artifacts (aerosol loading, filter matrix and scattering effect;
Collaud Coen et al., 2010) in Aethalometer measurement.
A customized computer program with GUI, Aethalometer
data processor (Wu et al., 2018), was developed to perform
the data correction and detailed descriptions can be found
in https://sites.google.com/site/wuchengust. More details of
the measurements can be found in Wu et al. (2018).

4 Comparison study using synthetic data

In the following comparisons, six regression approaches are
compared using two data generation schemes (Chu sine
function and MT) separately, as illustrated in Fig. 4. Each
data generation scheme considers both γUnc−nonlinear and
γUnc−linear in measurement error parameterization. In total,
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Figure 4. Overview of the comparison study design.

18 cases are tested with different combination of data genera-
tion schemes, measurement error parameterization schemes,
true slope and intercept settings. In each case, six regres-
sion approaches are tested, i.e., OLS, DR (λ= 1), DR(
λ=

ω(Xi )
ω(Yi )

)
, ODR, WODR and YR. In commercial software

(e.g., OriginPro®, SigmaPlot®, GraphPad Prism®), λ in DR
is set to 1 by default if not specified. As indicated by Saylor
et al. (2006), the bias observed in the study of Chu (2005)
is likely due to λ= 1 in DR. The purpose of including DR
(λ= 1) in this study is to examine the potential bias using
the default input in many software products. The six regres-
sion approaches are considered to examine the sensitivity of
regression results to various parameters used in data genera-
tion. For each case, 5000 runs are performed to obtain sta-
tistically significant results, as recommended by Saylor et
al. (2006). The mean slope and intercept from 5000 runs is
compared with the true value assigned during data genera-
tion. If the difference is < 5 %, the result is considered unbi-
ased.

4.1 Comparison results using the dataset of Chu (2005)

In this section, the scheme of Chu (2005) is adopted for
data generation to obtain a benchmark of six regression ap-
proaches. With different setup of slope, intercept and γUnc,
six cases (Cases 1–6) are studied and the results are discussed
below.

www.atmos-meas-tech.net/11/1233/2018/ Atmos. Meas. Tech., 11, 1233–1250, 2018
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±

0.01
0
±

0.04
1
±

0.01
0
±

0.04
18

1
3

0.59
±

0.01
0.8
±

0.01
4.07
±

0.05
1.07
±

0.01
2.62
±

0.07
1
±

0.01
3
±

0.06
1.07
±

0.01
2.62
±

0.07
1.02
±

0.01
2.84
±

0.05
1.02
±

0.01
2.84
±

0.05
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4.1.1 Results with γUnc−nonlinear

A comparison of the regression techniques results with
γUnc−nonlinear (following Eqs. 18 and 19) is summarized in
Table 1. LODPOC , LODEC, αPOC and αEC are all set to
1 to reproduce the data studied by Chu (2005) and Saylor
et al. (2006). Two sets of true slope and intercept are con-
sidered (Case 1: slope= 4, intercept= 0; Case 2: slope= 4,
intercept= 3) to examine if any results are sensitive to the
nonzero intercept. The R2 (POC, EC) from 5000 runs for
both Case 1 and 2 are 0.67± 0.03.

As shown in Fig. 5, for the zero-intercept case (Case
1), OLS significantly underestimates the slope (2.95± 0.14),
while it overestimates the intercept (5.84± 0.78). This re-
sult indicates that OLS is not suitable for errors-in-variables
linear regression, consistent with similar analysis results
from Chu (2005) and Saylor et al. (2006). With DR, if
the λ is properly calculated by weights

(
λ=

ω(Xi )
ω(Yi )

)
, unbi-

ased slope (4.01± 0.25) and intercept (−0.04± 1.28) are ob-
tained; however, results from DR with λ= 1 show obvious
bias in the slope (4.27± 0.27) and intercept (−1.45± 1.36).
ODR also produces biased slope (4.27± 0.27) and inter-
cept (−1.45± 1.36), which are identical to results of DR
when λ= 1. With WODR, unbiased slope (3.98± 0.22) is
observed, but the intercept is overestimated (1.12± 1.02).
Results of YR are identical to WODR. For Case 2 (slope= 4,
intercept= 3), slopes from all six regression approaches are
consistent with Case 1 (Table 1). The Case 2 intercepts are
equal to the Case 1 intercepts plus 3, implying that all the
regression methods are not sensitive to a nonzero intercept.

