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Abstract. We have developed a Bayesian aerosol retrieval
(BAR) algorithm for the retrieval of aerosol optical depth
(AOD) over land from the Moderate Resolution Imaging
Spectroradiometer (MODIS). In the BAR algorithm, we si-
multaneously retrieve all dark land pixels in a granule, utilize
spatial correlation models for the unknown aerosol parame-
ters, use a statistical prior model for the surface reflectance,
and take into account the uncertainties due to fixed aerosol
models. The retrieved parameters are total AOD at 0.55 µm,
fine-mode fraction (FMF), and surface reflectances at four
different wavelengths (0.47, 0.55, 0.64, and 2.1 µm). The ac-
curacy of the new algorithm is evaluated by comparing the
AOD retrievals to Aerosol Robotic Network (AERONET)
AOD. The results show that the BAR significantly improves
the accuracy of AOD retrievals over the operational Dark Tar-
get (DT) algorithm. A reduction of about 29 % in the AOD
root mean square error and decrease of about 80 % in the me-
dian bias of AOD were found globally when the BAR was
used instead of the DT algorithm. Furthermore, the fraction
of AOD retrievals inside the ±(0.05+ 15%) expected error
envelope increased from 55 to 76 %. In addition to retrieving
the values of AOD, FMF, and surface reflectance, the BAR
also gives pixel-level posterior uncertainty estimates for the
retrieved parameters. The BAR algorithm always results in
physical, non-negative AOD values, and the average compu-
tation time for a single granule was less than a minute on a
modern personal computer.

1 Introduction

Atmospheric aerosols are small solid or liquid particles sus-
pended in the atmosphere. They have a significant effect on
the climate (IPCC, 2013; Kaufman et al., 2002) and they are
found to impact, for example, the cloud formation processes
and scattering and absorbtion of solar radiation in the atmo-
sphere. Furthermore, the smallest atmospheric aerosol parti-
cles may be hazardous to human health when inhaled (Dock-
ery et al., 1993; Seaton et al., 1995; Pope III et al., 2002; Co-
hen et al., 2017). As aerosols have widespread climate and
health effects, because they may be transported in the atmo-
sphere very far from their sources, and the effect of aerosols
is one the biggest sources of uncertainty in future climate pre-
dictions, it is crucial to get accurate information on aerosols.
Remote sensing of aerosols using satellite-based instruments
provides a means to globally retrieve aerosol properties.

The Moderate Resolution Imaging Spectroradiometer
(MODIS) on board NASA’s Terra and Aqua satellites are
among the oldest operating instruments orbiting the Earth
and collecting information on Earth’s surface and atmo-
sphere. Terra and Aqua are both polar-orbiting satellites with
wide swaths and they scan the entire surface of the Earth ev-
ery 1–2 days. The primary operational algorithm to retrieve
aerosol properties, such as the aerosol optical depth (AOD),
is the Dark Target (DT), which uses MODIS data measured
over dark surfaces (Kaufman et al., 1997a; Levy et al., 2013).
There are two different versions of the DT algorithm: one for
retrievals over land and another for retrievals over ocean. In
this work, we concentrate on the retrievals over land. The
physical concept behind the DT algorithm is the brightening
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effect, whereby an increased amount of aerosol over dark sur-
face will reflect more solar radiation back to space and thus
will make the scene look brighter. In practice, the retrieval
is carried out by finding the aerosol properties that mini-
mize the difference between the top-of-atmosphere (TOA)
reflectances corresponding to radiative transfer simulations
and the TOA reflectances measured by the MODIS instru-
ment. One of the biggest problems in this type of approach
is to distinguish between the fraction of TOA reflectance that
was caused by the aerosols and the fraction that was caused
by the land surface (Hyer et al., 2011; Mielonen et al., 2011;
Gupta et al., 2016a). In the DT algorithm, surface reflectance
at 2.1 µm is estimated and linear surface reflectance relation-
ships are used to get an estimate for the surface reflectances
at shorter wavelengths (0.47 and 0.64 µm). The current op-
erational version of the DT algorithm is the Collection 6
(C6; Levy et al., 2013). The standard C6 aerosol retrieval
products (named MOD04_L2 and MYD04_L2 for Terra and
Aqua satellites, respectively) include the AOD and the frac-
tion of fine-mode aerosol particles (fine-mode fraction, FMF)
with pixel resolution of 10× 10 km2 at nadir. The MODIS
DT aerosol products are freely and openly available and are
delivered in packages that consist of 5 min of measurement
data and represent an area of about 2330× 2030 km2. These
5 min data packages are referred to as granules. The MODIS
data can be downloaded from the NASA LAADS DAAC sys-
tem at https://ladsweb.modaps.eosdis.nasa.gov/.

Another widely used retrieval algorithm for MODIS is
Deep Blue (DB; Hsu et al., 2004, 2013). The latest version of
the algorithm is the C6 DB (enhanced) algorithm. The basic
principle of the DB retrieval is similar to DT: find aerosol pa-
rameters that minimize the data misfit between the measured
and modeled reflectances. In DB, the maximum likelihood
principle is used in finding the unknown aerosol parameters.
DB is used for over-land aerosol retrievals and was devel-
oped especially for retrievals over bright-reflecting surface.
The capability of retrieving aerosol properties over bright-
reflecting surfaces is useful, for example, in retrieving dust
properties over deserts. Regardless of the bright-reflecting
surface capabilities, DB does not carry out retrievals over
snow or ice. The DB uses various MODIS spectral bands for
cloud screening and aerosol typing, and the bands centered
at 412, 490, and 670 nm are used for the actual retrieval. For
some surface types DB uses similar surface reflectance rela-
tionships as DT, and for some surface types the surface re-
flectance values are directly taken from a database. The DB
MODIS retrievals are delivered with the same C6 MODIS
aerosol products as the DT retrievals. The third well-known
algorithm used for the MODIS aerosol retrieval is the Multi-
Angle Implementation of Atmospheric Correction (MAIAC)
algorithm (Lyapustin et al., 2011a, b).

Both the DT and DB carry out the retrieval pixel by
pixel. This means every pixel is retrieved independently of
each other. This pixel-by-pixel approach makes the algorithm
computationally efficient. Often, however, aerosol properties

have strong spatial correlations (Anderson et al., 2003). Mod-
eling and taking advantage of the spatial correlation struc-
tures of aerosol properties in the retrieval may therefore, in
some cases, improve the accuracy of the retrieved parame-
ters. One of the largest error sources in the MODIS AOD re-
trieval is the (partially) unknown surface reflectance: typical
error for the retrieved AOD is proportional to 10 times the er-
ror in estimated surface reflectance (Kaufman et al., 1997b).
More accurate surface reflectance values could improve the
accuracy of the retrieval. Furthermore, one increasingly im-
portant problem with DT is that it sometimes retrieves un-
physical negative AOD values. As the MODIS instruments
have already passed their designed lifetimes and their sensi-
tivities are rapidly decreasing, they require more and more
frequent calibrations. As a result of sensor degradation and
frequent calibrations, the number of negative AOD retrievals
with the DT algorithm is increasing.

In this work, we developed a Bayesian aerosol retrieval
(BAR) algorithm for MODIS aerosol retrieval over land. The
new algorithm is based on the DT algorithm and the inver-
sion part of the algorithm is reformulated as a statistical
(Bayesian) inverse problem (Kaipio and Somersalo, 2005;
Calvetti and Somersalo, 2007; Gelman et al., 2014). While
the DT retrieves one pixel at a time, in the BAR all the dark
surface and cloud-free pixels of a granule are retrieved si-
multaneously. BAR allows the use of statistical prior models
for the unknown parameters. The prior models are probabil-
ity distribution models for prior information, such as ranges
of feasible values of the parameters and spatial correlations.
BAR also allows us to take into account the statistics of the
measurement noise and compensate for model uncertainties
caused, for example, by the fixed aerosol models. Instead
of the surface reflectance relationships used in the DT algo-
rithm, we include the surface reflectances at different wave-
lengths as unknown parameters and retrieve the actual sur-
face reflectances simultaneously with the aerosol properties.

