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Abstract. Advances in natural gas extraction technology
have led to increased activity in the production and trans-
port sectors in the United States and, as a consequence, an
increased need for reliable monitoring of methane leaks to
the atmosphere. We present a statistical methodology in com-
bination with an observing system for the detection and at-
tribution of fugitive emissions of methane from distributed
potential source location landscapes such as natural gas pro-
duction sites. We measure long (> 500 m), integrated open-
path concentrations of atmospheric methane using a dual fre-
quency comb spectrometer and combine measurements with
an atmospheric transport model to infer leak locations and
strengths using a novel statistical method, the non-zero min-
imum bootstrap (NZMB). The new statistical method allows
us to determine whether the empirical distribution of possi-
ble source strengths for a given location excludes zero. Using
this information, we identify leaking source locations (i.e.,
natural gas wells) through rejection of the null hypothesis
that the source is not leaking. The method is tested with a
series of synthetic data inversions with varying measurement
density and varying levels of model–data mismatch. It is also
tested with field observations of (1) a non-leaking source lo-
cation and (2) a source location where a controlled emis-
sion of 3.1× 10−5 kg s−1 of methane gas is released over a
period of several hours. This series of synthetic data tests
and outdoor field observations using a controlled methane
release demonstrates the viability of the approach for the
detection and sizing of very small leaks of methane across

large distances (4+ km2 in synthetic tests). The field tests
demonstrate the ability to attribute small atmospheric en-
hancements of 17 ppb to the emitting source location against
a background of combined atmospheric (e.g., background
methane variability) and measurement uncertainty of 5 ppb
(1σ ), when measurements are averaged over 2 min. The re-
sults of the synthetic and field data testing show that the new
observing system and statistical approach greatly decreases
the incidence of false alarms (that is, wrongly identifying a
well site to be leaking) compared with the same tests that do
not use the NZMB approach and therefore offers increased
leak detection and sizing capabilities.

1 Introduction

The combustion of natural gas in high-efficiency power cy-
cles is cleaner and produces less climate-warming carbon
dioxide gas than the combustion of coal (Environmental Pro-
tection Agency, 2015), which has led to interest in natural
gas as a cleaner alternative to coal for energy generation.
Advances in natural gas extraction technology have led to
a 35 % increase in total natural gas production between 2005
and 2013 in the United States (U.S. Energy Information Ad-
ministration, 2015). Production is expected to increase by
45 % above 2013 levels by the year 2040 (U.S. Energy In-
formation Administration, 2015). A caveat to the promise of
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natural gas as a lower climate impact energy source, how-
ever, is that leaks of methane during extraction and delivery
can result in climate warming. Methane gas has high global
warming potential (GWP): much higher, for example, than
carbon dioxide (CH4 has a GWP of 28 over 100 years, com-
pared with CO2, which has GWP of 1 by definition Myhre et
al., 2013). Above a low threshold (estimated to be≈ 3.2 % by
Alvarez et al., 2012) leak rate from well to power plant, the
near-term climate impacts of using natural gas for power gen-
eration become worse than coal (Alvarez et al., 2012; Hay-
hoe et al., 2002). Recent system-wide analysis suggests that
natural gas sector leak rates are likely higher than inventory
estimates (Brandt et al., 2014; Zavala-Araiza et al., 2015a).
To achieve the lower climate impacts and greater economic
benefits of domestic natural gas production, it is important to
find low-cost methods to detect and reduce methane leakage
(Alvarez et al., 2012).

The current industry practice for leak detection and repair
(LDAR) is to perform infrequent (annual or less for most
sites) “spot” checks for leaks, for example by visual inspec-
tion with an optical gas imaging (OGI) camera. However, re-
cent work has shown that methane concentrations measured
by OGI cameras can be drastically underestimated when con-
ditions are not ideal, for example under conditions of lower
temperature values or higher wind speeds, or when view-
ing distances are greater than 50 m (Ravikumar et al., 2016).
Furthermore, spot check monitoring is inadequate for detec-
tion of leaks, given strong evidence for intermittency of leaks
(Allen et al., 2013, 2015a; Mitchell et al., 2015; Subramanian
et al., 2015). It has been observed that a small number of fa-
cilities leaking at very high rates – so-called “super-emitters”
(Brandt et al., 2014; Frankenberg et al., 2016; Rella et al.,
2015; Zavala-Araiza et al., 2015b) – can account for a major-
ity of total emissions (Allen et al., 2013, 2015a, b; Brandt et
al., 2014). These characteristics underscore the importance of
continuous monitoring for leaks over large areas. Field cam-
paigns with sophisticated atmospheric sampling techniques
provide valuable snapshots of the state of natural gas devel-
opment facility leaks (e.g., Brantley et al., 2014; Karion et
al., 2013), but it would be too costly to employ such mea-
surement strategies for long-term continuous monitoring of
most natural gas sector facilities.

We present and test an atmospheric measurement system
coupled with a statistical inversion approach for detecting
and quantifying emissions of methane. The statistical ap-
proach is focused on limiting the occurrence of false-positive
leak detection. The measurement system used to test the sta-
tistical approach is composed of a long-range open-path laser
situated in the center of a field of well sites and a series
of retroreflectors around the perimeter of the field to direct
light back to a detector co-located with the laser. The con-
centration of trace gases along the open beam path (defined
as the path between the spectrometer–detector system and
a retroreflector) is determined from the species-specific ab-
sorption of light (Dobler et al., 2015; Flesch et al., 2004;

Groth et al., 2015; Hashmonay et al., 1999; Levine et al.,
2016). Many open-path absorption methods for determining
species concentration have been demonstrated (Akagi et al.,
2011; Dobler et al., 2015; Flesch et al., 2004; Jones et al.,
2011; Nikodem et al., 2015; Wagner and Plusquellic, 2016;
Wu et al., 2014). Here we use a dual frequency comb spec-
trometer (DCS): a unique broadband, high-resolution spec-
trometer that offers very high stability (low drift) and mea-
surement reproducibility of the trace gas measurement so
that concentrations can be compared across different condi-
tions and times (Coburn et al., 2018). It was recently demon-
strated that two separate dual frequency comb spectrome-
ters stationed side by side and measuring the same 1 km
outdoor path showed methane concentration agreement to
0.35 % over a 2-week period under ambient variations in tem-
perature, pressure, and stability (Waxman et al., 2017). In
principle, the range of conditions under which two separate
dual frequency comb spectrometers should be comparable is
much wider than ambient conditions, because the concentra-
tion retrieval is largely dependent on the quality of absorption
models (which are well-defined under most conditions expe-
rienced at Earth’s surface). Previous work also demonstrates
that this method of atmospheric trace gas measurement does
not require regular or traditional calibration (Coburn et al.,
n.d.; Rieker et al., 2014; Truong et al., 2016; Waxman et al.,
2017). Laboratory and initial field measurements made with
the dual frequency comb spectrometer indicate extremely
high measurement precision (3 ppb or lower) over long (1 km
one-way, or 2 km round trip) path lengths (Coburn et al.,
n.d.; Rieker et al., 2014; Truong et al., 2016; Waxman et al.,
2017). The combination of low uncertainty and high stability
enables new opportunities for detection and sizing of even
very small emissions of methane (Coburn et al., n.d.). Fur-
thermore, the demonstration of sensitive methane measure-
ments over kilometer-scale open paths allows for monitor-
ing methane concentrations over large areas such as natural
gas production, processing, and distribution sites. While fre-
quency comb measurements have previously been made in
laboratory settings, the recent work of Coburn et al. (n.d.)
and the new work shown here demonstrate the viability of
dual frequency comb spectroscopy in real-world conditions.

