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Abstract. This study deals with the problem of identifying
atmospheric data influenced by local emissions that can re-
sult in spikes in time series of greenhouse gases and long-
lived tracer measurements. We considered three spike detec-
tion methods known as coefficient of variation (COV), robust
extraction of baseline signal (REBS) and standard deviation
of the background (SD) to detect and filter positive spikes
in continuous greenhouse gas time series from four moni-
toring stations representative of the European ICOS (Inte-
grated Carbon Observation System) Research Infrastructure
network. The results of the different methods are compared
to each other and against a manual detection performed by
station managers. Four stations were selected as test cases to
apply the spike detection methods: a continental rural tower
of 100 m height in eastern France (OPE), a high-mountain
observatory in the south-west of France (PDM), a regional
marine background site in Crete (FKL) and a marine clean-
air background site in the Southern Hemisphere on Amster-
dam Island (AMS). This selection allows us to address spike
detection problems in time series with different variability.
Two years of continuous measurements of CO2, CH4 and
CO were analysed. All methods were found to be able to
detect short-term spikes (lasting from a few seconds to a few

minutes) in the time series. Analysis of the results of each
method leads us to exclude the COV method due to the re-
quirement to arbitrarily specify an a priori percentage of re-
jected data in the time series, which may over- or underes-
timate the actual number of spikes. The two other methods
freely determine the number of spikes for a given set of pa-
rameters, and the values of these parameters were calibrated
to provide the best match with spikes known to reflect local
emissions episodes that are well documented by the station
managers. More than 96 % of the spikes manually identified
by station managers were successfully detected both in the
SD and the REBS methods after the best adjustment of pa-
rameter values. At PDM, measurements made by two analyz-
ers located 200 m from each other allow us to confirm that the
CH4 spikes identified in one of the time series but not in the
other correspond to a local source from a sewage treatment
facility in one of the observatory buildings. From this exper-
iment, we also found that the REBS method underestimates
the number of positive anomalies in the CH4 data caused by
local sewage emissions. As a conclusion, we recommend the
use of the SD method, which also appears to be the easiest
one to implement in automatic data processing, used for the
operational filtering of spikes in greenhouse gases time se-
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ries at global and regional monitoring stations of networks
like that of the ICOS atmosphere network.

1 Introduction

Continuous measurements of long-lived greenhouse gases
(GHG) such as carbon dioxide (CO2) and methane (CH4)
at ground-based monitoring stations are commonly used in
atmospheric inversions for the estimation of surface fluxes.
The variability of GHG continuous time series reflects atmo-
spheric transport processes and surface fluxes. One difficulty
in matching these measurements with atmospheric transport
model simulations is that they exhibit variability at a wide
range of timescales, which is imperfectly captured by trans-
port models due to their limited spatial resolution and to un-
certain surface emission inventories. In particular, local emis-
sions in the vicinity of stations can have a major influence
on concentrations, generating brief but intense positive per-
turbations, hereafter referred to as “spikes”. Every measure-
ment has a specific spatial representativeness, and knowledge
of this information allows for a much finer interpretation of
the observation. It is desirable, in continuous GHG time se-
ries, to separate those data strongly influenced by local emis-
sions (fluxes within less than few kilometres) from those in-
fluenced by regional (few tens of kilometres) and large-scale
(hundreds or thousands of kilometres) fluxes and transport.
The influence of local fluxes, in particular of nearby point
sources of emissions, should be filtered out prior to the use
of the time series in inversion models if the models do not
have the ability to represent it. For instance, a road near a
station can emit CO2, causing spikes in the time series, be-
cause this road is not accounted for in the emission inventory
used in an inversion.

