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Abstract. In many urban areas the population is exposed to
elevated levels of air pollution. However, real-time air quality
is usually only measured at few locations. These measure-
ments provide a general picture of the state of the air, but
they are unable to monitor local differences. New low-cost
sensor technology is available for several years now, and has
the potential to extend official monitoring networks signifi-
cantly even though the current generation of sensors suffer
from various technical issues.

Citizen science experiments based on these sensors must
be designed carefully to avoid generation of data which is of
poor or even useless quality. This study explores the added
value of the 2016 Urban AirQ campaign, which focused
on measuring nitrogen dioxide (NO2) in Amsterdam, the
Netherlands. Sixteen low-cost air quality sensor devices were
built and distributed among volunteers living close to roads
with high traffic volume for a 2-month measurement period.

Each electrochemical sensor was calibrated in-field next to
an air monitoring station during an 8-day period, resulting in
R2 ranging from 0.3 to 0.7. When temperature and relative
humidity are included in a multilinear regression approach,
the NO2 accuracy is improved significantly, with R2 ranging
from 0.6 to 0.9. Recalibration after the campaign is crucial,
as all sensors show a significant signal drift in the 2-month
measurement period. The measurement series between the
calibration periods can be corrected for after the measure-
ment period by taking a weighted average of the calibration
coefficients.

Validation against an independent air monitoring station
shows good agreement. Using our approach, the standard de-
viation of a typical sensor device for NO2 measurements was
found to be 7 µgm−3, provided that temperatures are below
30 ◦C. Stronger ozone titration on street sides causes an un-
derestimation of NO2 concentrations, which 75 % of the time
is less than 2.3 µgm−3.

Our findings show that citizen science campaigns using
low-cost sensors based on the current generations of electro-
chemical NO2 sensors may provide useful complementary
data on local air quality in an urban setting, provided that
experiments are properly set up and the data are carefully
analysed.

1 Introduction

Because air pollution is difficult to measure, instrumental and
operational costs of official measurement stations are usu-
ally high. Air quality networks in cities, if present at all,
are therefore usually sparse. Diffusive sampling is a com-
mon addition to these real-time measurements and are suc-
cessfully used to monitor local differences (see, e.g., Cape,
2009). However, these differences are poorly attributed to
an emission source due to the long averaging time of these
measurements (usually monthly). Emerging low-cost sensor
technology has the potential to extend the official monitor-
ing network significantly, and improve our understanding of
local urban air pollution. Miniaturized and affordable sen-
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sors potentially enable citizens to measure their environment
in more detail in space and time (Kumar et al., 2015). Most
commercially available sensors, however, suffer from vari-
ous technical issues which limit their applicability. Despite
their limitations many experiments are done with air quality
devices containing these sensors, often by motivated but not
necessarily scientifically trained people. Comprehensive cal-
ibration and validation of these devices is crucial (see, e.g.,
Lewis and Edwards, 2016; Lewis et al., 2016), but often over-
looked. The resulting poor data quality is of concern to health
authorities, scientists, and citizens themselves.

Several studies have been done to explore the performance
of low-cost air quality sensors (e.g. Jiao et al., 2016; Du-
vall et al., 2016; Mead et al., 2013; Moltchanov et al., 2015).
For NO2 monitoring, mostly metal oxide and electrochem-
ical sensors are used (Borrego et al., 2016; Spinelle et al.,
2015b; Thompson, 2016). Typical ambient concentrations of
NO2 are at parts-per-billion (ppb) level. The main problems
encountered in NO2 sensor evaluations in these real-world
environments are low sensitivity, poor selectivity, low pre-
cision and accuracy, and drift. Metal oxide sensors are es-
pecially not very stable (Spinelle et al., 2015b; Thompson,
2016) and suffer from lower selectivity. Therefore, in this
study, we opted for electrochemical sensors to measure NO2.

Mead et al. (2013) already noted the strong interference of
ozone and other ambient factors in electrochemical NO2 sen-
sors. The performance can be increased significantly when
adding additional measurements of, for example, tempera-
ture and humidity in a regression model or neural network,
as shown by, for instance, Piedrahita et al. (2014), Spinelle
et al. (2015b), and Masson et al. (2015). Coping with sensor
degradation remains a serious issue. Some studies, such as
Jiao et al. (2016), include an additional temporal term in their
linear regression which improves the predicted NO2 slightly.

In the following sections we assess the data quality of the
2016 Urban AirQ campaign. As with many similar initiatives
depending on participating citizens, this campaign was not
set up as a strictly controllable scientific experiment such
as in the previously mentioned studies. However, we will
demonstrate that citizen air quality monitoring using the cur-
rent generation of electrochemical NO2 sensors may provide
useful data of urban air quality, by using a practical method
for field calibration and correcting for sensor degradation in
retrospect.

2 The Urban AirQ project

The Urban AirQ project explores the added value of alter-
native air quality measurements in the city by addressing
citizens’ questions about their local air quality. It focusses
on a 2 km× 1 km area around Valkenburgerstraat, a primary
road in the east-central part of Amsterdam (see Fig. 1). Its
dense traffic causes regular exceedances of the European an-
nual limit value for nitrogen dioxide (40 µgm−3).

Two town hall meetings were organized in which residents
of this area were invited to raise their concerns about air
pollution in their neighbourhood and to formulate related re-
search questions. Topics included the relation between traffic
density and air pollution, the difference between main roads
and side streets, the front side of an apartment compared to
its backside, the influence of apartment height, and the influ-
ence of cut-through traffic at nighttime. The residents were
invited to participate in finding answers to their questions
by measuring their outdoor air quality with 16 experimen-
tal low-cost sensor devices (labelled SD01 to SD16), built
for this purpose by Waag Society.