We use the dual frequency comb measurements in a se-
ries of synthetic data and field data tests to demonstrate
the utility of the observing system and a novel statistical
method for accurately locating one or more point sources of
methane within a large area (4+ km2) using distributed mea-
surements of methane concentrations and an atmospheric
transport model. Previous studies have used Gaussian plume
models with atmospheric measurements of wind conditions
and constituent concentrations to detect sources (e.g., Hirst
et al., 2004), and past studies have also shown the utility of
open-path lasers for measuring across-plume concentrations
for use in the detection of emissions (Flesch et al., 1995;
McBain and Desjardins, 2005). Here, we present a novel sta-
tistical technique applied to source detection and quantifi-
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cation – with the goal of minimizing false-positive source
identification. The source-attribution method used here is to
apply a non-negative least-squares (NNLS) fitting technique
to solve for methane flux at a series of potential source lo-
cations (e.g., pads, well heads or other components), given
a set of atmospheric observations and knowledge of atmo-
spheric transport (Leuning et al., 2008). The new statistical
approach, called the non-zero minimum bootstrap method
(NZMB), uses a bootstrapping of model uncertainties to pro-
duce an empirical distribution of source strength for a given
well site. Specifically, the empirical distribution is obtained
by performing multiple atmospheric inversions (or estimates
of surface fluxes using atmospheric data) using a set of re-
sampled atmospheric measurements. The NZMB method es-
tablishes a criterion by which well sites or facilities are iden-
tified as having non-zero methane emissions based on exam-
ination of the minimum value of an ensemble of inversions.
That is, a potential leak site is positively identified as a source
of methane to the atmosphere when the empirical cumula-
tive distribution of likely source strengths (determined with
a series of bootstrap operations) does not include a minimum
threshold flux such as zero. Similarly, a facility is identified
as not leaking when the empirical cumulative distribution of
likely source strengths does include the minimum threshold
flux (that is, the minimum value of all bootstrap operations
is, for example, zero). By defining a specific null value for
each potential leak, this approach reduces the incidence of
false-positive leak identification (the incorrect attribution of
a methane source to a non-leaking facility or well), compared
with the same tests that do not use the NZMB method (the
“non-bootstrap” approach). For comparison, we run the same
series of tests with the non-bootstrap approach, which ap-
proximates emissions using a single NNLS fit.

Synthetic data tests are performed that assess the effects of
increasing measurement density (4, 8, 16, 32, and 64 beams)
and the effects of increasing model–data mismatch (that is,
combined uncertainty in the ability to simulate observations
arising from measurement, transport, and other sources).
Field tests with atmospheric observation data are performed
in a 3 km× 2.5 km field site located in north-central Col-
orado over the course of 1 day in January 2017. The meteoro-
logical conditions (wind speed, wind direction, atmospheric
stability) on this day are typical of wintertime and annual
mean conditions measured near the field site (for example,
compared with conditions at nearby weather station KCO-
LONGM30). Field measurements are made along a series of
three beams extending from a spectrometer in the middle of
the domain.

We define leak identification success as maximizing the in-
cidences of leaks found, with a minimal occurrence of false-
positive source identification, enabling quick response to
leaks and avoiding costly mobilization of repair teams due to
false-positive leak identification. The ability to correctly as-
certain the absence of a leak is therefore of equal importance
to the ability to find leaks for regulatory compliance applica-

tions of this method. With the above tests, we therefore seek
to determine (1) whether methane point source emissions can
be detected and sized under conditions of observational un-
certainty (model–data mismatch) and background variation;
(2) whether the absence of a leak can be ascertained in an
outdoor field setting; (3) whether the NZMB method allows
for leaks to be positively identified under scenarios of greater
simulated model–data mismatch uncertainty, compared with
the non-bootstrap method; and (4) whether a higher number
of observations increases likelihood that the NZMB and non-
bootstrap methods can positively identify leaks. The success
of the synthetic and field data tests demonstrates the potential
of this observing system for continuous monitoring appli-
cations, such as for natural gas facilities, and for providing
emission source locations and their approximate strengths.
The experiments here also demonstrate the potential for this
technology to be used for other source estimation and moni-
toring applications, for example carbon sequestration.

2 Methods

2.1 Gaussian plume atmospheric transport model

In both the synthetic and real data tests, atmospheric trans-
port is simulated using a Gaussian plume model, using
Pasquill–Gifford parameterization of plume dispersion in the
lateral and vertical directions (Green et al., 1980; Griffiths,
1994; Hanna et al., 1982). Micrometeorology in the bound-
ary layer is a non-trivial source of uncertainty for char-
acterization of atmospheric flow, and the Gaussian plume
model represents a simplified representation of atmospheric
transport and dispersion. It is used to characterize the mean
state (or steady state) of source–receptor relationships with
a point source, as long as the transport time from source
to receptor is comparable to the data averaging time (Gif-
ford, 1976; Hirst et al., 2004). More sophisticated plume
(e.g., AERMOD) or stochastic Lagrangian dispersion mod-
els (e.g., WindTrax) and stability parameterizations would
be expected to provide more robust representations of the
wind shear and inhomogeneities in turbulence in the atmo-
spheric surface layer (Flesch et al., 1995; Perry et al., 1994;
Wilson and Sawford, 1996). We select the simplified and
low-computational-cost plume model for assessment of the
NZMB method as a baseline test rather than implement-
ing more advanced representations of transport. Future cam-
paigns aimed at quantification of true emissions will benefit
from an assessment of the drawbacks inherent in Gaussian
plume model characterization of atmospheric transport or use
of a more sophisticated model, particularly for measurements
made at short range.

For the synthetic data tests, the choice of transport model
is largely trivial, given that the transport is considered “per-
fect”. Field data are collected with a constant methane source
to the atmosphere and a measurement averaging time that is
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comparable to the source-to-receptor travel time, such that
the Gaussian plume model is a simplified but appropriate
choice of transport model (Gifford, 1976; Hirst et al., 2004).
Because the purpose of this study is to confirm or reject
the basic methodology and not to investigate the impacts of
micrometeorological representation on flux estimation, we
find the plume model to be sufficient as a baseline test (see
Sect. 6).

Neglecting influence of background methane concentra-
tions, Eq. (1) shows the relationship between fluxes and at-
mospheric concentrations (e.g., Leuning et al., 2008):

c = x× (c/x)modeled, (1)

where the n× 1 vector c is the atmospheric concentration
of the constituent of interest, and n is the number of mea-
surements. The vector x is m× 1 sources of the constituent
(flux units), where the size of m is equal to the number of
potential source flux locations. Here, the vector of fluxes, x,
is the emission rate of methane from each potential source
location. In the synthetic tests and field tests described here,
multiple measurements are made on each beam, such that
n is always greater than m. The value (c/x)modeled is the
transport operator matrix describing the relationship between
the point source emission and concentrations at observation
points (spectrometer beams) under different meteorological
conditions, derived using the Gaussian plume model, and
commonly written as H (that convention will be followed
here; see Sect. 2.5.3 for details on scaling from point source,
to point concentration, to line-averaged concentration).