Having empirical information on the representativeness of
continuous GHG time series, e.g. a logbook available for
each station, allows for more precise interpretation of the at-
mospheric measurements in terms of the processes involved
in the observed variability. It is interesting, for example, to
assign the contribution of specific sources (e.g. point sources
of fossil CO2 emissions or biomass burning events) within
the local vicinity of the station. Several methods have been
proposed to account for local to regional influences in green-
house gas observations according to other observables, such
as wind speed and direction (Perez et al., 2012a) and tracers
like radon-222 or black carbon (Biraud et al., 2002; Fang et
al., 2015; Williams et al., 2016). Air-mass trajectory infor-
mation is also frequently used (Ramonet and Monfray, 1996;
Ferrarese et al., 2003; Maione et al., 2008; Fleming et al.,
2011; Perez et al., 2012; Gerbig et al., 2006). Other meth-
ods based on a statistical treatment of time series (Giostra
et al., 2011; Ruckstuhl et al., 2012) are easier to generalize
because they require no additional observable. A commonly
used strategy by modelers, using transport models of a typ-

ical resolution from 10 to 50 km, consists of systematically
removing some periods of the day (e.g. nighttime for sur-
face stations or daytime for mountain sites) in order to filter
the influence of non-resolved mesoscale circulations or ver-
tical transport processes poorly represented by models (e.g.
sporadic turbulence in stable or neutral nighttime boundary
layers).

The development of regional networks for monitoring
GHG and related tracer concentrations leads to an increas-
ing number of continuous measurement stations, especially
in continental areas. For example, the European ICOS (Inte-
grated Carbon Observation System) Research Infrastructure
is developing a network of tall towers for very precise GHG
measurements across the European continent. It is thus im-
portant to characterize the representativeness of each individ-
ual measurement in order to separate spikes from local emis-
sions that should not be used in studies aiming at constrain-
ing regional fluxes. In this study, our objective is to compare
methods that could be used operationally to remove the con-
taminations from local sources at continuous measurement
stations. Local contamination may be due, for example, to
fossil-fuel-based power generation at the station facility and
local traffic. The short-term variations (few seconds to min-
utes) of GHG associated with those of local sources have
rarely been analysed, and they have generally been time av-
eraged with consecutive data. Some studies, however, have
been focusing on local emissions on the basis of the detec-
tion of short-term “spikes” (Monster et al., 2015). Here, “lo-
cal” refers to emissions at less than a few kilometres from
the station causing positive short-term spikes of a few sec-
onds to a few minutes superimposed on the signal resulting
from boundary layer mixing, synoptic transport and regional
fluxes. Other methods such as the Fourier transform filters
(Savitkzy Golay, 1964) and the wavelet transforms (e.g. Wee
et al., 2008) have been considered at the beginning of this
study, but these methods require continuous time series and
smooth signals. Considering that the measurements are reg-
ularly interrupted due to different reasons (e.g. calibration,
flushing time after switching from sampling level to another,
power or internet outage), we had to select a method that
handles time series with data gaps. Moreover, applying a
Fourier transform method on continuous measurements pro-
vides a signal composed by frequencies only, and all infor-
mation that varies with time will be lost. In other words, we
can analyse what happens (spikes to be filtered out) with-
out knowing when this happens, which is essential informa-
tion to better understand the sources of contaminations. We
compare here spike detection algorithms for local sources in
greenhouse gases (CO2 and CH4) and long-lived tracer time
series (CO). The algorithms chosen in this study have been
applied to air pollution data (e.g. ultrafine particles, partic-
ulate matter and nitrogen dioxide NO2) which have shorter
lifetimes than CO2, CH4 and CO (Brantley et al., 2014). In
the case of GHG, spikes can be caused by local sources but
also by the fast transport of remote emissions. Compared to
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short lifetime species, spikes in GHG are not always larger
than the variability associated with synoptic scales. For CO2,
uptake by local vegetation may occasionally lead to negative
spikes, which will not be evaluated in this study (only posi-
tive spikes are considered).