2 Bayesian aerosol retrieval algorithm

MODIS aerosol products retrieved using the DT are among
the most widely used aerosol products. The MODIS C6 stan-
dard aerosol products include the retrieved aerosol proper-
ties and measurement data with spatial resolution of about
10× 10 km2 at nadir. In DT, the retrieval is carried out sepa-
rately for each pixel and the retrieval parameters are the total
AOD at 0.55 µm τ̃ , fine aerosol model weighting η (FMF),
and the surface reflectance at 2.1 µm ρs

2.1 µm. It should be
noted that in DT, the FMF is actually the weighting coeffi-
cient for the TOA reflectances due to fine aerosol model and
does not necessarily represent the true concentration fraction
of the fine-mode aerosol. The surface reflectances at shorter
wavelengths are estimated using predefined linear surface re-
flectance relationships that depend on the normalized differ-
ence vegetation index (NDVI) at shortwave infrared (SWIR)
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and the scattering angle of the light (Remer et al., 2001; Levy
et al., 2007). In the DT retrieval, the TOA reflectances are
simulated by mixing the reflectances corresponding to two
different aerosol models:

ρ̃TOA
= ηρ̃TOA,fine

+ (1− η)ρ̃TOA,coarse, (1)

where ρ̃TOA denotes the simulated TOA reflectances, η is
the FMF, and ρ̃TOA,fine and ρ̃TOA,coarse denote the TOA re-
flectances simulated according to the fine and coarse aerosol
models, respectively. There are three different fine aerosol
models, one coarse (dust) aerosol model, and one conti-
nental aerosol model in DT. The TOA reflectances and
other radiative-transfer-related variables corresponding to
each aerosol model are precomputed and stored in lookup ta-
bles (LUT) to make the algorithm computationally more effi-
cient. In the DT retrieval, the fine aerosol model to be used is
taken from a predefined database that contains aerosol model
information based on location and season. For more informa-
tion on the C6 DT retrieval algorithm see, for example, (Levy
et al., 2013).

BAR is a retrieval algorithm that uses the same aerosol
models and preprocessing of the data, such as cloud-
screening, as the DT. Because the same preprocessing is
used, the BAR algorithm retrieves the same pixels as the
operational DT algorithm. In BAR, the inversion part of the
DT algorithm is formulated in a statistical (Bayesian) frame-
work. In this statistical framework, the solution to the inverse
retrieval problem is not a single value but a posterior prob-
ability distribution model of the unknown parameters given
the measured MODIS TOA reflectances and prior informa-
tion that we have on the unknowns. As the complete statis-
tical model of the problem is the posterior probability distri-
bution, it allows us to derive single point estimates that are
referred to as the retrievals and quantify the posterior uncer-
tainties of the retrievals for each pixel. The statistical frame-
work also allows us, for example, to utilize information about
the measurement noise and use data from as many MODIS
spectral bands as available for the retrieval. The BAR algo-
rithm is characterized by the following:

– We use data from MODIS bands 3 (0.47 µm), 4
(0.55 µm), 1 (0.64 µm), and 7 (2.1 µm). All other bands
could be used as well but four bands are selected to keep
the computational costs moderate.

– We retrieve the total AOD at 0.55 µm, the FMF, and the
surface reflectances at four MODIS bands.

– The surface reflectances at all bands are simultaneously
retrieved with AOD and FMF. The surface reflectance
relationships that are used in DT are not needed.

– We simultaneously retrieve all unknown parameters in
all dark land pixels of a granule.

– We use prior probability density models for the values
and the spatial correlation structure of the unknowns.

The prior probability density models are used to encode
the prior knowledge such as spatial correlation informa-
tion, seasonal variability, or positivity constraints into
the retrieval.

– We utilize an approximation error model for the model
uncertainties in the simulated TOA reflectances caused
by the uncertainties in the aerosol models and radiative
transfer simulations.

In the BAR AOD retrieval, statistical prior models for the
retrieved parameters can be used. We make the following
modeling selections in the BAR:

– To avoid negative AOD retrievals, we retrieve AOD in
logarithmic scale τ = log (̃τ + 1).

– Instead of TOA reflectances ρ̃TOA in linear scale, we
write also the TOA reflectances in the models in loga-
rithmic scale as ρTOA

= log
(
ρ̃TOA

+ 1
)
.

– We model all unknown parameters in a granule by mul-
tivariate Gaussian prior models. The prior models are
fully described by their expected value vectors and co-
variance matrices:

– AOD τ ∼N (Eτ ,0τ ), where Eτ and 0τ denote the
expected value vector and covariance matrix of the
AOD, respectively;

– FMF η ∼N
(
Eη,0η

)
, where Eη and 0η denote the

expected value vector and covariance matrix of the
FMF, respectively;

– surface reflectances ρs ∼N
(
Eρs ,0ρs

)
, where Eτ

and 0τ denote the expected value vector and co-
variance matrix of the surface reflectance, respec-
tively.

– We model AOD, FMF, and surface reflectances at all
bands as mutually uncorrelated variables.

– We model the observation noise and the approximation
errors in TOA reflectances due to aerosol and radiative
transfer models as additive multivariate Gaussian ran-
dom variable e with distribution e ∼N (Ee,0e)

In the BAR, we look for the maximum a posteriori (MAP)
estimate for the unknown parameters. The prior and likeli-
hood models that are used in the construction of the poste-
rior model are explained in more detail in Sect. 3. With the
models selected, the MAP estimate can be computed as(
τ ,η,ρs)

MAP= arg min
τ ,η,ρs

(∥∥∥Le

(
ρTOA,MODIS

−f (τ ,η,ρs
;γ )−Ee

)∥∥∥2

+‖Lτ (τ −Eτ )‖2+∥∥Lη
(
η−Eη

)∥∥2
+
∥∥Lρs

(
ρs
−Eρs

)∥∥2
)
, (2)

where τ = log(̃τ+1) is the (logarithm) of AOD at 0.55 µm, η
denotes the FMF, ρs are the surface reflectances at all bands,
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and γ denotes auxiliary (fixed) model parameters such as
measurement geometry, surface elevation, and aerosol mod-
els. Le, Lτ , Lη, and Lρs denote the Cholesky factors of
0−1

e , 0−1
τ , 0−1

η , and 0−1
ρs , respectively. f (τ ,η,ρs

;γ )=

log
(
f̃ (τ ,η,ρs

;γ )+ 1
)
, where f̃ is the observation model

based on aerosol and radiative transfer models and is
based on LUTs. ρTOA,MODIS

= log
(̃
ρTOA,MODIS

+ 1
)

and
ρ̃TOA,MODIS contains the actual TOA reflectances measured
by the MODIS instrument. In our implementation of BAR,
we use the L-BFGS-B optimization algorithm (Byrd et al.,
1995) to solve the retrieval optimization problem. For further
details of the optimization problem, see Appendix A.

To quantify the uncertainties corresponding to the re-
trieved parameters we can compute an approximation for the
posterior covariance matrix as

0τ ,η,ρs ≈

(
0−1

pr + JT0−1
e J

)−1
, (3)

where the block diagonal matrix 0pr = diag
(
0τ ,0η,0ρs

)
,

and J=
[
∂f /∂τ ,∂f /∂η,∂f /∂ρs] is the Jacobian matrix

evaluated at the MAP estimate. The diagonal of the poste-
rior covariance matrix contains posterior variances of each
retrieved parameter at each pixel.

3 Bayesian aerosol retrieval models

3.1 Prior models

Prior probability density models are used in the BAR re-
trieval to model information we have on unknown parameters
prior to the retrieval. In the BAR, we use Gaussian prior mod-
els augmented with constraints that exclude non-physical so-
lutions. For example, for the FMF the retrieval is restricted
to an interval between 0 and 1. In practice, these constraints
are implemented in the optimization algorithm. The multi-
variate Gaussian prior models are defined by their expected
value vector and covariance matrix. In aerosol retrievals,
the expected value vectors for aerosol parameters can be
constructed, for example, by using values from aerosol cli-
matologies. Covariance matrices encode information on the
prior uncertainty of the parameters and correlations between
different pixels.

3.1.1 Prior model for the AOD

In the BAR algorithm, the AOD is retrieved on a logarith-
mic scale to avoid negative AOD retrievals and multivariate
Gaussian distributions are used as the prior models for the
logarithm of the AOD. The expected value vector for AOD is
based on the MAC-V2 climatology by (Kinne et al., 2013).
The MAC-V2 climatology contains monthly AOD values in
a 1 ◦ by 1 ◦ grid. In the BAR retrieval, the nearest value from
the MAC-V2 climatology is taken as the prior expectation
for each pixel to be retrieved.