Measurements were done from June to August 2016. Be-
forehand, the sensor devices were calibrated using side-by-
side measurements next to an official air quality measure-
ment station. With a second calibration period after the cam-
paign, individual sensor drift was assessed and compensated
for in retrospect.

The Urban AirQ experiment is unique in the sense of the
used number of devices, the duration of the experiment, the
direct involvement of citizens, and the use of open hardware
and generation of open data.

3 Urban AirQ sensor devices

The approach used in the Urban AirQ project is to build a
sensor device with low-cost electronic components which is
easy to operate so that citizens can take their own air qual-
ity measurements. It builds on the basic design described
by Jiang et al. (2016), having an improved power supply,
weather resistant housing, WiFi connectivity, and additional
sensors for temperature, relative humidity, and particulate
matter. The sensor development is part of an open hard-
ware project; detailed technical information can be found at
https://github.com/waagsociety/making-sensor.

The microcontroller board (Arduino UNO), which handles
the reading of the sensors and sends the data to the WiFi
module (ESP8266), is central in the design (see Fig. 2).

For NO2 measurements, an electrochemical cell is used
from Alphasense Ltd (Essex, UK). The cell contains four
electrodes. The target gas, NO2, diffuses through a mem-
brane where it is chemically reduced at the working elec-
trode, generating a current signal. This electric current is bal-
anced by a opposite current from the counter electrode. The
reference electrode sets the operating potential of the work-
ing electrode. The sensor also includes an auxiliary electrode,
which is used to compensate for baseline changes in the sen-
sor. To get full sensor performance, low-noise interface elec-
tronics are necessary. An individual sensor board with am-
perometric circuitry, also provided by Alphasense, is used to
guarantee a low noise environment and to optimize the sen-
sor resolution at low ppb levels. The sensor signal is read by
a 16 bit analogue-to-digital (A/D) converter (ADS1115). Of
the 16 devices, 2 (SD01 and SD02) use model NO2-B42F
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Figure 1. Locations of the sensor devices during the citizen measurement campaign. The green marker indicates the calibration location at
GGD Vondelpark. In the circle the location of SD04 and the GGD station at Oude Schans (in red). The location of Valkenburgerstraat is
highlighted in yellow.

 

   
    

(a) (b) (c)

Figure 2. Hardware modules of a sensor device (a), and the integration in the casing: open (b) and closed (c).

for NO2 measurements and the other 14 use the newer NO2-
B43F sensor.

Of the 16 sensor devices, 12 are also equipped with
a Shinyei PPD42NS sensor in order to measure particulate
matter optically. The present paper, however, will focus only
on the assessment of the NO2 measurements. All devices
measure internal temperature and relative humidity (RH)
with a DHT22 sensor from Aosong Electronics.

The system is supplied with a 7.5 V voltage output adapter
and a regulator board which generates 5 V for the Arduino
and the sensors. The microcontroller consumes 10 mA cur-
rent (measured). The PM sensor needs up to 80 mA (mea-
sured), the NO2 sensor about 10 mA (measured), and the
DHT22 less than 1 mA. The WiFi module peaks periodically
at 350 mA when establishing an internet connection.

www.atmos-meas-tech.net/11/1297/2018/ Atmos. Meas. Tech., 11, 1297–1312, 2018
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Figure 3. Raw sensor data, unfiltered but hourly averaged, from the 16 sensors during the first calibration period, 2–10 June 2016. The data
gap around 5 June is due to a connectivity problem to the central database.

3.1 Averaging and filtering

Raw sensor measurements are stored in a central database
on a 1 min base. However, the calibration analysis is based
on hourly averages to enable direct comparison between the
ground truth (also provided as hourly values), and to improve
the signal-to-noise ratio.

The NO2 sensor measurements are done at the working
electrode (SWE) and the auxiliary electrode (SAE). They are
provided as counts from the A/D converter. Sensor readings
of temperature and RH are converted according to the indica-
tion of the manufacturer to degrees Celsius and percentages
respectively.

Raw, hourly averaged sensor data are shown in Fig. 3. The
spread in temperature and RH displayed in the raw data is
partly explained by the sensor-to-sensor variability. By look-
ing at nighttime temperatures (to eliminate the effect of local
heating by exposure to direct sunlight) we see that the in-
ternal sensor temperatures are 2–5 ◦C higher than ambient
temperature. The devices are not actively ventilated, which
means that the energy dissipation of the electronics influ-
ences their internal temperature. The variable position of the
temperature sensors with respect to these heat sources further
explain the variance in temperature and relative humidity.

Careful filtering is needed before the data can be further
processed. We have applied the following rules:

– Raw, minute-based SWE and SAE measurements outside
a ±10 % range of their mean value during the entire
measuring period are considered outliers. This filters
out 0.33 % of all measurements. This criterion was used
for its simplicity and effectiveness. Note that, due to the

large offset in the raw SWE and SAE signal, realistic NO2
peak values are still detectable as the corresponding sen-
sor response is still within a 10 % bandwidth.

– All readings at sensor temperatures above 30 ◦C are dis-
carded to avoid non-linear temperature dependence of
the electrochemical NO2 sensor (see Sect. 4.4). This fil-
ters out 4.53 % of the measurements during the entire
period.