The three spike detection algorithms – coefficient of varia-
tion (COV), robust extraction of baseline signal (REBS) and
standard deviation of the background (SD) – are described in
Sect. 2, then applied to 2 years of continuous measurements
of CO2, CH4 and CO at four stations representative of the
European network of GHG monitoring stations. The study
will focus more on the SD and the REBS method, since they
are fully automatic and they do not require any a priori infor-
mation for the implementation. The results are discussed in
Sect. 3. Wherever possible, the ability of an algorithm to suc-
cessfully detect and remove the effects of local sources and
transport is verified using independent information about the
presence and position of known local emissions.

2 Methodology

We selected four contrasting atmospheric GHG measurement
sites operated by LSCE (Laboratoire des Sciences du Cli-
mat et de l’Environnement): a tall-tower station in France,
a high-mountain station in France, a regional marine back-
ground site in Crete and a marine clean-air site in the South-
ern Hemisphere, which provided continuous data from 2013
to December of 2015 (Table 1). Continuous measurements
used in this study are averages with 1 min time resolution
and are processed in near real time (NRT) by the ICOS At-
mospheric Thematic Centre (Hazan et al., 2016). The four
stations have been used in regional and global atmospheric
inversions to estimate GHG surface fluxes at regional and
global scales (e.g. Bergamaschi et al., 2018; Le Quéré et al.,
2007; Saunois et al., 2016).

2.1 Measurement sites and methods

2.1.1 Measurement sites

Amsterdam Island (AMS; 37◦48′ S, 77◦32′ E). This marine
background station is operated since 1980 to monitor trends
of trace gases in the southern hemispheric mid-latitude clean-
air atmosphere. The observatory is located on the coast of
a small island (55 km2) covered by short grasslands, in the
middle of the Indian Ocean 3000 km south-east of Mada-
gascar. Measurements are performed at the Pointe Bénédicte
site located north of the island, on the edge of a 55 m cliff
above sea level. The air is sampled at the top of a 20 m high
tower. The station contributes to the Global Atmospheric
Watch program (WMO/GAW). The data used to feed the
WMO/GAW database and estimate the long-term trends are
filtered according to local wind measurements to avoid the
influence of CO2 emissions from the island itself (Ramonet
and Monfray, 1996).

Finokalia (FKL; 35◦20′ N, 25◦40′ E). This coastal station
is located on the northern coast of Crete, 350 km south of
mainland Greece. The nearest city is Heraklion with a pop-
ulation of about 150 000 inhabitants, 50 km west of the sta-
tion. There are no significant anthropogenic emissions within
a circle of 15 km around the station (Kouvarakis et al., 2000).
The station is on the top of a 230 m hill above sea level, and
the air is sampled at the top of a 15 m mast. The dry sea-
son from April to September is associated with strong winds
from north and north-west (central Europe and Balkans), and
the wet season from October to March is associated with air
masses from North Africa (south and south-west winds) in
addition to the dominant north-westerly winds. The station is
operated by the Environmental Chemical Processes Labora-
tory (ECPL) at the University of Crete, which also collects
aerosol and reactive gases (Hildebrandt et al., 2010; Pikridas
et al., 2010; Bossioli et al., 2016; Kopanakis et al., 2016).

Pic du Midi (PDM; 42◦56′ N, 0◦08′ E). This high-
mountain site is located at 2877 m a.s.l. on the north-west
side of the Pyrenees range in south-west France, 150 km
east of the Atlantic Ocean and 200 km west of the Mediter-
ranean Sea. Due to its high elevation, the station often sam-
ples tropospheric air from the Atlantic Ocean, as well as
air masses from continental Europe during high-pressure
conditions over France (north-easterly winds) or from the
Iberian Peninsula under southerly winds. Upslope winds and
mesoscale circulations are frequent especially in summer and
early autumn, bringing boundary layer air mostly from south-
west France (covered by intensive croplands and forests;
Gheusi et al., 2011; Tsamalis et al., 2014; Fu et al., 2016).