Table 1. The covariance function parameters used in aerosol optical
depth (AOD) and fine-mode fraction (FMF) prior models.

Covariance function AOD FMF
parameter value value

Correlation range rrange 50 km 50 km
Nugget σ 2

nugget 2.5× 10−3 0.01
Sill σ 2

sill 0.10 0.25
p 1.5 1.5

The spatial correlations and variances in the logarithm of
AOD are modeled by using a covariance function that defines
the AOD covariance matrix as

0τ (i,j)= σ
2
nugget,τ δi,j + σ

2
sill,τ exp

{
−3
∥∥∥∥xi − xjrrange,τ

∥∥∥∥p} , (4)

where 0τ (i,j) is the (i,j) element of the prior covariance
matrix 0τ , δi,j = 1 when i = j and δi,j = 0 when i 6= j , and
‖ xi − xj ‖ denotes the distance between the pixels i and j .
σnugget,τ denotes the so-called nugget and it represents the
local component of the AOD variance (no spatial correla-
tion). The sill σsill,τ describes the variance related to the spa-
tially correlated component of AOD. Consequently, the to-
tal variance of AOD σ 2

τ = σ
2
nugget,τ + σ

2
sill,τ . The correlation

range rrange,τ and pτ define the spatial correlation length and
smoothness of the AOD fields. The larger the selected cor-
relation range is, the larger the spatial structures we expect
to see in AOD. In BAR, we used fixed values for the covari-
ance function parameters and they are listed in Table 1. The
sill and nugget parameter values were selected by analyzing
previous MODIS retrievals. The range value was selected as
50 km (Anderson et al., 2003). This selection was made to let
the neighboring pixels have relatively high spatial correlation
but also to allow for certain features such as smoke plumes to
be retrieved as well as possible and not be smoothed out too
much. The term pτ was selected as 1.5 based on visual in-
spection of retrieved AOD fields. In this version of BAR, the
covariance function parameters were manually selected but it
is also possible to infer the covariance function parameters,
for example, by performing variogram analysis on previous
AOD retrieval data as in Chatterjee et al. (2010). This type
of spatial correlation modeling is often used in geostatistical
methods such as kriging.

3.1.2 Prior model for the FMF

For the FMF, we use a similar Gaussian prior as for the AOD.
The prior expectation value for FMF is taken from the MAC-
V2 climatology as for the AOD. The FMF is modeled as a
spatially correlated parameter and the same type of covari-
ance function as for the AOD is used to construct the prior
covariance matrix 0η. The range, sill, and nugget values for
the FMF prior model covariance are listed in Table 1. The

Atmos. Meas. Tech., 11, 1529–1547, 2018 www.atmos-meas-tech.net/11/1529/2018/



A. Lipponen et al.: Bayesian aerosol retrieval algorithm 1533

sill was intentionally selected as relatively large value to al-
low for high prior uncertainty in the spatial part of the prior
model.

3.1.3 Prior model for the surface reflectance

In the BAR algorithm, the surface reflectances at different
wavelengths are treated as unknown parameters and they are
simultaneously retrieved with AOD and FMF. In the BAR
algorithm, we use Gaussian prior models for the surface re-
flectances. We model the surface reflectances at different
bands as uncorrelated and the surface reflectances at each
band as spatially uncorrelated. We note that this selection
may not result in the best possible retrieval accuracy but
makes the processing of a large number of MODIS gran-
ules significantly faster than with correlated models. With
these choices for the surface reflectance, the prior model be-
comes an uncorrelated Gaussian density which is described
by the expected surface reflectance values and their variances
at each pixel. As expected values for the surface reflectance,
we use the MODIS MCD43C3 albedo product blue-sky albe-
dos computed with the weighting coefficient 0.5 (50 % of the
white-sky albedo and 50 % of the black-sky albedo). This
selection to use the blue-sky albedo was done based on a
test in which we carried out retrievals with white-sky, black-
sky, and blue-sky albedo-based prior models. The differences
between the different surface albedo types were small but
the blue-sky albedo resulted in the best results when com-
pared with the collocated AERONET AOD values. The daily
MODIS albedo product is stored in 0.05 ◦ by 0.05 ◦ grid.
For the BAR, we precompute monthly expected surface re-
flectance corresponding to the surface albedo product grid.
The monthly surface reflectance is computed as the temporal
average of surface reflectances ±45 days around the middle
day of the month. In the retrieval, the expected values for
the surface reflectances are computed as an average of the
three closest pixels in the monthly surface reflectance. Both
the temporal variance in the original surface albedo product
and the variance due to averaging are taken into account in
the construction of the surface reflectance variance. - real-
time analysis, the surface reflectance product for the retrieval
day is not necessarily available. Therefore in the construction
of the surface reflectance prior model, we used the MODIS
albedo products corresponding to the retrieval month 1 year
before the retrieval. This way it is possible to evaluate the
near-real-time retrieval performance of the algorithm.

3.2 Observation model

In the DT algorithm, the TOA reflectance ρTOA,MODIS mea-
sured by MODIS is modeled according to Eq. (1) as a mix-
ture of reflectances produced by two aerosol models: one for
fine and one for coarse aerosols. The TOA reflectance corre-
sponding to Lambertian surface, an aerosol model, and one

MODIS band is computed as

ρTOA
λ (θ0,θ,φ)= ρ

a
λ(θ0,θ,φ)+

Tλ(θ0)Tλ(θ)ρ
s
λ(θ0,θ,φ)

1− sλρsλ(θ0,θ,φ)
, (5)

where θ0, θ , and φ are the solar zenith, view zenith, and
relative azimuth angles, respectively; ρa

λ denotes the atmo-
spheric path reflectance; Tλ(θ0) and Tλ(θ) denote the down-
ward and upward atmospheric transmissions; sλ is the atmo-
spheric backscattering ratio; and ρsλ the surface reflectance
corresponding to a band centered at wavelength λ (Chan-
drasekhar, 1960; Lee and Kaufman, 1986).

To make the retrieval algorithm computationally efficient,
the values of ρa

λ, Tλ, and sλ for various measurement geome-
tries and AODs are precomputed into a LUT. Each aerosol
model has their own LUT and the fine aerosol model to be
used in the retrieval is predefined for each location and sea-
son. In the BAR retrieval, we use the same aerosol models as
in the DT retrieval. In certain conditions, DT uses continen-
tal aerosol as the only aerosol model. If continental aerosol
model was selected by the DT (Procedure B in MODIS DT
over land retrieval), we use the continental aerosol model as
the fine aerosol model and compute the total TOA reflectance
as a mixture of TOA reflectances caused by the continental
and coarse aerosol models.

Before the DT retrieval is carried out, the LUTs are pre-
pared for the retrieval. The LUT models are first interpolated
to the fixed measurement geometry and then corrected for the
surface elevation. In the retrieval, the LUT models are then
evaluated by linearly interpolating the values as function of
total AOD. In BAR, we use the same LUTs (for four different
bands) as in the DT. While the DT algorithm uses piecewise
linear interpolation, in BAR we use fifth-order polynomial
interpolation of the LUTs in order to make the model differ-
entiable with respect to the unknown AOD at all points. The
differentiability is required as the retrieval is carried out by
solving an optimization problem using gradient-based meth-
ods.

In the BAR algorithm, the random observation noise in
MODIS observations, for example due to measurement elec-
tronics in the instrument, is modeled by an additive noise
process:

ρTOA
=ηρTOA,fine

+ (1− η)ρTOA,coarse
+ n

= f̃ (τ,η,ρs;γ )+ n, (6)

where n denotes the observation noise and f̃ =

f̃ (τ,η,ρs;γ ) is the observation model. In BAR, the
observation noise is modeled as Gaussian zero-mean random
variable, and its variances are based on MODIS aerosol
product variable STD_Reflectance_Land.