2.2 Dual frequency comb spectrometer for long-range
open-path methane detection

Dual frequency comb spectrometer measurements are made
by transmitting light from the spectrometer through open air
at a discrete set of wavelengths where methane absorbs light.
The light is transmitted in the direction of a retroreflector,
which can be placed 1+ km away (Coburn et al., n.d.; Rieker
et al., 2014; Truong et al., 2016; Waxman et al., 2017). The
retroreflector directs light back toward a detector co-located
with the spectrometer. The amount of light that is absorbed
by methane yields a direct measurement of the average con-
centration of methane along the open path from spectrometer
to retroreflector. The measurements presented here are part
of the first campaign to measure atmospheric concentrations
with a fielded dual frequency comb spectrometer (Coburn et
al., n.d.). The temporal resolution of measurements is related
to averaging time: as averaging time increases, measurement
precision increases, until such time that atmospheric CH4
variability begins to erode measurement repeatability (see
Sect. 4.1). The spatial resolution of the measurement depends
on beam length, which is easily adjusted by moving retrore-
flectors closer to or further away from the spectrometer, and
beam width, which scales with telescope diameter.

2.3 Flux estimation with non-negative least-squares
fitting solution

We use the NNLS algorithm in Fortran-90 to solve for a flux
rate (that is, the emission rate from each potential source lo-
cation), given atmospheric observations (synthetic or real)
and atmospheric transport influence functions (Lawson and
Hanson, 1995). This algorithm iteratively solves for the best-
fit m× 1 vector of fluxes, x (see Sect. 2.1 for a description
of x), given an n× 1 vector of data measurements, y, and
an n× m matrix of influence functions, H. Given H and y,
the NNLS algorithm computes a vector x (methane emission
rate at each well site) that solves the least squares problem:

Hx = y,subject to x >= 0. (2)

Uncertainties in x and y are not included in the NNLS fit;
model–data mismatch is used only in generation of the syn-
thetic observations and not as a control on the solution for x.
The NNLS algorithm returns the solution vector, x, and also
allows for the calculation of Hx, an n× 1 vector describing
the expected atmospheric concentration given H and the so-
lution for x.

2.4 Non-zero minimum bootstrap analysis

The non-zero minimum bootstrap analysis, or NZMB, is a
statistical test of the null hypothesis (Hypothesis0) that the
source strength at a given well site is equal to 0 kg s−1. It
is used here to estimate source strengths in both the syn-
thetic and field data tests. Whereas bootstrapping methods
and least-squares methods are not novel techniques and have
previously been applied to problems of source strength es-
timation, we develop the present methodology with the mo-
tivation to seek a solution for fluxes in which the incidence
of false-positive source attribution is limited (Efron, 1979;
Lawson and Hanson, 1995).

For each of m potential source locations, the null hypoth-
esis (Hypothesis0) is that there is no methane emission from
that potential source location, and the alternative hypothesis
(Hypothesis1) is that there is a (non-zero) emission from that
potential source location:

Hypothesis0 : xj = 0(j = 1, . . .,m), (3)
Hypothesis1 : xj > 0(j = 1, . . .,m). (4)

Given that model–data mismatch uncertainty is not zero (i.e.,
there is uncertainty in the exact relationship between atmo-
spheric observations and surface fluxes due to transport, mea-
surement, and other uncertainties), it is not expected that
the NNLS fit of Hx to y is exact, although the problem is
overdetermined (that is, n>m). We therefore use the mis-
match between Hx and y to create an empirical distribu-
tion function describing the confidence interval of the fit to
the data and to accept or reject the null hypothesis claim
that we have enough evidence to claim that a particular
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source is not leaking. That is, the empirical fit to the data is
used to quantify uncertainties associated with the model–data
mismatch (including, for example, instrument and measure-
ment uncertainties, transport uncertainties, and model uncer-
tainties) rather than relying on a “bottom-up” estimation of
those sources of uncertainty. We rely on the assumption that
model–data mismatch uncertainty has an un-biased Gaussian
distribution. Although biases in transport or other sources of
uncertainty can exist, we suggest that investigation of that
contingency is suited for future studies.

The method for employing the bootstrap analysis is as fol-
lows. We first solve for surface-to-atmosphere fluxes of CH4,
x, using NNLS, as described in Sect. 2.3. Second, for each
observation, yi (i = 1, . . . , n), we calculate the residual val-
ues from the fit to the NNLS solution:

ei = yi − ŷi, (5)

where ŷi (i = 1,. . . ,n) are the individual values in the vec-
tor Hx. The values of ŷi (i = 1,. . . , n) are the “predicted”
change in atmospheric methane given the NNLS solution for
x, or the change in atmospheric methane that is simulated by
convolving the source–receptor matrix, H, with x.

The next step in the NZMB method is, for each obser-
vation, yi (i = 1,. . . , n), to generate a new estimate of that
observation by using Eq. (3) to sample from the vector of
the residuals of the fit to the atmospheric data, e (with re-
placement, meaning a given value can be sampled more than
once), and adding that randomly selected ei value to the pre-
dicted observation value, ŷi , to create ybi (Efron, 1979). That
is, for each observation vector, y, we create a new vector, yb
(b denotes a bootstrapped value):

ybi = ŷi + ebi . (6)

We perform this step 1000 times, resulting in 1000 vec-
tors yb, or 1000 different sets of observations of the form
{ybi, . . .,ybn}, where ybi = ŷi + ebi .

For the field data, we apply a moving block boot-
strap (Künsch, 1989) because residuals of observations
made nearer together in time are more likely to be co-
representative, whereas residuals of observations made fur-
ther apart in time are likely to be less representative due to
changes in wind conditions and atmospheric stability. We
calculate the autocorrelation in time of the residuals result-
ing from a single non-negative least-squares fit and use for
the moving block window length a value 2 times the lag time
at which the autocorrelation falls below the 95 % confidence
level. As there is no time dimension in the synthetic data
case, we do not apply the moving block bootstrap to those
cases.

Next, we use NNLS to solve for x for each of the 1000
resampled sets of observations, yielding 1000 individual so-
lutions for x. The final step in the NZMB method is to ap-
ply the non-zero-minimum criterion to the 1000 bootstrap
solutions for each member of x. For each possible source lo-
cation, we find the minimum value from the 1000-member

bootstrap analysis. The non-zero-minimum criterion states
that if the minimum bootstrap value for a given well loca-
tion is 0 kg s−1, then the source location is classified as hav-
ing a leak rate of 0 kg s−1 (i.e., no leak). This criterion es-
tablishes, under the null hypothesis, whether or not 0 (< 0
is not possible since a non-negative least-squares fit is used)
is included in the domain of the empirical cumulative dis-
tribution function with non-zero mass, described by the 1000
solutions for each well site in x. If zero is included in this dis-
tribution, then the null hypothesis (x = 0) cannot be rejected.
Conversely, if 0 is not included in the empirical cumulative
distribution function for a given well site (xj ), then the null
hypothesis can be rejected and it can be assumed that the well
site is leaking. We use a large number of bootstrap members
(1000) to ensure that the law of large numbers (LLN) is met.
LLN justifies that when the number of bootstrap operations is
large, the bootstrapped leak mean approaches the estimated
leak from the sample (i.e., the bootstrapped leak mean is a
consistent estimator of the estimated leak), and the distribu-
tion of the bootstrapped leak approaches the probability dis-
tribution of the source strength. Thus, we can claim that the
bootstrapped estimator is a good candidate of the estimated
leak from the NNLS and that the empirical cumulative dis-
tribution function is an approximation of the true cumulative
distribution function.

After having identified which source locations are non-
zero sources to the atmosphere (leaking), the mean leak
strength is estimated as the mean of the 1000 bootstrap so-
lutions for that source location. Uncertainty in the strength
of the true leak is calculated as the standard deviation of the
1000 bootstrap solutions at the true leak location.

This method requires little additional computational cost
over the non-bootstrap NNLS approach, because additional
runs of the transport model are not required, only additional
NNLS fits using resampling of the observations. The NZMB
approach has the benefit of reducing false-positive solutions
while also gathering information regarding the parameters of
the assumed Gaussian distribution.