For Case 3, LODPOC = 0.5, LODEC = 0.5, αPOC = 0.5,
αEC = 0.5 are adopted (Table 1), leading to an offset to the
left of γUnc−nonlinear (blue curve) compared to Case 1 and
2 (black curve) in Fig. 1. As a result, for the same con-
centration of EC and OC in Case 3, the γUnc−nonlinear is
smaller than in Cases 1 and 2 as indicated by a higher R2

(0.95± 0.01 for Case 3, Table 1). With a smaller measure-
ment uncertainty, the degree of bias in Case 3 is smaller than
in Case 1. For example, OLS slope is less biased in Case 3
(3.83± 0.08) compared to Case 1 (2.94± 0.14). Similarly,
the slope (4.03± 0.09) and intercept (−0.18± 0.44) of DR
(λ= 1) exhibit a much smaller bias with a smaller measure-
ment uncertainty, implying that the degree of bias by improp-
erly weighting in DR, WODR and YR is associated with the
degree of measurement uncertainty. A higher measurement
uncertainty results in larger bias in slope and intercept.

An uneven LODPOC and LODEC is tested in Case 4 with
LODPOC = 1, LODEC = 0.5, αPOC = 0.5, αEC = 0.5, which
yield an R2(POC, EC) of 0.78± 0.02. The results are similar
to Case 1. For DR

(
λ=

ω(Xi )
ω(Yi )

)
unbiased slope and intercept

are obtained. For WODR and YR, unbiased slopes are re-
ported with a small bias in the intercepts. Large bias values
are observed in both the slopes and intercepts in Case 4 using
OLS, DR (λ= 1) and ODR.
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Figure 5. Regression results on synthetic data, Case 1 (Slope= 4,
Intercept= 0, LODPOC = 1, LODEC = 1, aPOC = 1, aEC = 1, R2

(POC, EC)= 0.67± 0.03). The scatter plots demonstrate regression
examples from a single run. The box plots show the distribution of
regressed slopes and intercepts from 5000 runs of six regression ap-
proaches. The dashed lines in orange and pink represent true slope
and intercept, respectively.

4.1.2 Results with γUnc−linear

Cases 5 and 6 represent the results from using γUnc−linear
and are shown in Table 1. γUnc is set to 30 % to achieve
an R2 (POC, EC) of 0.7, a value close to the R2 in stud-
ies of Chu (2005) and Saylor et al. (2006). In Case 5
(slope= 4, intercept= 0), unbiased slopes and intercepts are
determined by DR

(
λ=

ω(Xi )
ω(Yi )

)
, WODR and YR. OLS un-

derestimates the slope (3.32± 0.20) and overestimates in-
tercept (3.77± 0.90), while DR (λ= 1) and ODR overesti-
mate the slopes (4.75± 0.30) and underestimate the inter-
cepts (−4.14± 1.36). In Case 6 (slope= 4, intercept= 3), re-
sults similar to Case 5 are obtained. It is worth noting that al-
though the mean intercept (3.05± 1.22) of DR

(
λ=

ω(Xi )
ω(Yi )

)
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Figure 6. Slope and intercept biases by different regression schemes in two test scenarios (A and B) in which the assumed error for one
of the regression variables deviates from the actual measurement error. In Test A data generation, γUnc_X is fixed at 30 % and γUnc_Y is
varied between 1 and 50 %. In Test B, γUnc_X varies between 1 and 50 % and γUnc_Y is fixed at 30 %. The assumed measurement error for
regression is 10 % for both X and Y . (a) Slope biases as a function of γUnc_Y in Test A. (b) Intercept biases as a function of γUnc_Y in Test
A. (c) Slope biases as a function of γUnc_X in Test B. (d) Intercept biases as a function of γUnc_X in Test B.

is closest to the true value (intercept= 3), the deviations are
much larger than for WODR (2.72± 0.74).

4.2 Comparison results using data generated by MT

In this section, MT is adopted for data generation to obtain a
benchmark of six regression approaches. Both γUnc−nonlinear
and γUnc−linear are considered. With different configuration
of slope, intercept and γUnc, 12 cases (Cases 7–18) are stud-
ied and the results are discussed below.