3.3 Approximation errors

In the statistical (Bayesian) retrieval framework, it is possi-
ble to model the uncertainties and inaccuracies related to the
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physical models that are used in the retrieval (both aerosol
and radiative transfer models). The model uncertainties can
be related, for example, to uncertainty in the values of the
auxiliary model parameters such as measurement geome-
try and fixed aerosol models. In the field of statistical in-
verse problems, these model errors are often referred to as
approximation errors (Kaipio and Somersalo, 2007). In the
BAR algorithm, we incorporate approximation errors due to
fixed aerosol models and inaccuracies in the radiative trans-
fer models. The approximation error is modeled as additive
Gaussian random variable u. Adding u into the observation
model (Eq. 6) results in observation model of the form

ρTOA
= f̃ (τ,η,ρs;γ )+ n+ u

= f̃ (τ,η,ρs;γ )+ ẽ, (7)

where ẽ = n+ u includes both the observation noise and
model uncertainties. The realization of u is unknown. The
objective in the approximation error approach is to marginal-
ize the posterior model with respect to the overall observation
error. This means that we integrate the approximation error-
related variables out of the full posterior probability distribu-
tion. This is a typical approach in statistics to treat unknown
nuisance parameters. Typically, an approximate marginaliza-
tion is obtained by using Gaussian model for n and u, lead-
ing to the data misfit form in Eq. (2) where Ee and 0e are
the mean and covariance of the overall error. For details,
see Kolehmainen et al. (2011) and Kaipio and Kolehmainen
(2013).

In this study, the estimation of the mean Eu and covari-
ance 0u for the Gaussian approximation error model is car-
ried out by comparing collocated MODIS TOA reflectances
with simulated TOA reflectances using AOD and FMF values
from AERONET (Holben et al., 1998) observations (for de-
tails, see Appendix B). We model the approximation error u
as spatially, but not spectrally, uncorrelated, meaning the cor-
relations between MODIS bands are taken into account. The
approximation error statistics are precomputed for different
regions and months to account for spatial and seasonal varia-
tions. Similarly, as for the surface reflectance model, the ap-
proximation error models are constructed using AERONET
and MODIS data collected 1 year before the retrieval month
to make the evaluation of the near-real-time performance of
the algorithm possible.

In BAR retrieval, we model the observation noise n and
model uncertainties u as mutually uncorrelated and therefore
in our model e = n+u is distributed as e ∼N (En+Eu,0n+
0u).

4 Evaluation of the algorithm

To test the performance of the BAR algorithm, all MODIS
daytime granules of the year 2015 are used. We re-
trieve all granules from Terra and Aqua (MOD04_D3 and

MYD04_D3) and compare the retrievals to AERONET ob-
servations (version 3, level 1.5). In the AERONET colloca-
tion we follow similar comparison protocol as in Petrenko
et al. (2012). That is, we require at least three MODIS pixels
within 25 km from the AERONET station and at least two
AERONET observations within ±30 min from the satellite
overpass. We carry out two comparisons between retrievals
with different algorithms:

1. To compare the overall performance and to make the
comparison fair between different algorithms, we com-
pare all pixels in which the retrieval was carried out re-
gardless of the DT quality assurance (QA) information
of the retrieval.

2. To study how the DT QA information affects the re-
trievals, we carry out another comparison in which we
use the DT and BAR retrievals only at the pixels with
DT QA flag 3.

In order to evaluate the near-real-time performance, we use
the surface reflectance prior models and the uncertainty mod-
els that were constructed using MODIS and AERONET data
from 2014 (1 year before the test year 2015). Also, as the
approximation error statistics is generated using an indepen-
dent AERONET dataset, the evaluation of the algorithm will
not be using the same data and therefore not result in overop-
timistic results that could be possible if same datasets were
used for both modeling and evaluation of the algorithm.

The variables we compare are the AOD at 0.55 µm and
Ångström exponent (AE). AERONET AOD at 0.55 µm is
derived using the Ångström power law and AERONET
Ångström exponent (440–675 nm). The AEs are used in the
comparison instead of the FMF because

– FMF in the DT algorithm is actually the weighting coef-
ficient between the TOA reflectances corresponding to
fine and coarse aerosol models and do not necessarily
correspond to physical size distribution information;

– in the DT aerosol models, the fine aerosol model in-
cludes a small amount of coarse particles in it and the
coarse aerosol model includes a small amount of fine
particles in it;

– it is ambiguous to derive AERONET-based FMF as
there are multiple size-distribution-related products that
are based on slightly different algorithms and defini-
tions;

– it is possible to derive AE from MODIS retrieval using
the aerosol models, retrieved total AOD, and FMF, and
the AE is also available in the AERONET Direct Sun
algorithm outputs.

The metrics we use to evaluate the retrieval algorithm per-
formance and compare the MODIS and AERONET retrievals
are correlation coefficient R, median bias, and root mean
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Figure 1. Regions used in the evaluation of the algorithm: West
North America (WNA), East North America (ENA), Central and
South America (CSA), Europe (EUR), North Africa and Middle
East (NAME), South Africa (SA), Northeast Asia (NEA), South-
east Asia (SEA), and Oceania (OCE). The red and blue dots show
positions of all the AERONET stations used in the comparisons.
The blue dots indicate stations classified as an urban station in the
study.

square error (RMSE). In addition, for AOD we also use the
fraction of retrievals inside the DT expected error (EE) en-
velope ±(0.05+ 15%); that is we compute the fraction of
MODIS AOD retrievals τMODIS that fulfill 0.85τAERONET−

0.05≤ τMODIS ≤ 1.15τAERONET+0.05, where τAERONET de-
notes the AERONET AOD. To get an idea of regional per-
formance of the algorithm, we evaluate the algorithm in nine
different regions. The map of the regions and AERONET sta-
tions used for the evaluation is shown in Fig. 1. In addition,
we also evaluate the retrieval algorithms over urban areas by
comparing the retrievals over 17 selected AERONET stations
that are located in urban areas. We also carry out a compari-
son between the BAR and DB retrievals. In addition, we eval-
uate the BAR posterior uncertainty estimates by comparing
them to the discrepancies between AERONET and BAR al-
gorithm AODs.

5 Results

5.1 Examples of single granule retrievals

Figure 2 shows AOD and AE retrievals near the Beijing area,
China, on 11 October 2015, computed both with DT and
BAR. The figure shows clearly that DT overestimates the
AOD over the cities of Beijing and Tianjin. The overesti-
mation may be caused by the urban surface that probably
is not well described by the DT surface reflectance relation-
ships used in the operational retrieval (Gupta et al., 2016b).
The overestimation of AOD over urban areas due to sur-
face may cause significant biases to, for example, the results
of satellite-based air quality studies. In BAR, the AOD re-
trievals match the AERONET AODs well and cities of Bei-
jing and Tianjin are not visible as high AOD areas in the
figure. Furthermore, the DT AE retrievals over Beijing show
AE values lower than 1, indicating large aerosol particles.

The AERONET, however, shows AE larger than 1, indicat-
ing small aerosol particles. BAR shows AE values larger than
1 for almost all pixels shown in the figure.

Figure 3 shows AOD and AE retrievals over the USA on
10 July 2015. A smoke plume is clearly visible in the fig-
ure. In this case, both the DT and BAR produce similar AOD
retrievals. The use of spatial correlation model for AOD in
BAR can be seen as slight smoothing of the plume details
when compared to the DT retrieval. In the BAR AE re-
trievals, the AE is larger than 1 in almost all pixels shown
in the figure, indicating presence of small aerosol particles.
In the DT AE retrieval, some pixels have AE values smaller
than 1, showing presence of large aerosol particles. Large
aerosol particles (small AE values) are not, however, typical
for this area and season and therefore the small AE values,
indicating large aerosol particle size seen in the DT data are
likely artifacts caused by the retrieval algorithm. It should be
noted, however, that the spatial correlation model for FMF
may in some cases result in too smooth FMF fields that are
unrealistic, for example in cases of smoke plumes, reducing
the accuracy of the retrievals in these cases.

5.2 Global performance of the algorithm

The global performance of the algorithm was evaluated us-
ing all the daytime retrievals from the year 2015. Figure 4
shows a global scatter density histogram comparison of the
AERONET AOD and retrievals carried out with the DT,
BAR, and DB algorithms. Figure 4 was constructed using all
retrieved pixels regardless of the quality assurance values. It
should be noted that the DT-based algorithms (DT and BAR)
and DB algorithm apply different pre-processing of the data
and the pixels in which the retrieval is carried out are selected
differently. The DB algorithm was designed to be able to re-
trieve AOD also over bright-reflecting surfaces where the DT
algorithm may not be used. Therefore, the DB algorithm usu-
ally accepts more pixels for retrieval than the DT algorithm.
In this study, the number of AERONET–DB collocations
(N = 57 308) was larger than the number of AERONET–DT
collocations (N = 45 240). As BAR retrieves the same pixels
as the DT algorithm there was no difference in the amount of
data between these two retrieval algorithms. It should also be
noted that the DT pixels are not necessarily a subset of the
DB pixels and in some granules the DT and DB pixels may
be completely separate sets.