– At least 20 valid minute-based measurements are re-
quired to calculate a representative hourly mean. This
criterion was found to be a good trade-off between noise
reduction by averaging and not losing too many hourly
measurements.

During the first calibration period, the sensors took measure-
ments 79 % of the time on average. After applying the criteria
above, this resulted in 70 % valid hourly measurements. Dur-
ing the measurement campaign, the sensors produced 79 %
valid hourly measurements on average, with the uptime drop-
ping to 50 % in places were sensors experienced connectivity
problems due to limited range of the participant’s WiFi net-
work.

3.2 Calibration periods

Calibration of the sensors devices have been done by plac-
ing the 16 sensors side by side on the rooftop of the air
quality station at Vondelpark, operated by the Public Health
Service of Amsterdam (GGD). This station is classified
as a city background station. It measures nitrogen diox-
ide, nitrogen monoxide (NO), ozone (O3), particulate mat-
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Figure 4. Box-and-whisker diagrams of hourly ambient parameters during the two calibration periods and the measurement campaign. The
box edges indicate the 25th–75th percentile; the whiskers the minimum and maximum values. The median is indicated in red. Temperature
and RH are based on the average values of all sensors devices, NO2 and ozone are taken from the reference station at Vondelpark. For
comparison, NO2 from the reference station at Oude Schans (OS) is also shown.

ter (PM10, PM2.5, particle number and size distribution),
black carbon, and carbon monoxide (CO). For NO and NO2
measurements, GGD alternates operation of a Teledyne API
200E and a Thermo Electron 42I NO/NOx analyser, both
based on chemiluminescence. The validated measurements
used in this study are considered to be the ground truth. The
calibration period spanned several days to be able to test the
sensors under a wide range of ambient conditions. To assess
the stability of the calibration, the sensors were brought back
after the 2-month measurement campaign to the calibration
facility for a second calibration period. The Urban AirQ cam-
paign consisted therefore of three phases.

The first field calibration period at GGD Vondelpark sta-
tion started at 2 June 2016, 00:00 LT (local time), and ended
at 10 June 2016, 10:00 LT (8.5 days; 204 h). Due to connec-
tivity problems sensor data were missing between 4 June,
19:00 LT, and 6 June, 09:00 LT.

During the following citizen campaign, 15 sensors were
distributed among the participants. One sensor (SD03) was
kept at the Vondelpark station as a reference. The first sen-
sor was installed and connected at 13 June 2016, 18:00 LT,
and the last sensor connected at 17 June 2016, 17:00 LT. At
15 August 2016, 09:00 LT, the first sensor was disconnected,
and at 16 August 2016, 18:00 LT, the last sensor was discon-
nected. Over this 1537 h period, each of the devices produced
1204 valid hourly measurements on average.

The second field calibration period at GGD Vondelpark
station started at 18 August 2016, 15:00 LT, and ended at
29 August 2016, 00:00 LT (10.4 days; 249 h). Due to connec-
tivity problems sensor data were missing between 26 August,
12:00 LT, and 27 August, 11:00 LT.

Figure 4 shows the distribution of temperature, relative hu-
midity, NO2, and O3 during the different periods. Looking at
the 75th percentile of the distributions, the calibration peri-

ods are characterized by higher temperatures and ozone lev-
els than the campaign period. The range of NO2 concentra-
tions at the Vondelpark station in the calibration periods is
larger than in the campaign, more frequently reaching higher
NO2 values. During the campaign the sensors were closer to
the GGD station at Oude Schans, where measured NO2 val-
ues are generally a few µgm−3 higher than at Vondelpark.
Ozone is not measured at the Oude Schans site.

4 NO2 calibration

Electrochemical sensors such as the Alphasense NO2-B se-
ries are known to be sensitive to interfering species and ambi-
ent factors. Ozone, temperature, and relative humidity, in par-
ticular, influence the sensor reading (see, e.g., Spinelle et al.,
2015a).

4.1 Explaining the NO2 sensor signal

To understand better the behaviour of the NO2 sensor, we
study its sensitivity to different ambient factors. We use the
first calibration period to test the correlation of the measured
SWE and SAE signal with NO2, ozone, temperature, and hu-
midity by making a best fit though the hourly time series:

SWE(t)= c0+ c1NO2(t). (1)

Temperature and RH were not readily available from the
GGD Vondelpark station data. We take temperature and RH
from the average readings from the DHT22 sensors instead,
which better reflect the internal sensor conditions than ambi-
ent air measurements.

Figure 5 shows scatter plots for an average performing
sensor and the R2, the coefficient of determination. The
measured SWE signal can be explained by ambient NO2

www.atmos-meas-tech.net/11/1297/2018/ Atmos. Meas. Tech., 11, 1297–1312, 2018
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Figure 5. Typical sensor performance (SD10) explained as a linear regression of respectively NO2, O3, T , RH, and all variables. (a) The
results for the working electrode and (b) for the auxiliary electrode. The axes represent the A/D converter counts, which are proportional to
the currents generated by the sensor at the corresponding electrode.
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Table 1. Fit results for regression model A. Older NO2-B42F sen-
sors highlighted in bold.