4.2.1 γUnc−nonlinear results

Cases 7 and 8 use data generated by MT and γUnc−nonlinear
with results shown in Table 1. In Case 7 (slope= 4, in-
tercept= 0, LODPOC = 1, LODEC = 1, αPOC = 1, αEC = 1),
unbiased slope (4.00± 0.03) and intercept (0.00± 0.17) is
estimated by DR

(
λ=

ω(Xi )
ω(Yi )

)
. WODR and YR yield un-

biased slopes (3.96± 0.03) but overestimate the intercepts
(1.21± 0.13). DR (λ= 1) and ODR report slightly biased
slopes (4.17± 0.04) with biased intercepts (−0.94± 0.18).
OLS underestimates the slope (3.22± 0.03) and overesti-
mates the intercept (4.30± 0.14). In Case 8 (slope= 4, in-
tercept= 3, LODPOC = 1, LODEC = 1, αPOC = 1, αEC = 1),

DR
(
λ=

ω(Xi )
ω(Yi )

)
provides unbiased slope (4.00± 0.03) and

intercept (3.00± 0.18) estimations. WODR and YR report
unbiased slopes (3.97± 0.03) and overestimate intercepts
(4.11± 0.13). OLS, DR (λ= 1) and ODR report biased
slopes and intercepts.

To test the overestimation/underestimation dependency
on the true slope, Case 9 (slope= 0.5, intercept= 0,
LODPOC = 1, LODEC = 1, αPOC = 1, αEC = 1) and Case
10 (slope= 0.5, intercept= 3, LODPOC = 1, LODEC = 1,
αPOC = 1, αEC = 1) are conducted and the results are shown
in Table 1. Unlike the overestimation observed in Cases 1–8,
DR (λ= 1) and ODR underestimate the slopes (0.46± 0.01)
in Case 9. In Case 10, DR (λ= 1), DR

(
λ=

ω(Xi )
ω(Yi )

)
and

ODR report unbiased slopes and intercepts. Cases 11 and
12 test the bias when the true slope is 1, as shown in Ta-
ble 1. In Case 11 (intercept= 0), all regression approaches
except OLS can provide unbiased results. In Case 12, all re-
gression approaches report unbiased slopes except OLS, but
DR

(
λ=

ω(Xi )
ω(Yi )

)
is the only regression approach that reports

unbiased intercept.
These results imply that if the true slope is less than 1, the

improper weighting (λ= 1) in Deming regression and ODR
without weighting tends to underestimate slope. If the true

Atmos. Meas. Tech., 11, 1233–1250, 2018 www.atmos-meas-tech.net/11/1233/2018/



C. Wu and J. Z. Yu: Evaluation of linear regression techniques 1243

slope is 1, these two estimators can provide unbiased results.
If the true slope is larger than 1, the improper weighting (λ=
1) in Deming regression and ODR without weighting tends
to overestimate slope.

4.2.2 γUnc−linear results

Cases 13 and 14 (Table 1) represent the results from using
γUnc−linear (30 %) and data generated from MT. For Case 13
(slope= 4, intercept= 0), DR

(
λ=

ω(Xi )
ω(Yi )

)
, WODR and YR

provide the best estimation of slopes and intercepts. DR (λ=
1) and ODR overestimate slopes (4.53± 0.05) and under-
estimate intercepts (−2.94± 0.24). For Case 14 (slope= 4,
intercept= 3), DR

(
λ=

ω(Xi )
ω(Yi )

)
, WODR and YR provide

an unbiased estimation of slopes. But DR
(
λ=

ω(Xi )
ω(Yi )

)
is

the only regression approach reporting unbiased intercept
(3.08± 0.23). Cases 15 and 16 are tested to investigate
whether the results are different if the true slope is smaller
than 1. As shown in Table 1, the results are similar to Cases
13 and 14, i.e., that DR

(
λ=

ω(Xi )
ω(Yi )

)
can provide unbiased

slope and intercept while WODR and YR can provide unbi-
ased slopes but biased intercepts. Cases 17 and 18 are tested
to see if the results are the same for a special case when the
true slope is 1. As shown in Table 1, the results are similar to
Cases 13 and 14, implying that these results are not sensitive
to the special case when the true slope is 1.

4.3 The importance of appropriate λ input for Deming
regression

As discussed above, inappropriate λ assignment in the Dem-
ing regression (e.g., λ= 1 by default for much commercial
software) leads to biased slope and intercept. Besides λ= 1,
inappropriate λ input due to improper handling of measure-
ment uncertainty can also result in bias for Deming regres-
sion. An example is shown in Fig. S3. Data are generated
by MT with following parameters: slope= 4, intercept= 0,
and γUnc−linear (30 %). Figure S2a and b demonstrate that
when an appropriate λ is provided (following γUnc−linear,
λ= POC2

EC2 ), unbiased slopes and intercepts are obtained. If an
improper λ is used due to a mismatched measurement uncer-
tainty assumption

(
γUnc−nonlinear,λ=

POC
EC

)
, the slopes are

overestimated (Fig. S3c, 4.37± 0.05) and intercepts are un-
derestimated (Fig. S3,−2.01± 0.24). This result emphasizes
the importance of determining the correct form of measure-
ment uncertainty in ambient samples, since λ is a crucial pa-
rameter in Deming regression.