2.5 Synthetic data tests and results

2.5.1 “True” leak locations and strengths

To prepare synthetic data testing of the NZMB method, we
randomly distribute 20 possible leak source locations within
a theoretical 2 km× 2 km domain. This is a reasonable ap-
proximation of well density based on high-production re-
gions of the western United States (average well density
across the Marcellus and Haynesville shale gas plays is 3+
wells km−2). In the synthetic tests, therefore, m= 20. Of the
20 well sites in the domain, we simulate a scenario in which
two source locations are leaking. The “true” leak rate at well
site number 6 is 4.5× 10−5 kg s−1 and the “true” leak rate at
well site number 19 is 3.0× 10−5 kg s−1. The remaining 18
well sites are assigned “true” leak rates of 0 kg s−1 (Fig. 1).
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Figure 1. Synthetic test observation area: 2 km× 2 km domain with
20 source locations (black dots) at randomly distributed x and y
locations (position shown on x and y axes). Of 20 point sources,
well site 6 (x = 750, y = 750) and well site 19 (x = 650, y = 1750)
have non-zero source strengths (shown on the z axis).

The two non-zero leak strengths are very small: roughly half
the size of the smallest leaks found by Rella et al. (2015) in
a survey of oil and natural gas well pads. The height above
ground level of each leak is 1 m.

2.5.2 Idealized meteorological conditions for synthetic
data tests

The meteorological data used for synthetic data tests include
many wind directions and a variety of wind speeds during the
sampling of each beam in the domain, representing an ideal
scenario for the generation of as many independent mea-
surements of the leak strength as possible. Leak strengths
are constant through time, such that the time dimension of
the meteorology does not need to be considered. This ap-
proach assumes that enough time has passed for all meteo-
rological conditions to have occurred during the sampling of
each beam, a condition that eliminates complications in com-
paring synthetic cases with different beam orientations. The
idealized meteorological field applies 216 unique wind con-
ditions to all beams: three wind speeds (2, 3, and 6 m s−1)

from 72 directions (from 5 to 360◦, in 5◦ increments). The
conditions represent a situation in which, over a long period
of time, many different wind conditions yield a variety of dif-
ferent measurements downwind of emissions. Given the sim-
ple beam configuration presented here, which is independent
of potential source locations, increasing the number of mea-
surement conditions improves the conditioning of the prob-
lem (Crenna et al., 2008; Flesch et al., 2009).

Figure 2. Map view of synthetic tests, with 20 source locations
shown as black dots and 16 beams shown as gray lines that ex-
tend from the spectrometer (circle at x = 1000 m and y = 1000 m)
to retroreflectors (black triangles).

2.5.3 Measurement system configuration and synthetic
observations

The “synthetic” atmospheric measurements are simulated
based on the dual frequency comb spectrometer observing
system described in Sect. 2.2. The spectrometer is located
in the center of the domain, at x = 1000 m and y = 1000 m
(Fig. 2). Configurations of 4, 8, 16, 32, and 64 beams per
spectrometer–detector system are tested. In all beam con-
figurations, retroreflectors are placed at an equal distance
(1000 m) from the spectrometer and at equal distances from
neighboring retroreflectors (e.g., Fig. 2). The hub-and-spoke
beam configuration is a simple and repeatable pattern for
comparison of different numbers of beams. The height of
the spectrometer and retroreflectors is 3 m above ground
level (m a.g.l.). Figure 2 shows beams, beam end point lo-
cations (retroreflectors), and the spectrometer in a case with
16 beams.

The vector of “true” atmospheric methane concentrations,
c, is simulated by combining knowledge of atmospheric
transport with knowledge of “true” sources and measurement
(beam segment) locations with Eq. (1). The influence func-
tions describing the relationships between each element of x
and each segment of each beam path for each wind condition,
H, are created using the Gaussian plume model described in
Sect. 2.1, with neutral stability conditions (Pasquill category
D). In order to generate the synthetic measurement data, each
beam path is discretized into 100 segments. For each unique
wind condition, “true” source fluxes are multiplied by H to
calculate atmospheric enhancements at each of the 100 points
along the beam path. Enhancements due to leaks are calcu-
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lated independently for each segment of a beam and subse-
quently averaged for each beam and for each wind condition.
This value mimics the actual data output of the spectrometer,
which measures the average concentration along the beam
length.

The dimensions of n (e.g., the length of the atmospheric
concentration vector, c) in the synthetic tests vary along with
the number of beams per spectrometer–detector system and
the number of meteorological conditions. In the configura-
tion of four beams, for example, n= 216× 4, because each
distinct meteorological condition is applied to each beam. In
the 8-beam configuration n= 216× 8, in the 16-beam con-
figuration n= 216× 16, and so on.

2.5.4 Perturbation of observations with noise
equivalent to model–data mismatch uncertainty

Model–data mismatch is the difference between the true at-
mospheric CH4 concentration, c, and the simulated or mea-
surable atmospheric CH4 concentration. This difference is
expected to be non-zero due, for example, to measurement
uncertainty (sampling and instrumental error), transport un-
certainty (imperfect knowledge of air flow between source
and observation points), and representation error (for ex-
ample, the assumption that the measured segment of beam
appropriately characterizes the atmospheric concentration at
the time and space scales that it represents in the model). We
assume here that uncertainty due to the imperfectly known
background concentration is also part of model–data mis-
match uncertainty. We simulate progressively larger levels
of model–data mismatch in order to identify differences
in model capabilities to locate and size leaks between the
NZMB and non-bootstrap methods.

A range of model–data mismatch values are tested with
the expectation that both the NZMB and non-bootstrap mod-
els will be more likely to locate and source leaks when lower
model–data mismatch is added to the data. To simulate differ-
ent possible magnitudes of model–data mismatch, the simu-
lated true atmospheric concentrations, c, are perturbed with
random Gaussian noise with mean 0 ppb and standard devia-
tion equal to the following values: 0.1, 0.2, 0.3, 0.4, 0.5, 1.0,
1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5, 6, 7, 8, 9, and 10 ppb, over
a 1 km path. Measurement statistical uncertainty alone is ex-
pected to be on the order of 3 ppb or lower for a 1 km path
(Rieker et al., 2014). As the results of field tests will show,
the range of model–data mismatch values tested are an ap-
propriate approximation of observed uncertainty (Sect. 4.4).
Model–data mismatch uncertainties are assumed to be uncor-
related, following convention and understanding of the dual
frequency comb measurement scheme. In Eq. (5), ε is a vec-
tor of model–data mismatch uncertainty corresponding to the
vector, c. Both vectors are of length n (i =1,. . . ,n), where n is
the number of observations, as described in Sect. 2.5.3. The
vector y contains the synthetic observations or the true atmo-

spheric concentrations perturbed with measurement noise.

yi = ci + εi (7)

2.6 Field data observations

2.6.1 Description of field-deployed dual comb setup

The first measurements from a field-deployed dual frequency
comb spectrometer are from the NOAA/ESRL Table Moun-
tain Test Facility, 10 km north of Boulder, Colorado (Fig. 3;
Coburn et al., n.d.). The spectrometer is located near the cen-
ter of a large (≈ 3× 2.5 km) flat-topped mesa that rises sev-
eral meters above the surrounding terrain (see Fig. 3). The
dual frequency comb is housed inside of a trailer, with tele-
scope transceiver affixed to a rotating gimbal on the trailer
roof (roughly 4 m a.g.l.). The actual dual frequency comb
spectrometer is contained in a 56× 56× 61 cm electronics
rack, and the large trailer provides a field deployment home
base. The beam transceiver system sends light between 1620
and 1680 nm, with discrete line spacing of 0.002 nm, through
a 2 in. telescope. Dual comb spectroscopy uses a large spec-
tral bandwidth and high spectral resolution, which allows for
the simultaneous fitting of the absorption pattern for each
gas, so that interference among gases is avoided. Background
infrared light does not affect the laser signal due to the
heterodyne nature of the detection – the detected beat sig-
nals between the comb teeth are of high frequency whereas
background signals (for example from solar radiation) are
of lower frequency. The system emits and senses approx-
imately 28 900 individual comb teeth (Coburn et al., n.d.;
Rieker et al., 2014). The wavelength “window” to which the
instrument at Table Mountain is tuned is ≈ 50 nm, span-
ning 625 individual CH4 features, 2482 CO2 features, and
133 H2O features. Intensity feedback, triggered data acqui-
sition, and onboard phase correction are quasi-autonomous,
enabling the system to operate continuously for any length of
time (Coburn et al., n.d.; Truong et al., 2016; Waxman et al.,
2017).