Sensor ID c0 c1 (SWE) c2 (SAE) R2

SD01 455.4 0.6977 −1.0835 0.47
SD02 355.9 0.8862 −1.2633 0.62
SD03 −228.6 1.0877 −0.8029 0.72
SD04 −968.2 0.9138 −0.1237 0.69
SD05 −155.1 0.8368 −0.6841 0.48
SD06 −141.9 0.6136 −0.5241 0.44
SD07 −576.4 0.9615 −0.4811 0.57
SD08 231.4 1.0802 −1.2514 0.68
SD09 100.5 0.8669 −0.8952 0.56
SD10 342.0 0.8221 −1.1629 0.50
SD11 338.4 0.9823 −1.2246 0.61
SD12 −375.2 0.7775 −0.4837 0.54
SD13 −1703.4 0.8218 0.5544 0.60
SD14 162.6 0.8156 −0.9075 0.46
SD15 1211.2 0.9008 −1.8984 0.30
SD16 −594.3 0.8007 −0.3192 0.49

(R2
= 0.20), but better by its anti-correlation with ozone

(R2
= 0.49). Temperature alone is an even better predictor

for the sensor signal (R2
= 0.73), because of the sensors’

direct dependence on temperature, and indirect dependence
on temperature (being a reasonable proxy for both NO2 and
O3 concentrations). The correlation with relative humidity is
also very strong (R2

= 0.73). The measured SWE signal can
best be explained as a linear combination of NO2, O3, T , and
RH together, resulting in a correlation of 0.98 (R2

= 0.96).
The SAE signal is practically insensitive to NO2. This sug-

gests that a combination of SWE and SAE is more sensitive to
NO2 and less to the other interfering factors, as intended by
the manufacturer.

4.2 NO2 calibration models

For NO2 measurements, the sensor manufacturer suggest
correcting both working electrode and auxiliary electrode for
a zero offset with SWE,0 and SAE,0 respectively. Then a sen-
sitivity constant s is applied to convert from mV to ppb NO2:

NO2 [ppb] =
(SWE− SWE,0)− (SAE− SAE,0)

s
. (2)

In practice, the factory-supplied constants SWE,0, SAE,0,
and s do not result in realistic values of NO2; see, e.g., Cross
et al. (2017). As an alternative, we propose a linear combina-
tion of the signals SWE and SAE (calibration model A):

NO2 [µgm−3
] = c0+ c1SWE+ c2SAE. (3)

The coefficients c1 and c2 are determined with data from
the calibration period using ordinary least squares (OLS). As
can be seen from the fit results in Table 1, within the batch
of sensors there is a large variability of direct sensitivity to
ambient NO2.

During the calibration period, hourly ozone values
(also taken from the Vondelpark station) happened to
be a good proxy for the ambient NO2 concentration:
NO2(t)= 44.6− 0.40 ·O3(t) in µgm−3, with R2 of 0.49.

When compared with Table 1, it can be seen that direct
sensor readings from a fair part of the sensors cannot out-
perform this result. To improve the results we use additional
measurements and their statistical relation to NO2. We fit
different calibration models with multiple linear regression
(using OLS). The calibration models which were tested are
listed in Table 2.

Temperature and RH are taken from the DHT22 sensor.
Note that there is no need to calibrate the individual T and
RH sensor signals beforehand; the calibration coefficients for
NO2 are determined for the specific set of all sensors in the
box. However, this means that if an individual sensor is re-
placed, new calibration parameters for the sensor box have to
be derived.

4.3 Calibration results

A complete overview of the regression coefficients and their
error estimates for all models can be found in the Supple-
ment. The sign of the calibration parameters can be easily
understood. As the electrochemical NO2 sensor loses sensi-
tivity at higher temperatures (see the negative slope in Fig. 7b
for temperatures below 30 ◦C), coefficients c3 are positive to
compensate for this effect. The additional sensor response
due to cross-sensitivity with ozone is compensated for by
negative values for c5.

From the fit results we see that model B (including RH)
performs better than model A, but model C (including T )
outperforms model B. When both RH and T are included
(model D) the results of model C are marginally improved.
This can be understood in terms of strong sensor dependence
on temperature, weak dependence on RH, and the collinear-
ity between temperature and RH. Note that measuring RH
is essential for guarding the data quality of electrochemical
sensors, as these sensors are very sensitive to sudden changes
in RH (see, e.g., Alphasense, 2013; and Pang et al., 2016).

The best calibration results (i.e. R2 values closer to 1) are
obtained by including ozone (model E). The ozone values
were obtained from the GGD Vondelpark station, as the sen-
sor devices do not measure ozone themselves.

As local ozone measurements were only available during
the calibration periods, we used model D for the Urban AirQ
campaign, i.e. generating an NO2 value based on a linear
combination of SWE, SAE, T , and RH. The regression anal-
ysis of model D and correlation with the NO2 ground truth
can be found in Table 3.

The two worst-performing sensor devices (SD02 and
SD01) contain the older NO2-B42F sensor. The newer NO2-
B43F model is designed to have higher sensitivity to NO2
and less interference of ozone. The old sensor model has
indeed smaller coefficients for SWE and larger correction
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Table 2. Regression models for NO2.

Model A NO2= c0+ c1 · SWE+ c2 · SAE Linear combination of working electrode and auxiliary elec-
trode

Model B NO2= c0+ c1 · SWE+ c2 · SAE+ c4·RH Relative humidity correction
Model C NO2= c0+ c1 · SWE+ c2 · SAE+ c3 · T Temperature correction
Model D NO2= c0+ c1 · SWE+ c2 · SAE+ c3 · T + c4·RH Temperature and RH correction
Model E NO2= c0+ c1 · SWE+ c2 · SAE+ c3 · T + c4·RH+ c5 ·O3 Correction for temperature, RH, and ozone cross-sensitivity

Table 3. Fit results for regression model D. Older NO2-B42F sensors highlighted in bold.