In the λ calculation, different representations for POC and
EC, including mean, median and mode, are tested as shown
in Fig. S4. The results show that whenX and Y have a similar
distribution (e.g., both are lognormal), any of mean, median
or mode can be used for the λ calculation.
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Figure 7. Regression results using ambient σabs520 and EC data
from a suburban site in Guangzhou, China.

4.4 Caveats of regressions with unknown X and Y
uncertainties

In atmospheric applications, there are scenarios in which a
priori error in one of the variables is unknown, or the mea-
surement error described cannot be trusted. For example, in
the case of comparing model prediction and measurement
data, the uncertainty of model prediction data is unknown.
A second example is the case in which measurement uncer-
tainty cannot be determined due to the lack of duplicated or
collocated measurements and as a result, an arbitrarily as-
sumed uncertainty is used. Such a case was illustrated in
the study by Flanagan et al. (2006). They found that in the
Speciation Trends Network (STN), the whole-system uncer-
tainty retrieved by data from collocated samplers was differ-
ent from the arbitrarily assumed 5 % uncertainty. Addition-
ally, the discrepancy between the actual uncertainty obtained
through collocated samplers and the arbitrarily assumed un-
certainty varied by chemical species. To investigate the per-
formance of different regression approaches in these cases,
two tests (A and B) are conducted.
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In Test A, the actual measurement error for X is fixed
at 30 %, while γUnc for Y varies from 1 to 50 %. The as-
sumed measurement error for regression is 10 % for both X
and Y . Results of Test A are shown in Fig. 6a and b. For
OLS, the slopes are underestimated (−14 to −12 %) and
intercepts are overestimated (90–103 %) and the biases are
independent of variations in γUnc_Y. ODR and DR (λ= 1)
yield similar results with overestimated slopes (0–44 %) and
underestimated intercepts (−330–0 %). The degree of bias
in slopes and intercepts depends on the γUnc_Y. WODR, DR(
λ=

ω(Xi )
ω(Yi )

)
and YR perform much better than other regres-

sion approaches in Test A, with a smaller bias in both slopes
(−8–12 %) and intercepts −98–55 %).

In Test B, γUnc_Y is fixed at 30 % and γUnc_X varies be-
tween 1 and 50 %. The results of Test B are shown in Fig. 6c
and d. The assumed measurement error for regression is 10 %
for both X and Y . OLS underestimates the slopes (−29 to
−0.2 %) and overestimates the intercepts (2–209 %). In con-
trast to Test A in which slope and intercept biases are inde-
pendent of variations in γUnc_Y, the slope and intercept bi-
ases in Test B exhibit dependency on γUnc_X. The reason for
this is that OLS only considers errors in Y and X is assumed
to be error-free. ODR and DR (λ= 1) yield similar results
with overestimated slopes (11–18 %) and underestimated in-
tercepts (−144 to −87 %). The degree of bias in slopes and
intercepts is relatively independent on the γUnc_X. WODR,
DR

(
λ=

ω(Xi )
ω(Yi )

)
and YR performed much better than the

other regression approaches in Test B, with a smaller bias
in both slopes (−14–8 %) and intercepts (−59–106 %).

The results from these two tests suggest that, if one of
the measurement errors described cannot be trusted or a pri-
ori error in one of the variables is unknown, WODR, DR(
λ=

ω(Xi )
ω(Yi )

)
and YR should be used instead of ODR and DR

(λ= 1) and OLS. This conclusion is consistent with results
presented in Sect. 4.1 and 4.2. This analysis, albeit crude,
also suggests that, in general, the magnitude of bias in slope
estimation by these regression approaches is smaller than
those for intercept. In other words, slope is a more reliable
quantity compared to intercept when extracting quantitative
information from linear regressions.