2.6.2 Leak location and strength

For the field experiments at Table Mountain, a cylinder of
compressed methane gas is placed roughly 528 m away from
the spectrometer (Fig. 3) with the gas outlet 1 m a.g.l. The
methane cylinder is outfitted with a regulator and an Ali-
cat mass flow controller (MC-20SLPM-D). The flow con-
troller is set to release methane in a controlled flow of
3.1× 10−5 kg s−1 at source location 1, between 10:08 and
16:30 on 26 January 2017. The flow rate at source location 2
is set to 0.0 kg s−1 through the duration of 26 January 2017.
The controlled methane release point is roughly 0.43 cm in
diameter, and the velocity of gas exiting the tubing is negli-
gible.
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Figure 3. Map view of observation test site at Table Mountain, Col-
orado (upper left inset shows geographic location of test site), with
two source locations (location 1, in red, between beams 1 and 2; lo-
cation 2, in green, between beams 2 and 3) and three beams shown
as white lines that extend from the spectrometer (blue square) to
retroreflectors (white triangles, labeled 1–3).

The field tests are arranged so as to approximate the syn-
thetic tests as closely as possible: to emulate the “perfect”
background condition of the synthetic tests, the background
methane concentration for each source location is measured
directly by an upwind beam (Crenna et al., 2008; Flesch et
al., 2009). Because the background is assumed to be unique
for each source location, each inversion includes only that
source location in its solution for fluxes. That is, one inver-
sion is performed for source location 1, and a separate in-
version is performed for fluxes at source location 2. The di-
mensions of m for each test are, therefore, equal to 1, and
the dimensions of n for each test are equal to the number of
measurements made downwind of the source location.

2.6.3 Retroreflector locations

Three corner-cube retroreflectors are located near source lo-
cations 1 and 2 at Table Mountain (see Fig. 3). At their near-
est points, the lateral distances between beams 1 and 2 and
source location 1 are 11 and 6 m, respectively. The minimum
lateral distances between leak location 2 and beams 2 and 3
are 12 and 8 m, respectively. The horizontal distance from the
spectrometer to each retroreflector is 584, 585, and 588 m,
respectively, for retroreflectors 1, 2, and 3. All retroreflectors
are positioned 1 m a.g.l.

2.6.4 Meteorology at Table Mountain

Wind speed and wind direction are measured directly
with a 3D Sonic Anemometer (RM Young 81000 Ultra-
sonic 3D Anemometer with manufacturer-specified accuracy

of± 0.05 m s−1) located mid-way between the spectrometer
and the retroreflectors. It is possible that local wind circula-
tion could lead to meteorological conditions that are not ho-
mogenous across the Table Mountain site, which could cause
the mean winds measured at the anemometer to not perfectly
represent those influencing the plume. Measurement of the
entire wind field is not practical, however, so the point mea-
surement is used to characterize meteorology across the site.
The suitability of the Gaussian plume model for short-range
simulations decreases under low speeds, so all data taken at
wind speeds below 0.8 m s−1 were removed from this anal-
ysis (the reliability of the Gaussian plume model erodes as
wind speeds decrease below ≈1 m s−1; e.g., De Visscher,
2013).

2.6.5 Measurements

We test the bootstrap methodology using measurements
taken over the course of 1 day in January 2017. We test
the ability of the bootstrap approach to both disprove the
null hypothesis (i.e., to correctly ascertain the presence of a
non-zero methane emission) and to prove the null hypothesis
(i.e., to correctly ascertain the absence of a leak) by gather-
ing measurements along beam paths that bound (1) source
location 1, where methane is released in a controlled flow
rate of 3.1× 10−5 kg s−1, and (2) source location 2, where no
methane is released. Quasi-continuous (626 Hz) data acqui-
sition occurs for 2 min on each beam. Time averaging over
2 min is performed to maximize gains in measurement preci-
sion as well as to average across shorter timescale eddy mix-
ing events. After a measurement is taken, less than 30 s elapse
while the gimbal moves to focus the beam on the next retrore-
flector (“retro”) in the measurement sequence. The measure-
ment sequence for the time period of study on 26 January
2017 is retro 1, retro 2, retro 1, retro 3, retro 1, retro 2, and so
on. A fourth retroreflector is included in the measurement se-
quence (leading to a small time delay between measurements
made on retro 3 and retro 2), but data from that beam are not
analyzed here for simplicity.

In the field tests, the dimensions of n vary along with the
number of measurements taken on the beams used in the fit
for the methane emission rate vector, x. For the fit to the
methane emission rate at source location 1, all data (that is,
all 2 min measurements) gathered on retroreflectors 1 and 2
are used. For the fit to the emission rate at source location 1,
all data gathered on retroreflectors 2 and 3 are used. Upwind
measurements are used to constrain background, and down-
wind measurements are used to determine source strength.
The dimensions of n are therefore equal to the number of
downwind measurements. For the test at source location 1,
n= 63, and for the test at source location 2, n= 30. The
value of n is smaller at source location 2 because of the sam-
pling pattern described above.
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2.6.6 Background CH4 estimation

To most closely approximate the synthetic data testing frame-
work in the field environment, we directly sample back-
ground CH4 concentrations upwind of the leak point. The
array of beams shown in Fig. 3 “sandwich” each source lo-
cation. This configuration means that under most wind con-
ditions (wind directions within ≈ 40◦ of orthogonal to the
beam array in either direction), one beam is situated up-
wind and one beam is situated downwind of each source lo-
cation. With this method, we attempt to remove the time-
varying CH4 concentration to which enhancements from dis-
crete near-field emissions are added. While the Table Moun-
tain site is relatively removed from expected anthropogenic
and biogenic methane sources, the presence of nearby small
livestock and oil and gas operations means that the back-
ground methane concentration does vary according to wind
direction and through time. The “beam sandwich” approach,
of placing beams on either side of each source location, rep-
resents a plausible solution to future regional-scale monitor-
ing of many potential emitters.

3 Results of synthetic data tests

3.1 Synthetic source location with and without the
NZMB method

We calculate solutions for x using NNLS in a single solution
without a bootstrap approach for each set of beam config-
urations and for each model–data mismatch scenario in the
synthetic data case. Figure 4 summarizes the findings of each
test by categorizing the results into four outcomes: two true
leaks found with no false positives, one true leak found with
no false positives, zero true leaks found with no false pos-
itives, and one or more true leaks found with one or more
false positive. The top half of Fig. 4 (for the non-bootstrap
method) shows that, of the five different beam configurations
tested, all result in false-positive source locations under ev-
ery model–data mismatch scenario when a non-bootstrap ap-
proach is taken. That is, even with very low model–data mis-
match (0.1 ppb) and many beam measurement locations (64),
the non-bootstrap method fails to positively identify true leak
sources without also generating false-positive results. Non-
zero solutions are found for source locations where no “true”
leak exists.