The results show that the BAR AOD retrievals are signif-
icantly more accurate than the corresponding DT or DB re-
trievals when compared to the AERONET AOD. The frac-
tions of retrievals inside the DT EE envelope (±(0.05+
15%)) are 75.7, 54.6, and 64.6 % for BAR, DT, and DB, re-
spectively. Furthermore, the median absolute errors are about
40 and 20 % smaller in BAR than in the DT and DB re-
trievals, respectively. Also the reduction in the median bias is
significant: median biases for BAR, DT, and DB algorithms
are 0.009, 0.046, and 0.020, respectively. The feature of both
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Figure 2. (a, b, c) True color image of MODIS Aqua overpass over Beijing area, China, on 11 October 2015 (a), AOD retrievals computed
with DT (b, d) and BAR (c, e) algorithms. (d, e) The Ångström exponent retrievals computed with DT (b, d), and BAR (c, e) algorithms.
The circles correspond to AERONET AOD and Ångström exponent values at the satellite overpass time.

Figure 3. (a, b, c) True color image of MODIS Aqua overpass near the border area of Minnesota and North and South Dakota, USA, on 10
July 2015 (a), AOD retrievals computed with DT (b, d), and BAR (c, e) algorithms. (d, e) The Ångström exponent retrievals computed with
DT (b, d) and BAR (c, e) algorithms. The circles correspond to AERONET AOD and Ångström exponent values at the satellite overpass
time.

the BAR and DB retrievals that they do not allow for nega-
tive AOD retrievals is also visible in the figure. There are also
clearly more AOD retrievals above the DT EE envelope than
below it with all of the algorithms, but in the BAR the rel-
ative difference between the amount of retrievals above and
below the envelope is the smallest.

Figure 5 shows similar plot as Fig. 4 but here the compar-
ison was carried out using only the DT and BAR algorithms
and pixels with DT QA flag 3 (Levy et al., 2013) for both

algorithms. The results were slightly improved for both al-
gorithms when compared with the all-pixel retrievals. Even
though the difference between the performance of the algo-
rithms is reduced, the BAR retrievals are clearly better than
the DT retrievals. This is the result regardless of the filtering
of the data that was carried out, based on the DT algorithm
QA flag, which is designed to discard DT pixels with poor
quality. The filtering reduced the amount of AERONET col-
locations by about 40 %. The results suggest that the BAR
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is not only capable of retrieving AOD with significantly im-
proved accuracy than the DT retrieval but also capable of
producing good quality retrievals over significantly larger ar-
eas.

The results for global AE retrievals for the DT and BAR
algorithms are shown in Fig. 6. If AOD is very small, the
reflectances observed by MODIS contain only a very small
amount of information about the aerosol size distributions.
Therefore, to evaluate the algorithm capability to retrieve
size distribution information, we carried out the AE compari-
son only with retrievals that correspond to AERONET AODs
larger than 0.2. The results in this figure include all retrieved
pixels. The correlation coefficient is slightly better in DT AE
(0.359) than in BAR AE (0.354) retrievals but the differ-
ence is negligible. The median and mean absolute errors and
the median bias, however, are smaller in BAR retrievals. Vi-
sual inspection shows the BAR retrievals are better concen-
trated around the one-to-one line in the scatter plot whereas
a large portion of DT retrievals are concentrated around the
AE value of about 0.6.

We also evaluated the effect of using the approximation
error model and spatial correlation models in the retrieval.
The retrievals were carried out in all granules in year 2015
with and without the approximation error model and with
and without the spatial correlation models for the AOD and
FMF. In the retrievals without spatial correlation models, we
set the off-diagonal elements of the prior covariance matri-
ces as zeros both for AOD and FMF. The results are shown
in Tables 2 and 3. The results show that the approximation
error model plays the most significant role in improving the
retrieval accuracy. Globally, the best correlation between the
MODIS and AERONET retrievals is observed when the ap-
proximation error model is used and spatial correlation mod-
els are turned off. This result was unexpected as the spatial
correlation models were expected on average to improve the
retrieval accuracy. The results show, however, that the use of
spatial correlation models does not increase the accuracy of
the retrievals on average. These results, however, should be
interpreted very carefully as they only show the global aver-
age statistics. In single retrieval cases, the spatial correlation
models may be helpful especially in some specific scenarios
or, for example, if higher spatial resolution were used. Also,
the spatial correlation model parameters may play a signifi-
cant role in the accuracy of the retrievals. Due to differences
in local meteorology and aerosol sources, regional models
for the spatial correlation may be needed to reach the best
possible accuracy of the algorithm. In this study, the correla-
tion model parameters were not based on a thorough analysis
of aerosol properties correlation structures, and only a global
correlation model was used. As the aerosol properties usually
have clear spatial correlation we would recommend using the
spatial correlation models in the retrievals.

5.3 Regional performance of the algorithm

The global and regional results of the DT and BAR AOD
retrievals with respect to the AERONET are shown in Ta-
ble 4. The results show that the BAR AOD retrievals are sig-
nificantly better than the DT retrievals globally and in most
of the regions. The BAR algorithm performed better than or
equal to the DT algorithm in all regions when measured in
RMSE, correlation coefficientR, and fraction of retrievals in-
side the EE envelope. The AOD median bias is slightly worse
only in Oceania (OCE; DT median bias −0.01, BAR median
bias 0.02). The table shows that the largest improvements in
the retrieval accuracy are seen in North America. The frac-
tion of retrievals inside the EE envelope increased from 57 to
81 % in East North America (ENA) and from 43 to 77 % in
West North America (WNA) when BAR retrieval was used
instead of DT. The worst regional performance when mea-
sured with the correlation with AERONET AOD was in Eu-
rope (EUR). The worst regional performance when measured
with the fraction of retrievals inside the EE envelope in BAR
algorithm was in the North Africa/Middle East (NAME) re-
gion. This is probably explained by the surface type and fre-
quent dust events in the region. It is also possible that the
BAR algorithm may weight the fine aerosol model too much
in this area, resulting in reduced retrieval accuracy for AOD.

The global and regional results of the DT and BAR AE
retrievals are shown in Table 5. The BAR AE retrievals have
lower RMSE than the DT AE retrievals in all regions except
Northeast Asia (NEA). The median bias in the retrieved AE
is also smaller with BAR in most of the regions. In NAME,
South Africa (SA), and Southeast Asia (SEA) the bias is,
however, larger in the BAR retrievals. Especially in NAME
region, the median bias is significantly higher in BAR re-
trievals and this presumably is an indication of the problems
in correctly retrieving the AE in dust cases over relatively
bright surfaces.

Global and regional AOD accuracy comparisons between
the BAR and DB retrievals are shown in Table 6. The results
show that the retrieval accuracy of BAR is clearly better than
the one of DB. All retrieval metrics are similar or better for
BAR algorithm in all regions except in OCE where the DB
median bias is slightly better. Figures of retrieval compar-
isons between the BAR and DB algorithms are in the Sup-
plement.

5.4 Retrieval over urban areas

AOD retrievals over urban areas were evaluated by compar-
ing the MODIS AOD retrievals over AERONET stations that
are located in urban areas. We selected 17 AERONET sta-
tions for this comparison and the results are presented in Ta-
ble 7. Results indicate that the BAR AOD retrievals are sig-
nificantly better than the DT retrievals at all but one station
(Mexico City). As discussed in Sect. 5.1, the properties of the
surface reflectance in urban areas might not be well repre-
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Table 2. Global statistics of AOD retrievals for Bayesian aerosol retrieval (BAR) run with different models. The models considered are the
approximation error model and the spatial correlation model for AOD and FMF. X and – in the table indicate that the corresponding model
was and was not included in the retrieval, respectively. All pixels were considered in the retrieval and each row correspond to data from 346
AERONET stations and 45 240 collocated observations.