Observatoire Pérenne de l’Environnement (OPE;
48◦33′ N, 5◦30′ E). This 120 m tall tower is located in a
rural area at 395 m a.s.l. in the north-east of France (250 km
east of Paris). It is located in a transition zone between
oceanic westerly regimes and easterly winds advecting air
from eastern Europe. The station continuously measures air
quality and greenhouse gases since September 2011 as part
of the European ICOS. Every hour, ambient air is sampled
for 20 min alternatively at heights of 10, 50 and 120 m on
the tower (Table 1).

2.1.2 Measurement methods

The gas analyzers used at the four stations are cavity ring-
down spectroscopy instruments (CRDS; O’Keefe and Dea-
con, 1988), namely Picarro/G2401 analyzers at FKL, OPE
and PDM with CO2, CH4 and CO and Picarro/G2301 at
AMS with CO2 and CH4 (Table 1). The measurement
protocols used at the four stations are similar and based
on ICOS specifications (https://www.icos-ri.eu/documents/
ATCPublic). A calibration using four reference gases is per-
formed every 3 to 4 weeks. Two more reference gases are
analysed regularly for quality control purposes. The raw data
(0.2 to 0.5 Hz) are transferred once per day to a central server
and NRT datasets are available within 24 h. The NRT data
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Table 1. Measurement sites characteristics.

Site Measured Instrument Longitude Latitude Ground Sampling Starting End
spices level hight date date

(m a.s.l.) (m a.g.l.)

Pic du Midi (PDM) CO, CO2, Picarro/ 0◦08′ E 42◦56′ N 2877 10 2014-05-07 2015-12-31
and CH4 G2401

Observatoire Pérenne CO, CO2, 5◦5′ E 48◦55′ N 395 10, 50 2013-03-07
de l’Environnement (OPE) and CH4 and 120
Finokalia (FKL) CO, CO2, 35◦20′ E 25◦40′ N 230 15 2014-06-05

and CH4
Amsterdam Island (AMS) CO2, Picarro/ 37◦48′ E 77◦32′ S 55 20 2013-01-01

and CH4 G2301

processing (Hazan et al., 2016) includes automatic filtering
of raw data based on the physical parameters of the ana-
lyzers (e.g. cavity temperature and pressure) and threshold
values for rejection of outliers. This last filter aims to reject
aberrant values from the NRT dataset. It may happen that it
rejects an extreme but real event, for instance due to an ur-
ban pollution plume. In such cases, the data will be validated
afterwards by the station manager. After the automatic pro-
cessing, the station managers are invited to validate or inval-
idate data manually using a specific software developed by
the ICOS Atmospheric Thematic Centre. For data manually
flagged as invalid, a reason must be provided (e.g. leakage,
maintenance, local traffic). This procedure does not ensure
the systematic rejection of spikes in the data from local or
regional processes.

Meteorological measurements are also performed at the
four stations with barometric pressure, temperature, wind
speed, wind direction and relative humidity. Wind speed and
direction are measured using 2-D or 3-D ultrasonic sensors
installed at the same height of the greenhouse gas measure-
ments. The sensors are adapted to the local weather; for in-
stance at PDM (2877 m a.s.l.) the sensor is heated to avoid
icing.

2.2 Spike detection algorithms

Three algorithms were tested to detect positive short-duration
GHG spikes lasting from a few seconds to a few minutes, us-
ing time series of 1 min averaged mole fractions of CO2 (as
illustrated in the Supplement, Fig. S1), CH4 and CO. The
three methods presented in this section are commonly based
on the calculation of the local standard deviations of mea-
surements. A spike is detected when the difference between a
previously determined background and the current data value
is above a defined threshold. We will present in this section
the corresponding threshold for the three methods.

CO2, CH4 and CO 1 min data were processed using R ver-
sion 3.1.3 (R Core Team, 2015) together with packages ope-
nair (Ropkins and Carslaw, 2015), IDPmisc (Locher et al.,

2012) and ggplot2 (Wickham et al., 2016) using the three
spike detection algorithms.