The bottom half of Fig. 4 shows the results of the same
tests, using instead the NZMB method for locating leaks. The
results show that success in leak detection is much higher us-
ing NZMB compared with the non-bootstrap tests. Indeed,
none of the NZMB tests result in the occurrence of a false-
positive leak location, and only tests with low numbers of
beams relative to the number of source locations (four- and
eight-beam cases) fail to find both of the true leaks. The four-
beam case results in positive identification of both leaks up

Figure 4. Summary of synthetic data test results. Top 5 rows show
results of non-bootstrap inversions and bottom 5 rows show re-
sults of NZMB inversions for the 4, 8, 16, 32, and 64 beam cases.
Columns indicate results for different values of model–data mis-
match added as noise to the synthetic measurements. Color coding
of cells indicates summary of model success, as detailed by the leg-
end.

to a model–data mismatch threshold of 2 ppb, above which
one true leak is found. One leak is consistently found up to
a threshold of 5 ppb, and above 5 ppb model–data mismatch
no true leaks are identified (but no false positives are gener-
ated either). The eight-beam case results in accurate location
of both true leaks up to a model–data mismatch threshold of
3.5 ppb, above which 1 true leak is found (with no false pos-
itives). One leak is consistently found up to the maximum
testing point of 10 ppb. In order to reliably locate both true
leaks with no false-positive results under all model–data mis-
match scenarios, 16 or more beams are needed for the set of
cases that are tested here. Alternate configurations of “true”
leaks at well sites other than 6 and 9 are not tested; however,
given that meteorological conditions are simulated equally
from all directions, we would not expect a different set of
results from a different set of “true” leaks.

A subset of the results for the eight-beam NNLS with-
out bootstrap and the NNLS with NZMB cases are shown
in Figs. 5 and 6 (for conciseness; all results are shown in the
Supplement). It is evident from Fig. 5 that, even with very
low model–data mismatch noise (0.5 ppb), the non-bootstrap
model results in well sites other than the two true leak lo-
cations being erroneously identified as sources of methane.
It is evident from Fig. 5 that, as model–data mismatch in-
creases, the strength of incident false-positive results also in-
creases. By contrast, no false-positive leaks are identified in
the NZMB case shown in Fig. 6, at any level of model–data
mismatch noise. Above a model–data mismatch threshold of
4 ppb, only one of two true leaks is found in the eight-beam
case using NZMB. As Fig. 4 shows, 16 or more beams are
necessary to consistently find both true leaks at higher thresh-
olds of model–data mismatch uncertainty using the NZMB
method, given the hub-and-spoke beam placement scheme
tested here. More complex placement of beams (for example
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Figure 5. Top left panel shows well site numbers (x axis) and corresponding “true” leak rates (y axis), and remaining panels show resulting
leak rate (y axis) at each well site (x axis) from non-bootstrap least squares fit to synthetic observations perturbed with model–data mismatch
(MDM) noise shown, for the eight-beam case. Open circles show locations and strengths of all non-zero solutions.

Figure 6. Top left panel shows well site numbers (x axis) and corresponding “true” leak rates (y axis), and remaining panels show NZMB
results (y axis) for each well site location (x axis) with synthetic observations perturbed with model–data mismatch (MDM) noise shown, for
the eight-beam case. Light gray (black) open circles show locations and strengths of the maximum (minimum) of 1000 bootstrap operations.
Minimum values of zero are not plotted.

placing beams closer to known well sites) would likely result
in even better ability to locate leaks with fewer beams.

3.2 Synthetic source sizing using the NZMB method

Synthetic data tests of the new bootstrap methodology pre-
sented here show high success in leak location, with zero in-
cidence of false-positive leak detections. Figure 6 shows the

maximum and minimum values of 1000 bootstrap operations
for each model–data mismatch test case for the eight-beam
configuration. At low levels of model–data mismatch uncer-
tainty (0.1–0.5 ppb), the maximum and minimum solutions
bound a small range that is close to the true leak strength.
As higher levels of model–data mismatch noise are added
to observations, the maximum and minimum values diverge.
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Figure 7. Histograms of source strength, with mean ±1 standard
deviation shown with vertical lines for well site 6 (black) and
well site 19 (gray), for each beam configuration, and with 2 ppb
model–data mismatch uncertainty. Note that x axes are truncated at
2× 10−5 kg s−1 (lower bound) and 5× 10−5 kg s−1 (lower bound)
for scale.

However, even as the maximum and minimum solutions di-
verge, most cases include the true leak strength within the
maximum and minimum bounds.

Using the NZMB method, all beam cases (even the four-
beam case) correctly identify that both well sites 6 and 19
are emitting methane when model–data mismatch is 2 ppb or
lower (Fig. 4). At that level of model–data mismatch, higher
numbers of beams and observations tend to lead to lower
standard deviation around the mean estimated leak strength
and a more accurate estimate of true leak strength (Table 1).
An exception is at well site 19, where the eight-beam case did
not perform as well as the four-beam case. It may be that both
cases were inadequate for accurately sizing leaks, and that 16
beams are necessary in a dense field of wells such as is tested
here. The failure of the eight-beam case to accurately predict
the leak rate at well site 19 is also evident from histograms of
bootstrap operations, shown for each beam case with model–
data mismatch of 2 ppb in Fig. 7.

Histograms of the results for the 16, 32, and 64 beam cases
with 10 ppb model–data mismatch are shown in Fig. 8. It is
clear from Fig. 8 that, even with very high model–data mis-
match uncertainty, simple hub-and-spoke configurations of
between 16 and 64 beams are able to locate and estimate leak
flow rates to within reasonable bounds of uncertainty.

Figure 8. Histograms of source strength, with mean± 1 standard
deviation shown with vertical lines for well site 6 (black) and well
site 19 (gray), for 16, 32, and 64 beam configurations, and with
10 ppb model–data mismatch uncertainty.

4 Results of field data tests

4.1 Performance overview of field-deployed DCS

Atmospheric observations were made over the course of 1
day on 26 January 2017 at the Table Mountain site. A set
of three retroreflectors created long-range open-path beams
of ≈ 585 m (Fig 3). Spectrometer performance in the field
demonstrated no loss of precision or reliability compared
with laboratory performance, as demonstrated by Coburn et
al. (n.d.). Figure 9 shows a plot of Allan deviations for 26
January 2017, demonstrating measurement precision of 5–
6 ppb when measurements are averaged for 2 min. Precision
of field measurements is limited by repeatability of measure-
ments and atmospheric variability of CH4 because measure-
ments are time averaged; the latter is likely a dominant driver
of uncertainty in this case, as will be discussed in Sect. 4.3.
The Allan deviation in Fig. 9 shows improvement of preci-
sion with averaging time, to a minimum at ≈ 70 s, followed
by an increase that is likely due to atmospheric variability.

4.2 Atmospheric observations of CH4 at
Table Mountain

On 26 January 2017, measurements are made throughout the
day, including during a 6.5 h controlled release of methane at
source location 1. At adjacent source location 2, no methane
release is emitted. A series of three retroreflectors is ori-
ented such that each source region is monitored indepen-
dently from the other; one beam on either side of each source
location serves as a “background” measurement. We exam-
ine the results of two separate inversion tests: (1) a day-long
set of observations of source location 1 (with the controlled
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Table 1. NZMB solutions for leak strength of true leaks, given 2 ppb model–data mismatch uncertainty, for each beam configuration.