Sensor ID c0 c1 (SWE) c2 (SAE) c3 (T ) c4 (RH) R2

SD01 790.9 0.8707 −1.5645 −0.5051 0.4513 0.62
SD02 589.2 0.8618 −1.4742 0.2142 0.4204 0.67
SD03 −1272.1 1.2045 −0.1492 1.2690 −0.2944 0.87
SD04 −1613.3 1.1499 0.1818 0.3200 −0.4442 0.85
SD05 −1623.1 1.1235 0.2088 1.7161 −0.4430 0.75
SD06 −824.8 1.1850 −0.5839 1.6737 −0.3069 0.81
SD07 −1217.6 1.1305 −0.1642 1.9435 0.0000 0.79
SD08 −1129.7 1.1835 −0.2705 2.2559 −0.2704 0.86
SD09 −586.3 1.1794 −0.6738 2.0415 −0.2192 0.90
SD10 −1152.7 1.1668 −0.3120 2.9112 −0.2147 0.72
SD11 −1109.8 1.1055 −0.2339 3.3191 −0.1693 0.81
SD12 −1074.9 1.0961 −0.2346 1.4954 −0.2799 0.84
SD13 −1074.6 1.1294 −0.3058 1.8671 −0.1561 0.83
SD14 8.1 1.1860 −1.1889 2.5401 0.0268 0.84
SD15 −104.5 1.8111 −1.7939 4.8373 0.0596 0.83
SD16 −1215.5 1.2551 −0.3038 2.1742 −0.1333 0.84

terms for ozone (see the c1 and c5 coefficients of model E in
the Supplement). This, however, can also be related to their
longer operating time, as both sensors have been used in pre-
vious experiments for more than a year. Again, it can be seen
that even within the same batch of sensors there is a signifi-
cant spread in performance, around a median value for R2 of
0.83. Figure 6 shows the results for the different calibration
models for the average performing sensor SD15. The time
series in Fig. 6b shows clearly how the performance of a typ-
ical sensor device improves when temperature and humid-
ity are included in the calibration analysis. The adjusted R2,
which corrects R2 for the number of explanatory variables,
increases from 0.29 to 0.82. Note that R2

adj is only slightly
smaller than R2, as the number of observations (n≈ 150) is
relatively high compared to the number of regression vari-
ables (k= 2. . . 5).

4.4 Dependency on temperature

Calibrated data without temperature filter show occasionally
strong negative values (see Fig. 7 below). These negative
peaks coincide with internal sensor temperatures exceeding
30 ◦C. This behaviour can be explained from the dependency
of the electrochemical sensor on temperature becoming non-
linear (see Fig. 7b): the sensitivity of the NO2 sensor de-

creases linearly with temperature up to around 30 ◦C, while
above 40 ◦C the sensor gains sensitivity with rising tempera-
tures. In these regimes, the response of the sensor cannot be
described well with our multilinear regression approach. As
temperatures during the measurement period only rose oc-
casionally above 30 ◦C, we decided to filter these measure-
ments out.

4.5 Startup time

When a sensor device is switched on for service, the electro-
chemical cell must be stabilized by the potentiostatic circuit
which can take a few hours due to the high capacitance of the
working electrode (Alphasense, 2009). Furthermore, when
the sensor is transported to another environment the sudden
change in RH causes an equilibrium distortion with a relax-
ation time of about 2 h (Mueller et al., 2017). The startup ef-
fect is translated by the calibration model as a strong positive
NO2 peak, which should be filtered out. From our sensor data
we estimate a stabilization time of 4 h. Note that this startup
effect should not be confused with the response time, which
is determined to be less than 2 min in Mead et al. (2013) and
Spinelle et al. (2015a).
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Figure 6. (a) Calibration model results for an average performing sensor (SD15). Bottom row shows the recommended calibration by
model D (left), and the results when ozone is included (right). (b) Time series compared to ground truth with calibration parameters of
model A and D.

4.6 Predictivity, sensor drift, and uncertainty
estimation

Almost all electrochemical sensors have some degree of drift
because of aging and poisoning (Di Carlo et al., 2011; Hier-
lemann and Gutierrez-Osuna, 2008). This becomes a serious
complication when the drift is of the order of the strength of
the signal of interest. The idea of keeping sensor SD03 next
to the reference station during the whole campaign was to
study sensor degradation in more detail. Unfortunately, the
sensor was removed temporarily from 10 to 14 July for ser-

vice, when it was decided to add a PM module to the de-
vice. The increased energy dissipation after the modification
(the Shinyei PPD42NS module uses a heater resistor to force
a convective flow of sampling air) caused an increase of the
internal device temperature by 2.5 ◦C on average. This sud-
den jump in temperature disrupted the reference time series.

Instead, to assess the short-term stability of the calibration
model, we use the first 60 % of the measurements from the
calibration period (2–7 June) to derive the regression coef-
ficients, and predict the NO2 values for the remaining 40 %
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Figure 7. (a) Examples of negative spikes in the calibrated NO2 measurements (solid line) due to internal sensor temperatures (dotted line)
exceeding 30 ◦C. (b) Variation of zero output of the working electrode caused by changes in temperature for a typical batch of electrochemical
sensors. Image taken from Alphasense Data Sheet for NO2-B43F (Alphasense, 2016).