2.2.1 Coefficient of variation method

The COV method (Brantley et al., 2014) is a modified version
of the method presented by Hagler et al. (2010). It was devel-
oped to analyse data from a mobile laboratory measuring ul-
trafine particle concentrations near a road transect (Brantley
et al., 2014) for peak detection of carbon monoxide, which
was used as an indicator of the passage of vehicles. In our
application we calculate the COV coefficients for CO2, CH4
and CO time series following two steps. First, the standard
deviation of a moving 5 min time window (with one window
for each 1 min data point) is calculated (2 min before and af-
ter each 1 min data point). Second, the standard deviation of
each time window is divided by the mean value of the com-
plete time series. The 99th percentile of the COV coefficients
is used as a threshold above which 1 min data are considered
to be part of a spike. We also identified as contaminated data
all data recorded 2 min before and after each contaminated
data. The COV method is sensitive to the choice of threshold
percentile. In the Supplement we illustrate in Fig. S2a an ex-
ample of spike detection using the COV method during a CO
contamination episode known to be affected by a local fire.
One important feature of the COV algorithm, compared to
the other methods, is the a priori definition of the percentage
of data to be filtered (threshold percentile), meaning that the
number of spike data is not automatically detected.

2.2.2 Standard deviation of the background

The SD method (Drewnick et al., 2012) considers that a time
series is a combination of a smooth signal superimposed with
a fast variable signal. The variable signal component in our
case is related to local emissions causing spikes. To deter-
mine the variability of background concentration levels we
calculated the standard deviation (σ) of data falling between
the first and the third quartile of the entire dataset. A sensitiv-
ity test with various quantile ranges is presented in Sect. 3.1.
We then select the first available data point, called Cunf (un-
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flagged data, example in the Supplement Fig. S2b), assum-
ing that it is not in a spike. The next data point in the time
series Ci is evaluated with respect to Cunf; spikes are defined
by data values higher than a threshold defined as Cunf plus
an additive value: α× σ +

√
n× σ (e.g. the red data point

in Fig. S2b), where α is a parameter to control the selection
threshold, and n is the number of points betweenCunf andCi .
The value of α depends on the time series variability. A sensi-
tivity analysis on the influence of α is presented in Sect. 3.1.
We set a default value of α = 1 for CO2 and CH4 and α = 3
for CO (Drewnick et al., 2012). The lower value for CO2 and
CH4 is justified in Sect. 3.1. The integer n contains a tempo-
ral information about the evolution of the time series. Indeed,
while identifying a spike Ci , the next data point is evaluated
against Cunf using an increased threshold to take in consider-
ation the variability of the baseline during the spike event. If
Ci is lower than the threshold from Eq. (1), it is considered as
“non-spike” and becomes the new reference value Cunf. The
following data will then be compared to this updated Cunf.

Ci ≥ Cunf+α× σ +
√
n× σ (1)

The SD method was applied over 1-week time windows, i.e.
the standard deviation over σ a week is used for thresh-
old calculation. Using a longer period (e.g. 1 year) would
give more weight to the seasonal and long-term variabilities,
which are not relevant to identify short-term spikes using the
1-year standard deviation.

2.2.3 Robust extraction of baseline signal

The REBS method (Ruckstuhl et al., 2012) is a statistical
method based on a local linear regression of the time se-
ries over a moving time window (characterized by a duration
called the “bandwidth”), to account for the slow variability
of the baseline signal, while outliers lying too far from the
modelled baseline are iteratively discarded. The bandwidth h
must be wide enough to allow for a sufficiently low fraction
of outliers within h. The REBS code used here is based on
the rfbaseline application developed in the IDPmisc package
(Locher, et al., 2012) in R software. It is a modified version
of the robust baseline estimation method developed to delete
baseline from chemical analytical spectra (Ruckstuhl et al.,
2001). The REBS method was applied at the high-Alpine
Jungfraujoch site (Switzerland, 3580 m a.s.l.) and has been
proven robust to estimate the background measurements of
GHG (Ruckstuhl et al., 2012). The REBS method consid-
ers that greenhouse gas time series are composed of a back-
ground signal plus a regional contribution which may also
include local effects (spikes) and measurement errors. The
main difficulty is to correctly define the baseline signal of
the measured time series. To achieve this goal, the choice of
the bandwidth value is important. In the Jungfraujoch study,
the baseline signal was defined as the smooth curve retrieved
from REBS technique (Ruckstuhl et al., 2012) using a band-
width of 90 days, in order to distinguish the contribution of