Number of Well site 6 Well site 6, 1 SD Well site 19 Well site 19, 1 SD
beams mean strength mean strength

4 4.2× 10−5 kg s−1 0.4× 10−5 kg s−1 2.5× 10−5 kg s−1 0.6× 10−5 kg s−1

8 4.5× 10−5 kg s−1 0.4× 10−6 kg s−1 2.0× 10−5 kg s−1 0.3× 10−5 kg s−1

16 4.5× 10−5 kg s−1 0.4× 10−6 kg s−1 2.8× 10−5 kg s−1 0.9× 10−6 kg s−1

32 4.4× 10−5 kg s−1 0.3× 10−6 kg s−1 3.0× 10−5 kg s−1 0.8× 10−6 kg s−1

64 4.5× 10−5 kg s−1 0.3× 10−6 kg s−1 3.0× 10−5 kg s−1 0.6× 10−6 kg s−1

True leak: 4.5× 10−5 kg s−1 True leak: 3.0× 10−5 kg s−1

Figure 9. Allan deviation plot showing changes in measurement
precision with averaging time from field data collected at Ta-
ble Mountain on 26 January 2017.

release) that is situated between retroreflectors 1 and 2 and
(2) a day-long set of observations of non-leaking source lo-
cation 2 that is situated between retroreflectors 2 and 3. These
tests are performed simultaneously, such that contamination
from source location 1 could result in background contami-
nation for monitoring of source location 2.

On 26 January 2017, mean wind speeds are 2.1 m s−1

and winds are primarily from the east and northeast, so that
retroreflector 1 is downwind of the controlled release and
retroreflector 2 is upwind of the controlled release. Simi-
larly, retroreflector 2 is downwind of non-leaking source lo-
cation 2 and retroreflector 3 is upwind of non-leaking source
2 (Fig. 3). Stability classes range from B (moderately unsta-
ble) to D (neutral) throughout the course of the day (see Sup-
plement for a time series of stability and detailed description
of its calculation). We use the Griffiths (1994) corrections to
the Briggs (1974) parameterizations to calculate σy and σz.

At source location 1 (Fig. 10a), during the period when
the controlled release is on (non-zero flow), the downwind
retroreflector (Retro 1) shows a clear enhancement above the
concentration measured on the upwind retroreflector (Retro
2), except during the middle of the day when the winds shift
briefly to the south (Fig. 10c). The mean of all CH4 mea-
surements along beam 1 during the period that the leak is
on is 2046 ppb; the mean CH4 measured along beam 2 dur-

ing the same period is 2025 ppb. Both retroreflectors demon-
strate changes in background CH4 concentrations over the
course of the day; the range in values measured on the up-
wind retroreflector is 65 ppb. There may be a relationship
between ambient CH4 concentration and wind direction, as
both retroreflectors show a drastic decrease in concentration
when the winds abruptly shift to the west at 16:30 (which
happens to coincide with the time the leak was turned off).

At source location 2, no leak is released during the period
of study, and throughout the course of the day, both retrore-
flectors 2 and 3 measure similar changes in atmospheric CH4
variability (Fig. 10b). The range of measured values over the
course of the entire day are 128 ppb on beam 2 and 124 ppb
on beam 3. The mean of all CH4 measurements (throughout
the course of the day) is 2016 ppb on beam 2 and 2019 ppb
on beam 3.

4.3 Background CH4 observations

The beams stationed upwind of each source location pro-
vide estimates of the background CH4 concentration inflow
for that location. After a linear interpolation to upwind mea-
surements has been applied, this background is subtracted
from measurements on the downwind beam to yield a mea-
sure of the CH4 enhancement due to fluxes at the source
location. Applying this method, the mean and standard de-
viation of the enhancement above background on retrore-
flector 1 – which is downwind of source location 1 (leak
rate of 3.1× 10−5 kg s−1) – is 17.4± 10.1 ppb. Applying this
method to source location 2, we find the mean and standard
deviation of the enhancement on retroreflector 2 – which is
downwind of source location 2 (leak rate of 0 kg s−1) – is
3.1± 7.3 ppb, a value within the range of variability expected
from combined measurement and background uncertainty.

4.4 Field-based estimates of model–data mismatch

We examine measurements at source location 2, where no
leak is present, in order to estimate model–data mismatch
in the field, for comparison with the model–data mismatch
values applied in the synthetic data tests. By examining the
difference between measurements made on different retrore-
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Figure 10. Line-integrated atmospheric CH4 concentrations mea-
sured on 26 January 2017 along beam paths to retroreflectors 1
and 2 (a) and to retroreflectors 2 and 3 (b), as well as wind speed
and wind direction (c). Gray and black points and left-hand axes
of panels (a) and (b) show CH4 concentration. The black line and
right-hand axis in panel (a) show the flow rate at source location 1
(bounded by retroreflectors 1 and 2) and the black line and right-
hand axis in panel (b) show the flow rate at source location 2
(bounded by retroreflectors 2 and 3). In panel (c), the black line
and left-hand axis show wind speed and the gray diamonds and
right-hand axis show wind direction (according to meteorological
convention, 0◦ is north, 90◦ is east, 180◦ is south, 270◦ is west, and
360◦ is north). All data reflects 2 min averaging time.

flectors (retroreflectors 2 and 3) at similar points in time
(within 5 min), we obtain an approximation of the combined
contributions to model–data mismatch arising from mea-
surement uncertainty, representation uncertainty, background
construction (the method of background estimation), and
background sampling (the method of sampling background
concentrations). We find a standard deviation of 5 ppb. This
value differs from the standard deviation of the enhancement
for the entire time series (reported above in Sect. 4.3) be-
cause it compares differences in upwind and downwind con-
centrations measured at approximately the same time. For
estimation of total model–data mismatch, we add (in quadra-
ture) an estimate of the transport uncertainty that includes
uncertainties in measurement of wind speed and wind direc-
tion, atmospheric stability parameterization, and placement
of the sonic anemometer relative to the leak location (see
Supplement for detail). Transport uncertainty estimation is
for a plume that interacts with any location along the beam

and therefore requires knowledge of the mean distance be-
tween the leak point and each segment of the beam. The esti-
mated transport uncertainty, calculated in this way, is 0.8 ppb.
If, for example, the wind direction is perfectly perpendicu-
lar to the beam for the entirety of the measurement period
(which does not occur on 26 January 2017), then the leak-
to-beam distance used in the calculation should collapse to
the minimum lateral distance between the leak and the beam.
Using that value instead, transport uncertainty is 12.2 ppb.
The overall value of model–data mismatch (reflecting com-
bined measurement, background, and transport uncertainty),
estimated in this way, is therefore 5.1 ppb with a maximum
range of 13.2 ppb, which suggests that the range of model–
data mismatch values tested in the synthetic data experiments
are appropriate. The Allan deviation in Fig. 9 shows a sim-
ilar level of measurement uncertainty, suggesting that most
of the uncertainty observed in our record is captured in this
estimate of model–data mismatch, which includes effects of
atmospheric variability. Precision could be improved by av-
eraging data over a shorter time span (70 s), but those gains
would be minimal (Fig. 9).

4.5 Results of inversions using Table Mountain
observations

Both the non-bootstrap and the NZMB approaches accu-
rately predict the presence of methane emissions at source
location 1 (Table 2). The average bootstrapped flux value is
within 2σ of the true flux value measured at the flow meter
at source location 1 (Fig. 11). At source location 2, the non-
bootstrap approach falsely predicts a positive emission rate
of 0.5× 10−5 kg s−1 (Table 2) where no leak is present. The
NZMB approach, by contrast, is able to accurately predict
that there is no leak present at source location 2, because the
minimum of the 1000 bootstrap solutions is zero (Fig. 11). As
the synthetic data tests also demonstrate, the NZMB method
is necessary to avoid false identification of leaking source
locations. The field data tests corroborate that the new boot-
strap approach enables higher confidence of accurate attri-
bution of emissions to source locations without generating
“false alarms”.