5 Regression applications to ambient data

This section demonstrates the application of the six regres-
sion approaches on a light absorption coefficient and EC
dataset collected in a suburban site in Guangzhou. As men-
tioned in Sect. 4.4, measurement uncertainties are crucial in-
puts for DR, YR and WODR. The measurement precision of
Aethalometer is 5 % (Hansen, 2005), while EC by the RT-
ECOC analyzer is 24 % (Bauer et al., 2009). These measure-
ment uncertainties are used in DR, YR and WODR calcu-
lation. The dataset contains 6926 data points with an R2 of
0.92.

As shown in Fig. 7, the y axis is light absorption at
520 nm (σabs520) and the x axis is EC mass concentration.
The regressed slopes represent the mass absorption efficiency
(MAE) of EC at 520 nm, ranging from 13.66 to 15.94 m2 g−1

by the six regression approaches. OLS yields the lowest
slope (13.66 as shown in Fig. 7a) among all six regres-
sion approaches, consistent with the results using synthetic
data. This implies that OLS tends to underestimate regression
slope when mean Y to X ratio is larger than 1. DR (λ= 1)
and ODR report the same slope (14.88) and intercept (5.54);
this equivalency is also observed for the synthetic data. Sim-
ilarly, WODR and YR yield identical slope (14.88) and in-
tercept (5.54), in line with the synthetic data results. The re-
gressed slope by DR (λ= 1) is higher than DR

(
λ=

ω(Xi )
ω(Yi )

)
,

and this relationship agrees well with the synthetic data re-
sults.

Regression comparison is also performed on hourly OC
and EC data. Regression on OC /EC percentile subset is a
widely used empirical approach for primary OC /EC ratio
determination. Figure S5 shows the regression slopes as a
function of OC /EC percentile. OC /EC percentile ranges
from 0.5 to 100 %, with an interval of 0.5 %. As the percentile
increases, SOC contribution in OC increases as well, result-
ing in decreased R2 between OC and EC. The deviations be-
tween six regression approaches exhibit a dependency onR2.
When percentile is relatively small (e.g., < 10 %), the differ-
ences between the six regression approaches are also small
due to the high R2 (0.98). The deviations between the six
regression approaches become more pronounced as R2 de-
creases (e.g., < 0.9). The deviations are expected to be even
larger when R2 is less than 0.8. These results emphasize the
importance of applying error-in-variables regression, since
ambient XY data more likely has an R2 less than 0.9 in most
cases.

As discussed in this section, the ambient data confirm the
results obtained in comparing methods with the synthetic
data. The advantage of using the synthetic data for regression
approaches evaluation is that the ideal slope and intercept are
known values during the data generation, so the bias of each
regression approach can be quantified.

6 Recommendations and conclusions

This study aims to provide a benchmark of commonly used
linear regression algorithms using a new data generation
scheme (MT). Six regression approaches are tested, i.e.,
OLS, DR (λ= 1), DR

(
λ=

ω(Xi )
ω(Yi )

)
, ODR, WODR and YR.

The results show that OLS fails to estimate the correct slope
and intercept when both X and Y have measurement errors.
This result is consistent with previous studies. For ambient
data with R2 less than 0.9, error-in-variables regression is
needed to minimize the biases in slope and intercept. If mea-
surement uncertainties in X and Y are determined during
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Figure 8. The user interface of the Scatter Plot Igor program. The program and its operation manual are available from https://doi.org/10.
5281/zenodo.832417.

the measurement, measurement uncertainties should be used
for regression. With appropriate weighting, DR, WODR and
YR can provide the best results among all tested regression
techniques. Sensitivity tests also reveal the importance of the
weighting parameter λ in DR. An improper λ could lead to
biased slope and intercept. Since the λ estimation depends
on the form of the measurement errors, it is important to de-
termine the measurement errors during the experimentation
stage rather than making assumptions. If measurement errors
are not available from the measurement and assumptions are
made on measurement errors, DR, WODR and YR are still
the best option that can provide the least bias in slope and
intercept among all tested regression techniques. For these
reasons, DR, WODR and YR are recommended for atmo-
spheric studies when both X and Y data have measurement
errors.

Application of error-in-variables regression is often over-
looked in atmospheric studies, partly due to the lack of a
specified tool for the regression implementation. To facili-
tate the implementation of error-in-variables regression (in-
cluding DR, WODR and YR), a computer program (Scatter
Plot) with a GUI in Igor Pro (WaveMetrics, Inc. Lake Os-
wego, OR, USA) was developed (Fig. 8). It is packed with
many useful features for data analysis and plotting, includ-
ing batch plotting, data masking via GUI, color coding in
the z axis, data filtering and grouping by numerical values
and strings. The Scatter Plot program and user manual are
available from https://sites.google.com/site/wuchengust and
https://doi.org/10.5281/zenodo.832417.