regional emissions that add to the slow seasonal variabil-
ity. Since, in our study, the targeted spikes last a few sec-
onds to a few minutes, we chose to calculate the baseline
using a bandwidth of 60 min to detect spikes of a few min-
utes (maximum 5 min). The threshold for spike detection in
REBS is based on the calculation of a scale parameter β,
which represents the standard deviation of data below the
baseline curve, called ĝ (ti). All measurements Y (ti) that sat-
isfy Y (ti) > ĝ (ti)+β × γ are classified as locally contami-
nated (illustration in Fig. S2c). β is a parameter to adjust the
filtering strength. Ruckstuhl et al. (2012) set β = 3 for the
detection of polluted data. For our purpose, a sensitivity test
with different values of β is carried out in Sect. 3.1.

3 Results

3.1 Optimization of the SD and REBS methods

3.1.1 Sensitivity to the parameters of the SD method

We conducted sensitivity tests in order to evaluate the influ-
ence of the two parameters α and σ used in the SD method.
For α we tested values ranging from 1 to 3. Here, we present
only the results for α = 1 and α = 3. For σ we compared
the results calculated with σ based on 50 % of 1-week data,
data between the first and third quartile (scenario σb) and
for all the data of the week (scenario σt ). We studied four
configurations (two values of α with σb or σt ) on 1 min
data every week at the four stations. Figure 1 shows an ex-
ample of spikes detected by SD at FKL on 16 December
2014, corresponding to a known waste-burning episode re-
ported by the station manager. The station logbook mentions
waste-burning occurring nearby the station between 06:30
and 08:30, shown by a purple bar in Fig. 1. The blue area in
Fig. 1 shows the CO data between the first and third quartiles,
leading to a σb = 3.6 ppb. Considering all the data, we ob-
tain a 3 times higher standard deviation: σt = 12.5 ppb. The
SD method with α = 3 and σb = 3.6 ppb selects two 1 min
data points as spike as illustrated by the orange dots falling
within the observed fire episode in Fig. 1. With α = 3 and
σt = 12.5 ppb, the method fails to detect any spike, indicat-
ing that the threshold value was too high. With α = 1 and σb
the SD method selects 44 additional 1 min spikes compared
to α = 3 (data not reported as contaminated by the station
manager). In both cases (α = 1 or α = 3) and σt lead to a
very high threshold and an underestimation of the number
of spikes detected, since σt includes the spike variabilities.
Based on this sensitivity test against a known local emission
episode, we definitively rejected the use of σt scenario.

Table 2 represents the percentage of contaminated data de-
tected over 1 year at the four sites, in the four tested config-
urations. As can be seen, using all 1 min data to calculate
σt leads to a higher threshold and consequently to less data
detected as contaminated. On average over the four stations
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Table 2. Sensitivity of SD method spike detection for two sets of α
(α = 1 and α = 3) and for two ranges of background data interval
(σb and σt scenario) for the four stations and all species.

Contaminated data percentages (%)

σb scenario σt scenario

Site Spices α = 1 α = 3 α = 1 α = 3

AMS CH4 0.03 0.01 0.006 0.003
CO2 0.07 0.03 0.01 0.006

FKL CH4 0.2 0.02 0.02 0.002
CO2 0.1 0.04 0.01 0.002
CO 3 0.4 0.3 0.07

OPE CH4 0.7 0.3 0.06 0.01
CO2 0.8 0.04 0.02 0.01
CO 0.9 0.4 0.1 0.02

PDM CH4 6 2 1 0.1
CO2 0.2 0.05 0.02 0.005
CO 3 0.1 0.04 0.004

Figure 1. Comparison between two sets of α parameter for SD
method. Red represents detected spikes for α = 1; orange data are
the detected spikes for α = 3. The blue area shows the data between
the first and the third quartile (q1= 0.25, and q2= 0.75).