5 Discussion

The results of this study demonstrate success of the new ob-
serving system in finding one or more leaks of methane in a
field of wells, using synthetic and field data for confirmation.
The methods presented here for locating and sizing leaks of
methane in a field of natural gas production facilities suc-
ceeds not only in identifying the location of a leak, but it also
does so with no incidences of “false-positive” leak detection
in either the synthetic or field data tests.
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Table 2. Controlled methane release flow rates and 1 standard deviation for each field experiment, including local time that leak was turned
on and off.

Source location 1 Source location 2

Controlled leak time on: 10:08 n/a
Controlled leak time off: 16:30 n/a
Measured mean flow rate: 3.1× 10−5

± 0.01× 10−5 kg s−1 0.0± 0.0 kg s−1

Non-bootstrap solution: 2.4× 10−5 kg s−1 0.5× 10−5 kg s−1

NZMB solution: 2.6× 10−5
± 0.5× 10−5 kg s−1 0.0± 0.0 kg s−1

n/a: not applicable.

Figure 11. Histogram of NZMB estimated source strength at
source location 1, with dashed line showing the bootstrap mean
and thin dotted lines showing ±2 standard deviation. The thick
black line shows the true leak strength at source location 1
(3.1× 10−5 kg s−1).

5.1 Synthetic data tests

The results of the synthetic data tests demonstrate how the
observing system tested in the field for a single source loca-
tion can be expanded for simultaneous monitoring of many
source locations. We find that synthetic tests performed with-
out the NZMB methodology failed to identify the presence of
leaks as reliably as synthetic tests performed with the NZMB
method, demonstrating the improved robustness of this new
statistical method for leak detection. In the non-bootstrap
tests, all synthetic data cases resulted in false-positive solu-
tions (Fig. 4). By contrast, the NZMB method succeeds in
correctly identifying two leaks of strength 3.0× 10−5 and
4.5× 10−5 kg s−1 with four or more beams monitoring 20
wells in a 4 km2 area, with 2 ppb model–data mismatch un-
certainty (a condition that could conceivably also be met in
the field given low background uncertainty and high mea-
surement precision). The NZMB method also consistently
succeeds in finding both leaks with 16 or more beams with at
least 10 ppb model–data mismatch uncertainty. Notably, the
NZMB method locates and sizes both leaks with no false-

Figure 12. Histogram of NZMB estimated source strength at source
location 2, with dashed line showing the bootstrap mean and thin
dotted lines showing ±2 standard deviation. The thick black line
shows the true leak strength at source location 2 (0 kg s−1). The
presence of 0 kg s−1 in the histogram triggers acceptance of the null
hypothesis (that the emissions rate at this site is zero).

positive results. Determination of leak strength was suc-
cessful to within 25 % (and all but a few cases well below
10 %) for all cases with 16 or more beams, using the NZMB
method.

5.2 Field data tests

Field data testing of the NZMB method corroborates the syn-
thetic data findings: that the new atmospheric observing sys-
tem presented here results in high accuracy of leak detec-
tion without false-positive results. The ability of the dual
frequency comb spectrometer to identify a very small leak
(3.1× 10−5 kg s−1), relying on very small methane enhance-
ments (17 ppb) against a highly variable background (range
of 65 ppb), demonstrates the potential utility of this method
for methane leak detection over large areas.

An important caveat to the methodology presented here is
the short length of the measurement averaging time, which
presents a mismatch with the ideal application of most dis-
persion models (for which practice is generally to use av-
eraging times longer than 2 min). This requirement in our
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methodology is due to two factors: the first is that rapid scan-
ning for potential leaks is an important feature in areas where
many sites must be monitored and leaks can be intermittent.
The second factor is that background methane concentrations
can vary with high frequency (order minutes) in proximity
to areas of oil and natural gas production (Dlugokencky et
al., 1995). We attempt to mitigate uncertainties arising from
using dispersion parameters developed for longer timescale
modeling over a 2 min period in several ways. First, n 2 min
dispersion calculations gathered over longer timescales (n
is between 30 and 63 for field data tests shown here) are
aggregated for use in a single inversion, which is accepted
practice (Scire et al., 2000). Second, both sources and re-
ceptors are close to the surface, which may help to miti-
gate crosswind-integrated concentration fluctuation intensity
(Weil et al., 2012). Third, a sensitivity test in which we adjust
the horizontal dispersion coefficient, σy , for shorter time av-
eraging, using the methods of Gifford (1976), shows negligi-
ble changes in the results (Supplement). We find that the po-
tential value of a method for rapid detection of methane emis-
sions over large scales and against a highly variable back-
ground means that the uncertainties introduced from mod-
eled eddy diffusivity parameterization are a complicating but
not irreconcilable caveat.

6 Conclusions

The focus of this study is to show the powerful potential of
the combination of a new statistical method with dual fre-
quency comb spectroscopy for the location and sizing of
point source emissions. The synthetic and field tests pre-
sented here rely on near-perfect (in the synthetic data tests)
or well-constrained (in the field data tests) background con-
centration estimation. Future studies are needed to address
the potential complications of more complex background
conditions and meteorological conditions under which it is
not possible to obtain sequential “upwind” and “downwind”
samples. Similarly, the tests here rely on the assumption of
constant leak rates, which may not be a realistic assump-
tion that can be made for methane emissions from oil and
gas operations. Future work to address these complexities
will be necessary. Future studies are also needed to examine
the gains that can be made from optimization of beam con-
figurations for improved leak detection given variable wind
and background conditions. In particular, previous work has
shown the critical impact that sensor placement can have on
the conditioning of the source–receptor relationship matrix
(H) and suggests paths forward for optimization of sensor
placement (Crenna et al., 2008; Flesch et al., 2009). Specif-
ically, the placement of one beam or sensor between each
source to be apportioned would be expected to lead to a
lower condition number and therefore a more reliable result
(Crenna et al., 2008; Flesch et al., 2009). Work aimed at ad-

dressing these complications is underway, as are inversion
efforts to resolve issues of leak intermittency.

A notable aspect of the micrometeorological modeling
used here to demonstrate the NZMB methodology is the
simple representation of atmospheric transport (the Gaussian
plume model). The choice to use a simple model that is fa-
miliar to the broader scientific community is intentional, but
its use belies the complex nature of turbulent mixing and dis-
persion in the atmospheric surface layer. What is gained in
simplicity and in providing a baseline for the most basic per-
formance of the methodology in a field setting may come at
the cost of recommending a model that may not ultimately be
well-suited for such an endeavor. The Gaussian plume model
neglects important aspects of atmospheric mixing such as
wind shear and the height dependence of eddy diffusivity,
and better models exist for simulation of atmospheric flow at
this scale. It is assumed that more sophisticated models of at-
mospheric dispersion could, therefore, lead to better flux es-
timation. We suggest that future applications in field settings
of the methodology presented here consider their use. Im-
portantly, despite its drawbacks, the Gaussian plume model
proves sufficient in the tests here for the accurate identifi-
cation (and, importantly, avoidance of misidentification) of
controlled, field-based methane leaks. Future studies of the
best transport model for the application of DCS measure-
ments and the NZMB method for leak detection is warranted.

The initial work presented here demonstrates the promis-
ing potential of dual frequency comb spectroscopy for detec-
tion of leaks in the natural gas supply chain and the valuable
gains that can be provided by using the NZMB method over
the NNLS fitting technique alone.
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