(8–10 June; see Table 4). The average RMSE increases from
6.5 to 7.0 µgm−3 when the regression is used for prediction.

We assess the long-term stability of the sensors with a sec-
ond calibration period after measurement campaign, again
at the Vondelpark calibration site. As can be seen from the
distribution of the residuals in Fig. 8, most sensors drift sig-
nificantly in the intermediate 2-month period. We describe
this degradation effect as a bias b between the mean of the
hourly estimated NO2 values x̂i and the mean of the hourly
true NO2 xi during the calibration period:

b =
1
N

N∑
i=1

x̂i −
1
N

N∑
i=1

xi, (4)

and the root-mean-square error (RMSE) of the difference
between the bias-corrected calibrated measurement and the
ground truth. The latter is the same as the standard deviation
of the residuals (SDR) x̂i − xi :

SDR =

√
1
N

∑
i

((
x̂i − b

)
− xi

)2
. (5)

As can be seen in Table 5, the bias is mostly positive. Note
that sensor SD16 and SD01 had a limited uptime in the sec-
ond period, which makes their bias and RMS calculation not
very representative.

The strongest bias after 2 months is found for SD02 and
SD01. Both are of model NO2-B42F and have been used in
others experiments for more than 1 year. These sensors also
have the largest RMSE in the first calibration period (see also
Table 3), which is another indication of their poor perfor-
mance. The range in RMSE of the remaining sensors is 4.5–
7.2 µgm−3 for the first period. The bias-corrected RMSE in-
creases to 5.3–9.3 µgm−3 for the second period. The latter
is a more conservative yet more realistic estimation of the
precision of the NO2 estimates, as they are based on mea-
surements which were not used for calibration. Based on our
results listed in the last columns of Tables 4 and 5, we take
7 µgm−3 as a typical uncertainty for the estimated NO2 val-
ues.
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Figure 8. Sensor drift during 2 months of operation, shown as the distribution of residuals (in 2 µgm−3 bins) with the reference measurements
during the first calibration period (black bars) and during the second period (red bars).

The increase of SDR is also due to a loss of sensitivity over
time. The aging of the sensors can be further investigated
by recalibrating the devices, i.e. determining the coefficients
of regression model D, using the data of the second calibra-
tion period (see the Supplement). All calibration coefficients
of SWE (the only component which has direct sensitivity to
NO2) decrease in value, showing that all sensors suffer from
sensitivity loss to NO2. This results in lower R2 values, al-

though the performance loss is partly compensated for by the
other components in the regression. The older Alphasense
NO2-B42F sensors suffer the largest sensitivity loss, which
(although the regression tries to compensate with increased
temperature dependence) results in the worst performance
loss in terms of R2.
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Figure 9. (a) Comparison of sensor SD04 NO2 time series with the nearby Oude Schans station (8-day snapshot), and the effect of bias
correction. For comparison, measurements of Vondelpark station are also shown. (b) Distribution of residuals of NO2 measurements between
sensor SD04 and Oude Schans station during the campaign period, with and without bias correction.

4.7 Weighted calibration

Taking 18 µgm−3 as a typical NO2 concentration in an urban
environment (Fig. 4), the sensor drift as listed in Table 5 is
a significant error component, even after a 2-month period. It
is impossible to predict the progressing bias for an individ-
ual sensor. However, using the second calibration period we
can compensate for signal drift after the measurement period.
If x̂1(t) represents the estimated NO2 value at time t based
on the first calibration period (starting at t1), and x̂2(t) the
estimated NO2 value based on the second calibration period
(ending at t2), then we take for intermediate times t1 ≤ t ≤ t2
as a weighted average of both calibrations:

x̂(t)= (1− f (t))x̂1(t)+ f (t)x̂2(t). (6)

Assuming that the sensor degradation is linear in time we
select

f (t)= (t − t1)/(t2− t1), (7)

such that f (t1)= 0 and f (t2)= 1.

4.8 Validation against an independent reference station

Citizen science can be unpredictable, and we were fortunate
that sensor SD04 was handed over to an Urban AirQ par-
ticipant living at Korte Koningsstraat (ground floor), which
happens to be 120 m from another GGD station at Oude
Schans (see Fig. 1). The Korte Koningsstraat is a side street
away from traffic arteries, whereas Oude Schans also classi-
fies as an urban background location. The proximity to a ref-
erence station enabled us to perform independent validation
of the sensor measurements, as the calibration of the sen-
sor is based on side-by-side measurements with Vondelpark
station, at 3 km distance. As can be seen from Fig. 9, the sen-
sor readings agree very well with the official measurements.
Using the weighted calibration explained in the previous sec-
tion, the measurement bias largely disappears (Table 6). The
RMSE (5.3 µgm−3) is comparable to the RMSE found dur-
ing the calibration period. The results give confidence that
our calibration method remains valid for similar urban loca-

Atmos. Meas. Tech., 11, 1297–1312, 2018 www.atmos-meas-tech.net/11/1297/2018/



B. Mijling et al.: Field calibration of electrochemical NO2 sensors 1309

Table 4. Descriptive and short-term predictive error of model D
in µgm−3.