Approximation Spatial
error correlation
model model for AOD and FMF R Median bias f within EEDT RMSE

X X 0.92 0.01 0.76 0.10
X – 0.93 0.01 0.77 0.09
– X 0.87 −0.01 0.62 0.12
– – 0.87 −0.01 0.63 0.12

DT algorithm, all pixels 0.89 0.05 0.55 0.14

Table 3. Global statistics of Ångström exponent retrievals for Bayesian aerosol retrieval (BAR) run with different models. The models
considered are the approximation error model and the spatial correlation model for AOD and FMF. X and – in the table indicate that the
corresponding model was and was not included in the retrieval, respectively. Only results with AERONET AOD ≥ 0.2 were used in the
MODIS–AERONET comparison. All pixels were considered in the retrieval and each row correspond to data from 302 AERONET stations
and 10 354 collocated observations.

Approximation Spatial
error correlation
model model for τ and η R Median bias RMSE

X X 0.35 0.14 0.51
X – 0.36 0.16 0.50
– X 0.20 0.11 1.22
– – 0.21 0.11 1.14

DT algorithm, all pixels 0.36 −0.18 0.67

sented in the DT retrievals. The problem with urban surfaces
in DT is a well-known problem and in Gupta et al. (2016b) a
modified surface reflectance relationship was proposed to be
used over urban areas. BAR algorithm seems to better han-
dle the urban surfaces than the DT algorithm and carries out
the AOD retrieval with similar accuracy as for the surround-
ing regions. Table 7 also shows the mean black-sky surface
albedo for the year 2015 near the AERONET station based
on MCD43D3 product. There seems to be no clear connec-
tion between the black-sky surface albedo and the retrieval
accuracy. More detailed results from the comparison between
the BAR and DB retrievals over urban areas is shown in the
Supplement.

5.5 Per-pixel posterior uncertainty estimates of the
retrieved parameters

The BAR algorithm provides approximate posterior uncer-
tainties for retrieved quantities. We evaluate the AOD poste-
rior uncertainty estimates of the BAR algorithm by compar-
ing them to the discrepancies between the BAR retrievals and
AERONET observations. Table 8 shows comparison of the
uncertainty estimates and the retrieval errors as a function of
AERONET AOD. Credibility intervals corresponding to the

MODIS DT EE envelope are also computed and presented
in the table. The table shows that BAR is capable of pro-
ducing feasible uncertainty estimates. The comparison with
the DT EE-based uncertainty estimates show that the BAR
pixel-based uncertainties give on average more realistic esti-
mates for the uncertainties related to the retrieved quantities
over AERONET stations. On average the BAR uncertainty
estimates were slightly larger than the true retrieval errors. In
addition, the results also show that the BAR uncertainty esti-
mates corresponding to large AOD values are often overopti-
mistic. This means that the pixel-level uncertainty estimates
tend to be too low when the AOD is larger than 0.5.

6 Conclusions

A new AOD retrieval algorithm, Bayesian aerosol retrieval
(BAR), was developed. The algorithm is based on the
widely used MODIS DT algorithm. In the BAR algorithm,
the inverse retrieval problem is formulated in a statistical
(Bayesian) framework that allows systematic use of proba-
bilistic models for prior information and approximation er-
rors related to inaccuracies in the physical observation mod-
els and pixel-based uncertainty quantification for the re-
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Figure 4. (a, b, c) Scatter density histograms comparing global AERONET and MODIS Bayesian aerosol retrieval (a), MODIS Dark
Target (b), and MODIS Deep Blue (c) AOD retrievals. The solid black line represents the 1 : 1 line and the dashed lines the MODIS Dark
Target expected error envelope. (d, e, f) The retrieval error for MODIS Bayesian aerosol retrieval (d), MODIS Dark Target (e), and MODIS
Deep Blue (f) retrievals plotted as function of AERONET AOD. The red dots and the horizontal lines inside the boxes represent the median
and mean values of MODIS AOD error, respectively. The box height and whiskers represent the 1 and 2 standard deviation intervals of the
MODIS AOD retrieval error, respectively. The width of the box corresponds to the standard deviations of the AOD bin.

Table 4. Global and regional statistics of AOD retrievals for Dark Target (DT) and Bayesian aerosol retrieval (BAR) retrieval algorithms. All
DT quality assurance classes are considered. Bolded numbers indicate the algorithm with better performance.

Number Number
of sites of matches R Median bias f within EEDT RMSE

Region DT BAR DT BAR DT BAR DT BAR DT BAR DT BAR

Global 346 346 45 240 45 240 0.89 0.92 0.05 0.01 0.55 0.76 0.14 0.10
Global, AOD> 0.2 302 302 10 354 10 354 0.88 0.90 0.06 −0.00 0.53 0.68 0.22 0.17
ENA 90 90 7384 7384 0.90 0.94 0.04 0.01 0.57 0.81 0.11 0.06
WNA 69 69 7191 7191 0.83 0.92 0.07 0.01 0.43 0.77 0.17 0.09
CSA 46 46 4537 4537 0.81 0.89 0.04 0.00 0.53 0.76 0.12 0.07
EUR 114 114 14 991 14 991 0.79 0.83 0.04 0.01 0.60 0.79 0.11 0.06
NAME 47 47 1486 1486 0.89 0.91 0.04 0.00 0.46 0.57 0.17 0.15
SA 11 11 1066 1066 0.85 0.91 −0.01 0.01 0.64 0.75 0.11 0.09
NEA 47 47 2862 2862 0.94 0.94 0.07 0.00 0.51 0.71 0.17 0.12
SEA 69 69 4327 4327 0.88 0.89 0.06 0.01 0.54 0.61 0.23 0.18
OCE 19 19 1396 1396 0.93 0.93 −0.01 0.02 0.65 0.69 0.15 0.11

trieved parameters. In the BAR algorithm, the retrieved un-
known parameters are the total AOD at 0.550 µm, FMF, and
surface reflectances at 0.45, 0.55, 0.64, and 2.1 µm. The re-
trieval is carried out simultaneously in all the dark land pixels
of a granule.

The BAR algorithm was evaluated by retrieving all
MODIS granules from the year 2015 and compared with
AERONET AOD and AE. Results showed that by using the
BAR algorithm the accuracy of the AOD retrievals was sig-
nificantly improved when compared to both DT and DB re-
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Figure 5. Similar figure as Fig. 4 but only for MODIS Dark Target and MODIS Bayesian aerosol retrieval algorithms and corresponding
only to pixels with MODIS DT quality assurance class value of 3.

Table 5. Global and regional statistics of Ångström exponent retrievals for Dark Target (DT) and Bayesian aerosol retrieval (BAR) algorithms.
All DT QA flags are considered. Only retrievals with AERONET AOD larger than 0.2 were included. Bolded numbers indicate the algorithm
with better performance.

Number Number
of sites of matches R Median bias RMSE

Region DT BAR DT BAR DT BAR DT BAR DT BAR

Global 302 302 10 354 10 354 0.36 0.35 −0.18 0.14 0.67 0.51
ENA 68 68 868 868 0.43 0.18 −0.28 −0.08 0.66 0.50
WNA 51 51 499 499 0.24 0.20 −0.34 −0.22 0.79 0.56
CSA 35 35 662 662 0.34 0.40 −0.13 0.01 0.84 0.61
EUR 98 98 2679 2679 0.40 0.45 −0.26 0.06 0.67 0.50
NAME 26 26 597 597 0.13 0.46 0.25 0.57 0.89 0.68
SA 10 10 425 425 0.23 0.40 0.04 0.16 1.17 0.34
NEA 44 44 1230 1230 0.42 0.13 −0.18 0.17 0.46 0.57
SEA 62 62 3200 3200 0.40 0.44 −0.15 0.22 0.47 0.40
OCE 14 14 194 194 0.12 −0.10 −0.21 0.09 1.08 0.91

trievals. Globally, the fraction of AOD retrievals inside the
DT EE envelope increased from 55 to 76 % when BAR was
used instead of DT. Moreover, the median bias in AOD was

improved, and globally the bias was 0.01 while the bias of the
DT algorithm was 0.05. The AOD retrievals were improved
in all studied regions and the largest improvement was found
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Figure 6. (a, b) Scatter density histograms comparing global AERONET and MODIS Dark Target (a) and MODIS Bayesian aerosol re-
trieval (b) Ångström exponent retrievals. The solid black line represents the 1 : 1 line. (c, d) The retrieval error for MODIS Dark Target (c)
and MODIS Bayesian aerosol retrieval (d) retrievals plotted as function of AERONET Ångström exponent. The red dots and horizontal lines
inside the boxes represent the median and mean values of MODIS Ångström error. The box height and whiskers represent the 1− σ and
2− σ intervals of the MODIS Ångström retrieval error. The width of the box corresponds to the 1− σ of Ångström exponent bin.