Data availability. OC, EC and σabs data used in this study are
available from the corresponding authors upon request. The com-
puter programs used for data analysis and visualization in this study
are available in Wu (2017a–c).
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Appendix A: Equations of regression techniques

Ordinary least squares (OLS) calculation steps.
First calculate average of observed Xi and Yi .

X =

∑N
i=1Xi

N
(A1)

Y =

∑N
i=1Yi

N
(A2)

Then calculate Sxx and Syy .

Sxx =
∑N

i=1

(
Xi −X

)2
(A3)

Syy =
∑N

i=1

(
Yi −Y

)2
(A4)

OLS slope and intercept can be obtained from

k =
Syy

Sxx
, (A5)

b = Y − kX. (A6)

Deming regression (DR) calculation steps (York, 1966).
Besides Sxx and Syy as shown above, Sxy can be calculated

from

Sxy =
∑N

i=1

(
Xi −X

)(
Yi −Y

)
, (A7)

DR slope and intercept can be obtained from

k =
Syy − λSxx +

√(
Syy − λSxx

)2
+ 4λS2

xy

2Sxy
, (A8)

b = Y − kX. (A9)

York regression (YR) iteration steps (York et al., 2004).
Slope by OLS can be used as the initial k inWi calculation.

Wi =
ω(Xi)ω(Yi)

ω(Xi)+ k2ω(Yi)− 2kri
√
ω(Xi)ω(Yi)

(A10)

Ui =Xi −X =Xi −

∑N
i=1WiXi∑N
i=1Wi

(A11)

Vi = Yi −Y = Yi −

∑N
i=1WiYi∑N
i=1Wi

(A12)

Then calculate βi .

βi =Wi

[
Ui

ω(Yi)
+

kVi

ω(Xi)
−
[
kUi +Vi

] ri
√
ω(Xi)ω(Yi)

]
(A13)

Slope and intercept can be obtained from

k =

∑N
i=1WiβiVi∑N
i=1WiβiUi

, (A14)

b = Y − kX. (A15)

Since Wi and βi are functions of k, k must be solved iter-
atively by repeating Eqs. (A11) to (A15). If the difference
between the k obtained from Eq. (A15) and the k used in
Eq. (A11) satisfies the predefined tolerance ( ki+1−ki

ki
< e−15),

the calculation is considered as converged. The calculation is
straightforward and usually converged in 10 iterations. For
example, the iteration count on the dataset of Chu (2005) is
around 6.
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Appendix B: Summary of abbreviations and symbols

Abbreviation/symbol Definition
α a dimensionless adjustable factor to control the position

of γUnc curve on the concentration axis
b intercept in linear regression
βi,Ui,Vi,Wi intermediates in York regression calculations
γUnc fractional measurement uncertainties

relative to the true concentration (%)
DR Deming regression
εEC,εPOC absolute measurement uncertainties of EC and POC
EC elemental carbon
ECtrue numerically synthesized true EC concentration

without measurement uncertainty
ECmeasured EC with measurement error (ECtrue+ εEC)

λ ω(Xi) to ω(Yi)
ratio in Deming regression

k slope in linear regression
LOD limit of detection
MT Mersenne twister pseudorandom number generator
OC organic carbon
OC /EC OC to EC ratio
(OC /EC)pri primary OC /EC ratio
OCnon-comb OC from non-combustion sources
ODR orthogonal distance regression
OLS ordinary least squares regression
POC primary organic carbon
POCcomb numerically synthesized true POC from combustion

sources (well correlated with ECtrue),
measurement uncertainty not considered

POCnon-comb numerically synthesized true POC from non-combustion
sources (independent of ECtrue)

without considering measurement uncertainty
POCtrue sum of POCcomb and POCnon-comb

without considering measurement uncertainty
POCmeasured POC with measurement error (POCtrue+ εPOC)

σXi ,σYi the standard deviation of the error in
measurement of Xi and Yi

ri correlation coefficient between errors in Xi and Yi in YR
S sum of squared residuals
SOC secondary organic carbon
τ parameter in the sine function of Chu (2005)

that adjusts the width of each peak
φ parameter in the sine function of Chu (2005)

that adjusts the phase of the curve
WODR weighted orthogonal distance regression
X,Y average of Xi and Yi
YR York regression
ω(Xi) ,ω(Yi) inverse of σXi and σYi ,

used as weights in DR calculation.
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