2–7 Jun (descriptive) 8–10 Jun (predictive)

Sensor ID Uptime RMSE Uptime RMSE

SD01 92 h 9.25 54 h 9.31
SD02 89 h 7.95 53 h 13.74
SD03 88 h 5.58 53 h 4.37
SD04 90 h 6.00 54 h 4.94
SD05 90 h 7.62 53 h 8.75
SD06 97 h 6.36 57 h 5.57
SD07 85 h 7.09 52 h 6.26
SD08 88 h 5.95 52 h 6.59
SD09 88 h 4.94 52 h 3.69
SD10 99 h 7.44 59 h 8.09
SD11 91 h 6.78 53 h 5.42
SD12 93 h 6.08 52 h 5.07
SD13 89 h 6.25 54 h 5.31
SD14 83 h 3.96 48 h 14.61
SD15 89 h 6.75 52 h 4.52
SD16 93 h 6.06 55 h 5.61

Table 5. Bias and random error in µgm−3 when calibrated in the
first period with model D.

First calibration period Second calibration period

Sensor ID Uptime Bias SDR Uptime Bias SDR

SD01 146 h −0.1 8.8 106 h 40.1 18.2
SD02 142 h 0.0 8.2 199 h 21.4 12.8
SD03 141 h 0.0 5.1 205 h 5.6 9.3
SD04 144 h 0.0 5.5 202 h −9.2 5.8
SD05 143 h 0.0 7.0 192 h 3.0 6.3
SD06 154 h 0.0 6.0 197 h −2.1 6.8
SD07 137 h 0.0 6.6 196 h 6.6 6.8
SD08 140 h 0.0 5.4 199 h 3.1 9.1
SD09 140 h 0.0 4.5 196 h 0.7 5.3
SD10 158 h 0.0 7.2 206 h 0.2 7.9
SD11 144 h 0.0 6.3 205 h 0.5 8.5
SD12 145 h 0.0 5.7 194 h 10.1 6.0
SD13 143 h 0.0 5.8 206 h 9.8 7.7
SD14 131 h 0.0 5.9 211 h 16.6 6.9
SD15 141 h 0.0 6.0 198 h 21.3 6.8
SD16 148 h 0.0 5.7 47 h 15.6 8.7

tions, and that our assumption of sensor degradation being
linear in time is acceptable.

5 Discussion

The Alphasense NO2-B4 sensor is used to measure ambi-
ent NO2 in many low-cost air quality settings. As all elec-
trochemical NO2 sensors, it is not very selective regarding
the target gas. The sensor response can be explained well by
a linear combination of NO2, O3, temperature, and relative
humidity signals (R2

≈ 0.9).

As a consequence, a linear combination of the working
electrode and the auxiliary electrode alone gives a poor indi-
cation of ambient NO2 concentrations. The accuracy varies
greatly between different sensors (R2 between 0.3 and 0.7).
For the Urban AirQ campaign, temperature and relative hu-
midity were included in a multilinear regression approach.
The results improve significantly with R2 values typically
around 0.8. This corresponds well with the findings of Jiao
et al. (2016), who find an adjusted R2

= 0.82 for the best-
performing electrochemical NO2 sensor in their evaluation,
when including T and RH.

Best results are obtained by also including ozone measure-
ments in the calibration model: R2 increases to 0.9. Spinelle
et al. (2015b) used a similar regression and found R2 rang-
ing from 0.35 to 0.77 for four electrochemical NO2 sensors
during a 2-week calibration period, but dropping to 0.03–
0.08 when applied to a successive 5-month validation period.
Low NO2 values at their semi-rural site partly explain this
poor performance, but it is most likely that there were also
unaccounted-for effects such as changing sensor sensitivity
and signal drift.

The sensor devices were tested in an Amsterdam urban
background in summertime, with NO2 values ranging from 3
to 78 µgm−3, and median values around 15 µgm−3. During
the 3-month period most sensors show loss of sensitivity and
significant drift, ranging from −9 to 21 µgm−3. After bias
correction we found a typical value for the accuracy of the
NO2 measurements of 7 µgm−3.

This error consists of several components. The reference
measurements by the NO/NOx analysers have an estimated
hourly error of 3.65 % (certified validation at a 200 µgm−3

NO2 concentration), which would contribute to 0.5 µgm−3

under typical conditions. The low-cost DHT22 sensor has
a reported error of 0.5 ◦C for temperature and 2–5 % for RH.
For a single measurement, this would contribute to a propa-
gated regression error of approximately 1 and 0.5 µgm−3 re-
spectively. It should be noted, however, that binning minute-
based measurements to hourly averages removes a large part
of the variability, while determining the best fitting regres-
sion model for each sensor device removes large part of the
remaining systematical biases. The largest part of the error
term is therefore introduced by the linear regression model
itself, which does not include all interfering species or me-
teorological quantities, and is not able to describe non-linear
dependencies of its variables. One should therefore be care-
ful extrapolating the calibration model for conditions differ-
ent than the calibration period.

The validation results from Sect. 4.8 show that the calibra-
tion holds well for urban locations with similar NO2/O3 ra-
tios. Neglecting O3 as a regression parameter, however, will
introduce a bias at locations with different NO2/O3 ratios
found, e.g. closer to emission sources. To get a better under-
standing of the possible impact, we compared hourly ozone
measurements from the GGD authorities at Van Diemen-
straat (VDS, classified as street station) against Nieuwen-
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Table 6. Comparison of sensor SD04 with Oude Schans station during the campaign period, according to different calibrations.