Table 6. Global and regional statistics of AOD retrievals for Deep Blue (DB) and Bayesian aerosol retrieval (BAR) algorithms. All pixels
are considered. Bolded numbers indicate the algorithm with better performance.

Number Number
of sites of matches R Median bias f within EEDT RMSE

Region DB BAR DB BAR DB BAR DB BAR DB BAR DB BAR

Global 361 346 57 308 45 240 0.86 0.92 0.02 0.01 0.65 0.76 0.15 0.10
Global, AOD> 0.2 322 302 13 531 10 354 0.85 0.90 0.00 −0.00 0.56 0.68 0.23 0.17
ENA 92 90 8313 7384 0.74 0.94 0.03 0.01 0.66 0.81 0.14 0.06
WNA 71 69 8990 7191 0.85 0.92 0.02 0.01 0.67 0.77 0.14 0.09
CSA 53 46 5200 4537 0.77 0.89 0.01 0.00 0.68 0.76 0.10 0.07
EUR 127 114 18 860 14 991 0.71 0.83 0.01 0.01 0.71 0.79 0.11 0.06
NAME 61 47 3497 1486 0.84 0.91 0.04 0.00 0.49 0.57 0.18 0.15
SA 13 11 1718 1066 0.77 0.91 0.02 0.01 0.53 0.75 0.12 0.09
NEA 54 47 3820 2862 0.94 0.94 0.03 0.00 0.61 0.71 0.18 0.12
SEA 75 69 5179 4327 0.84 0.89 0.03 0.01 0.46 0.61 0.23 0.18
OCE 20 19 1731 1396 0.90 0.93 0.01 0.02 0.69 0.69 0.15 0.11
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Table 7. Statistics of AOD retrievals for Dark Target (DT) and Bayesian aerosol retrieval (BAR) algorithms over urban AERONET stations.
The location information for the AERONET sites can be found at the AERONET web page https://aeronet.gsfc.nasa.gov/.

Surface Number
albedo at of matches R Median bias f within EEDT RMSE

AERONET station 0.55 µm DT BAR DT BAR DT BAR DT BAR DT BAR

CCNY 0.08 127 127 0.81 0.88 0.16 0.03 0.10 0.70 0.23 0.08
Toronto 0.09 189 189 0.91 0.96 0.16 0.02 0.09 0.74 0.21 0.08
GSFC 0.06 213 213 0.91 0.94 0.05 −0.00 0.59 0.89 0.09 0.05
MD_Science_Center 0.08 190 190 0.92 0.94 0.06 −0.02 0.52 0.82 0.12 0.06
BSRN_BAO_Boulder 0.10 243 243 0.85 0.87 0.08 0.00 0.35 0.86 0.10 0.04
Univ_of_Houston 0.10 134 134 0.90 0.83 0.10 −0.02 0.28 0.82 0.13 0.05
CalTech 0.09 93 93 0.60 0.77 0.11 −0.03 0.29 0.77 0.16 0.06
El_Segundo 0.10 224 224 0.37 0.58 0.38 0.02 0.00 0.76 0.45 0.06
Mexico_City 0.08 104 104 0.60 0.59 0.05 -0.09 0.55 0.38 0.18 0.16
Sao_Paulo 0.09 100 100 0.69 0.72 0.04 −0.04 0.69 0.76 0.09 0.07
Paris 0.10 136 136 0.75 0.79 0.07 0.01 0.43 0.76 0.13 0.07
Thessaloniki 0.07 361 361 0.89 0.88 0.04 0.01 0.68 0.84 0.09 0.05
Moscow_MSU_MO 0.10 121 121 0.83 0.89 0.06 −0.02 0.50 0.93 0.10 0.05
Beijing-CAMS 0.10 242 242 0.96 0.94 0.24 0.02 0.20 0.68 0.29 0.20
Osaka 0.09 127 127 0.74 0.76 0.17 0.02 0.18 0.65 0.24 0.12
Kanpur 0.11 254 254 0.82 0.91 0.14 −0.03 0.46 0.76 0.27 0.14
Singapore 0.07 23 23 0.95 0.96 0.38 0.30 0.04 0.22 0.75 0.53

Table 8. Fraction of AERONET AODs inside 50, 80, 90, 95, and 99% credible intervals based on MODIS BAR uncertainty estimates. For
comparison also MODIS DT expected error (EE) envelope-based results are shown corresponding to DT retrievals.

Fraction of AERONET AODs inside the N% credible interval
based on MODIS BAR uncertainty estimates

N = 50% N = 80% N = 90% N = 95% N = 99%

MODIS DT EE based, all retrievals 40.5 % 68.4 % 79.8 % 86.7 % 94.3 %

All retrievals 59.5 % 84.6 % 91.4 % 94.7 % 97.9 %
0.0<AERONET AOD< 0.1 66.8 % 89.7 % 94.7 % 97.0 % 99.0 %
0.1<AERONET AOD< 0.2 57.4 % 85.1 % 92.3 % 95.8 % 98.6 %
0.2<AERONET AOD< 0.3 52.2 % 80.3 % 89.2 % 93.6 % 97.5 %
0.3<AERONET AOD< 0.5 46.0 % 74.4 % 84.3 % 89.8 % 95.8 %
0.5<AERONET AOD< 1.0 39.1 % 65.2 % 76.6 % 83.6 % 91.9 %
1.0<AERONET AOD< 2.5 29.2 % 52.3 % 64.1 % 73.3 % 84.0 %
2.5<AERONET AOD< 5.0 23.2 % 44.8 % 56.0 % 64.5 % 75.7 %

in North America. Oceania was the region with the small-
est improvement. The AE retrievals were also improved in
most of the regions when BAR was used instead of the DT
algorithm, but the improvement was not as clear as for the
AOD. The reason why the AE did not improve similarly as
the AOD retrievals is a topic of future research.

The BAR algorithm gives approximate posterior uncer-
tainties in the retrieved parameters for each pixel. We com-
pared the AOD uncertainty estimates with absolute values of
retrieval errors over AERONET stations. The results show
that BAR is capable of producing feasible uncertainty esti-
mates for AOD.

The average retrieval time with the BAR algorithm was
less than 1 min per granule on a modern personal computer
and therefore the computational costs of the algorithm allow
the use of BAR for near-real-time processing of MODIS data.
The BAR algorithm is not restricted to MODIS retrievals
only and by writing the observation models for different in-
struments it is possible to extend the algorithm to be used for
aerosol retrievals with other instruments as well. The results
show that modeling and taking into account the spatial cor-
relations of unknown parameters and model uncertainties in
the retrieval may significantly improve the accuracy of the re-
trievals. The inversion framework is not restricted to aerosol
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retrieval only and could be used for other types of remote
sensing applications, such as cloud and trace gas retrievals.

The first version of the BAR algorithm was constructed
especially to evaluate the feasibility and accuracy of the new
modeling and inversion approach and many models and se-
lections can still be improved to make the algorithm better.
The planned improvements for the BAR algorithm in the fu-
ture include the following:

– Use of all possible MODIS bands. BAR algorithm is
capable of utilizing all possible data and use of more
MODIS bands will most likely improve the retrieval ac-
curacy.

– Spatial correlation models for the surface reflectance.
More accurate models for the surface reflectance would
improve the retrieval accuracy.

– Retrievals over bright surfaces. Extension of the algo-
rithm to retrievals over bright-reflecting surfaces is a
straightforward task as the Deep Blue retrievals have al-
ready shown that it is possible to use MODIS data for
aerosol retrievals over bright surfaces.

– High-resolution retrievals. In high-resolution pixel-by-
pixel retrievals, the anisotropic and non-smooth surface
reflectance, and residual cloud contamination are ma-
jor sources of uncertainties and may lead to poor re-
trieval accuracy. BAR takes into account the spatial cor-
relations of aerosol properties and this may make the
algorithm more tolerant to higher uncertainties. There-
fore, the use of BAR would especially improve the high-
resolution (3 km) aerosol retrievals.

– Data fusion with AERONET. In the statistical inversion
framework it is a straightforward task to include other
data sources into the retrieval. Use of both MODIS and
AERONET data together in a joint retrieval would com-
bine the wide coverage of MODIS and the accuracy of
AERONET for producing improved retrievals of the pa-
rameters.