First calibration Second calibration Weighted calibration

Mean NO2, GGD Oude Schans 19.96 µgm−3 19.96 µgm−3 19.96 µgm−3

Mean NO2, sensor SD04 17.02 µgm−3 22.21 µgm−3 19.87 µgm−3

Bias −2.94 µgm−3 2.25 µgm−3
−0.09 µgm−3

RMSE 6.10 µgm−3 5.25 µgm−3 5.20 µgm−3

Correlation 0.89 0.89 0.88

dammerdijk (NDD, classified as urban background station)
during June–August 2016. The relation can best be described
by [O3]VDS= 0.87 [O3]NDD+ 0.85 (with 0.93 correlation),
which means that ozone levels at the street station are typ-
ically 13 % lower, due to titration of O3 with NO. Due to
the sensor’s cross-sensitivity for ozone, larger values must
be subtracted from its signal when the ozone concentration
increases. This explains the negative sign of the ozone co-
efficient c5 of model E (see Supplement). Calibration with
model D overcorrects (i.e. subtracts too much) for locations
which have lower ozone concentrations than at the calibra-
tion site, resulting in an underestimation of NO2 concentra-
tions. Using typical values c5=−0.3 and [O3]= 60 µgm−3

(75th percentile of the distribution during the measurement
camping, according to Fig. 4), we estimate the underestima-
tion of road-side NO2 0.3× 13 %× 60= 2.3 µgm−3.

The found sensor accuracy after weighted calibration is
good enough to provide some complementary spatial infor-
mation on local air quality between reference stations. When
looking at the difference between Vondelpark station and
Oude Schans station (both classified as city background sta-
tions) in the period June–August 2016, 22 % of the hourly
measurements differ more than 7 µgm−3, and 6 % of the
hourly measurements differ more than 14 µgm−3. These dif-
ferences increase further when considering road-side sta-
tions. From this perspective, even sensor devices with an ac-
curacy around 7 µg m−3 can contribute to an improved un-
derstanding of spatial patterns. However, it must be further
investigated if the calibration method used here can provide
realistic estimates for peak values (such as the EU hourly
limit value, 200 µg m−3).

6 Conclusions and outlook

In this study, we examined low-cost electrochemical air qual-
ity sensors for citizen urban air quality monitoring. In other
words, we evaluated an imperfect air quality sensor in an im-
perfect scientific experiment. In general, we found that low-
cost electrochemical sensors have the potential to comple-
ment official environmental monitoring data to help answer
questions from the public, which usually cannot be fully an-
swered from official data alone. To reach full potential, how-
ever, proper measurement set-up, calibration and recalibra-
tion, and data analysis should be guaranteed.

The current generation of low-cost NO2 sensors has some
serious issues which make straightforward application dif-
ficult. To make electrochemical NO2 sensor measurements
accurate, careful filtering of the raw data is necessary. There
is a strong spread in sensor performance, even if the sensors
come from the same batch, which makes individual calibra-
tion essential. A practical calibration method is to measure
side by side with an air monitoring station. The accuracy of
the measurements can be improved by including tempera-
ture and humidity measurements from other low-cost sen-
sors in a multilinear regression approach. It is worth noting
that more advanced calibration algorithms such as by Cross
et al. (2017) and Mueller et al. (2017) could give better re-
sults, but this is not the focus of this paper. It is hard to quan-
tify an optimal length of a calibration period without having
a proper understanding of the sensor degradation rate before-
hand. The measurement period should be at least a few days
to capture the sensors behaviour under a wide range of pol-
lution levels and meteorological conditions. Very long cal-
ibration periods (of the order of months) will cause sensor
degradation issues to interfere with the calibration results.

Startup time of sensors is estimated to be 4 h. To avoid
nonlinear response of the electrochemical sensor at elevated
temperatures, we filter out measurements above 30 ◦C. This
is not a serious restriction for applicability in moderate cli-
mates such as in the Netherlands, provided that the sensor
is protected from direct sunlight. However, for warmer re-
gions or during heatwaves this may reduce the data stream
considerably, unless the temperature dependencies are better
captured by more advanced regression models.

The calibration seems to be location independent, as long
as the NO2 / O3 ratio is comparable. Road-side application
is likely to introduce a small positive bias. Calibration coef-
ficients are not constant in time. During the 3-month period
most sensors suffer from significant sensitivity loss and drift.
The strongest drift and largest uncertainty are found for the
older NO2-B42F sensors. It remains unclear if the worse per-
formance is related to the sensor model or to longer usage in
field experiments.

The sensor degradation makes practical applications in op-
erational urban networks difficult. Smart re-calibration pro-
grams, such as bringing back sensors to a calibration facility
on a regular basis or recalibrating on the spot with a trav-
elling reference instrument, are essential. New data-driven
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techniques, such as Bayesian networks (e.g. Xiang et al.,
2016), might offer a solution for this problem.

On the hardware side, we recommend including active
ventilation to guarantee constant air flow over the gas sensor
and suppress unwanted internal temperature changes due to
heating of electronic components. To improve the NO2 mea-
surements further we recommend including an additional
low-cost ozone sensor, e.g. Ox-B431 by Alphasense. It is
likely that the linear regression approach is able to resolve
a significant part of the cross-sensitivity to ozone and NO2.
The RH sensor signal should be used more intelligently to
detect and filter sudden changes in relative humidity. Adding
a local data logger is also recommended to be able to re-
cover data for periods when the WiFi connection to the cen-
tral database is lost.

Data availability. A complete overview of fit results for all mod-
els can be found in the Supplement. The hourly Urban AirQ sensor
data, calibrated after the measurement period by interpolating the
calibration in time between two calibration periods, can be down-
loaded at https://github.com/waagsociety/making-sensor (KNMI-
Waag Society, 2016).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/amt-11-1297-2018-supplement.
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