– Over ocean retrievals. If a suitable prior model for the
ocean surface reflectance is used, BAR algorithm can be
used also for over ocean retrievals.

Code and data availability. The MAC-v2 climatology used for
prior models was downloaded from ftp://ftp-projects.zmaw.de/
aerocom/climatology/MACv2_2017/550nm_2005/. The radiative
transfer lookup tables that are publicly available with Dark Target
standalone code at https://darktarget.gsfc.nasa.gov/reference/code
were used in BAR. The AERONET V3 data used in this study
were downloaded from the NASA AERONET server at http://
aeronet.gsfc.nasa.gov/. The MODIS data used in this study were
downloaded from the NASA Level 1 and Atmosphere Archive
and Distribution System (LAADS) at https://ladsweb.nascom.nasa.
gov/. The Bayesian aerosol retrieval algorithm code, short doc-
umentation, and prior and uncertainty models are available at
https://doi.org/10.5281/zenodo.1182939 (Lipponen, 2018).
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Appendix A: Derivation of the optimization problem in
Eq. (2)

Let

ρTOA
= f (τ ,η,ρs

;γ )+ e (A1)

be the observation model describing the relationship
between the AOD (τ ), FMF (η), the surface re-
flectances at 0.47, 0.55, 0.64, and 2.1 µm (ρs), the
measurement geometry and aerosol-model-related
parameters (γ ) and the simulated TOA reflectances
(ρTOA

=

[
ρTOA

0.47 µm,ρ
TOA
0.55 µm,ρ

TOA
0.64 µm,ρ

TOA
2.1 µm,

]
). The mea-

surement noise and model-related uncertainties are included
in the additive noise term e. It should be noted that all the
above variables represent the values of all dark surface pixels
in a granule and are therefore vector valued. The complete
model of a statistical inverse problem is the posterior
distribution

π
(
τ ,η,ρs

|ρTOA
)
, (A2)

that is the conditional joint probability distribution for AOD
τ , FMF η, and surface reflectance ρs values given the true
MODIS-observed TOA reflectances ρTOA,MODIS. Here π de-
notes a probability distribution. From the posterior distribu-
tion, different point estimates and uncertainty estimates are
usually computed and used to infer the retrieved parameters.

Applying the well-known Bayes theorem to the posterior
distribution (Eq. A2), it can be written as

π
(
τ ,η,ρs

|ρTOA
)
=
π
(
ρTOA
|τ ,η,ρs)π (τ ,η,ρs)

π
(
ρTOA

)
∝ π

(
ρTOA
|τ ,η,ρs

)
π
(
τ ,η,ρs) , (A3)

where π
(
ρTOA
|τ ,η,ρs) is the likelihood distribution de-

scribing the relationship between the observed reflectances
and the unknown parameters, π (τ ,η,ρs) is the prior distri-
bution that can be used to model the information we have
on unknown parameters (e.g., non-negativity, spatial correla-
tion structures) prior to the observations, and π

(
ρTOA) is the

evidence term that describes the probability of the event we
observe. Usually, the evidence term is unknown, but as the
observations have already been made and the value of ρTOA

is fixed, it may be treated as a normalization constant which
is not needed in the computation of the estimates.

We model the AOD, FMF, and surface reflections as uncor-
related and the noise term e, as an additive noise observation
model Eq. (A1). Thus, the likelihood distribution takes the
form (Kolehmainen et al., 2011; Kaipio and Kolehmainen,
2013)

π
(
ρTOA
|τ ,η,ρs

)
= πe

(
ρTOA,MODIS

− f (τ ,η,ρs
;γ )

)
, (A4)

where πe is the probability distribution of the measurement
noise and approximation errors e, and ρTOA,MODIS denotes
the actual reflectances measured by the MODIS.

Combining Eqs. (A3) and (A4) we get

π
(
τ ,η,ρs

|ρTOA
)
∝ πe

(
ρTOA,MODIS

−f (τ ,η,ρs
;γ )

)
π
(
τ ,η,ρs) . (A5)

In this study, we model the term e as a Gaussian distributed
random variable:

e ∼N (Ee,0e) , (A6)

where Ee and 0e denote the expected value and covariance
matrix of e. We also model the prior information for AOD τ ,
FMF η, and surface reflectance ρs as Gaussian distributed.
Furthermore, we assume that AOD τ , FMF η, and surface
reflectances ρs are mutually uncorrelated with prior models:

τ ∼N (Eτ ,0τ ) , (A7)
η ∼N

(
Eη,0η

)
, (A8)

ρs
∼N

(
Eρs ,0ρs

)
, (A9)

π(τ ,η,ρs)= π(τ )π(η)π(ρs). (A10)

These selections result in a posterior distribution of

π
(
τ ,η,ρs

|ρTOA
)
∝ πe

(
ρTOA,MODIS

−f (τ ,η,ρs
;γ )

)
π (τ )π (η)π

(
ρs)

∝ exp
{
−

1
2

(
ρTOA,MODIS

−f (τ ,η,ρs
;γ )−Ee

)T

0−1
e

(
ρTOA,MODIS

−f (τ ,η,ρs
;γ
)
−Ee)

−
1
2
(τ −Eτ )T0−1

τ (τ −Eτ )−
1
2
(η−Eη)T0−1

η (η−Eη)

−
1
2
(ρs
−Eρs)T0−1

ρs (ρ
s
−Eρs). (A11)

We select to look for the parameters τ ,η and ρs that maxi-
mize the value of the posterior distribution (Eq. A11). This
estimate is known as the maximum a posteriori (MAP) esti-
mate. The MAP estimate may be found at the minimum of
the minus logarithm of the posterior distribution as(
τ ,η,ρs)

MAP= arg min
τ ,η,ρs

(∥∥∥Le
(
ρTOA,MODIS

−f (τ ,η,ρs
;γ )−Ee

)∥∥∥2

+‖Lτ (τ −Eτ )‖2+∥∥Lη
(
η−Eη

)∥∥2
+
∥∥Lρs

(
ρs
−Eρs

)∥∥2
)
,

(A12)

where Le, Lτ , Lη, and Lρs are the Cholesky factors of the in-
verse covariance matrices 0−1

e , 0−1
τ , 0−1

η , and 0−1
ρs , respec-

tively.
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Appendix B: Construction of the approximation error
model

In the BAR algorithm, we construct an approximation er-
ror model that describes the uncertainties and inaccuracies
in the simulated TOA reflectances due to imperfect models
and unknown aerosol and surface parameters. The construc-
tion of the model is based on simulated TOA reflectances
that are compared with the reflectances measured by the
MODIS instrument. In the construction of the approximation
error model, the MODIS measurements are considered as the
ground truth measurements.

Let

ρTOA,simulated
= ρTOA,simulated(τ ,η,ρs

;γ ) (B1)

be the TOA reflectances simulated with the DT LUT
model. Here γ denotes the auxiliary (fixed) model param-
eters such as measurement geometry, surface elevation, and
aerosol models. We assume that AERONET can accurately
measure the aerosol properties AOD τAERONET and FMF
ηAERONET and that the MODIS MCD43C3 product can be
used to derive accurate estimates for the surface reflectances
ρs,MCD43C3. The contribution of uncertainties (mostly due to
fixed DT aerosol and LUT models) in the simulated TOA
reflectances corresponding to a single MODIS–AERONET
collocated measurement can be computed as the discrepancy
between the simulated and observed TOA reflectances at the
AERONET station location as

n= ρTOA,MODIS
− ρTOA,simulated

(τAERONET,ηAERONET,ρ
s,MCD43C3

;γ ). (B2)

In the BAR algorithm, we use N AERONET–MODIS col-
locations to compute a database of simulation–MODIS TOA
reflectance discrepancies {ni}Ni=0 for all regions (shown in
Fig. 1) and months. We model n as Gaussian multivariate
random variable and estimate the expected value and covari-
ance matrix as sample average and sample covariance of {n}.
To minimize the effect of outliers to the uncertainty model we
use the median instead of sample average. AERONET data
do not directly include AERONET FMF ηAERONET. There-
fore, the AERONET FMF is computed using a search ap-
proach in which the FMF values 0.0,0.05,0.1, . . .,0.95,1.0
are tested and the one that produces the best match with the
AERONET AE is selected as the ηAERONET.
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Supplement. The supplement related to this article is available
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