and the three species, switching from σb to σt decreases the
percentage of spikes by a factor 15± 16 (Table 2). Setting
α = 3 increases the threshold and also decreases the num-
ber of spikes by on average a factor of 5± 7 (Table 2). The
parameter α is related to the variability of the time series.
Since our study aims to provide recommendations for auto-
matic data processing of a monitoring network like ICOS in
Europe, we would ideally keep the same set of parameters
for all the stations of the network for each species. However,
all the tests conducted in the present study have shown that
it was not optimal to use the same parameter for the CO time
series as for the CO2 and CH4 time series. Setting a lower α
for CO leads to the overestimation of the number of spikes
in the time series. This must result from the different vari-
abilities of those trace gases. For instance, the ratio between
hourly and minute-scale variabilities (characterized by stan-
dard deviations) for the sites used in this study is on average 2

Table 3. Sensitivity of REBS spike detection method for two sets
of β (β = 3 and β = 8) for the four stations and all species for the
year 2015.

Contaminated data
percentages (%)

Sites Species β = 3 β = 8

AMS CH4 2.3 0.2
CO2 6.9 1.5

FKL CH4 4.8 0.8
CO2 4.2 0.6
CO 1.2 0.1

OPE CH4 1.8 0.5
CO2 1.6 0.5
CO 1 0.3

PDM CH4 7.8 2.2
CO2 5.2 0.8
CO 1.5 0.2

times smaller for CO compared to CO2 and CH4. As recom-
mended in Brantley et al. (2014) and Drewnick et al. (2012),
we decided to keep α = 3 for CO and set α = 1 for CH4 and
CO2 because of their lower variability.

3.1.2 Sensitivity to the parameters of the REBS method

In order to evaluate the sensitivity of spikes to the parameter,
β, we tested values of β ranging from 1 to 10. In this study,
we present the REBS method using the default value β = 3 as
proposed by (Ruckstuhl et al., 2012) in Jungfraujoch, com-
pared with the optimal value for our purpose, β = 8. The re-
sulting spike selection at FKL (during a local fire episode)
is shown in Fig. 2. By setting β = 3, the REBS method de-
tects the spike during the episode but it also finds other events
which do not appear to be associated with evident contamina-
tions (Fig. 2). With β = 8, the REBS correctly detects spikes
during the fire episode (orange points in Fig. 2). We further
compared these two values of β at the four stations every
week for the year 2015 (from January to December) and re-
port spike detection statistics in Table 3. About 10× more
spikes for CO, and 5 to 7 times more for CH4 and CO2,
were detected by the REBS method with β = 3 compared
to β = 8. Using β = 3, we detected more than 2 % of spikes
for all species and up to 7 % for CO2 at AMS. Using β = 8
these percentages are reduced to 0.2 and 1.5 %, respectively
(Table 3). Indeed, β = 8 provides results in better agreement
with spikes manually reported by site managers. Spike detec-
tion statistics for β ranging between 1 and 10 are presented
in Table S1 in the Supplement, and additional illustrations
for β = 1, 4, 8 and 10 are in Fig. S3.

Based on these sensitivity tests for the SD and REBS pa-
rameters, and the a prior estimation of the percentages of
spikes manually detected by site managers, we apply the SD

Atmos. Meas. Tech., 11, 1599–1614, 2018 www.atmos-meas-tech.net/11/1599/2018/



A. El Yazidi et al.: Identification of spikes associated with local sources 1605

Table 4. Percentage (rounded to one decimal) and number of contaminated data detected by SD, REBS and COV method overall stations
(AMS, FKL, OPE and PDM) and for the three species CO, CO2 and CH4.

SD REBS COV

Sites Species Percentage Number of Percentage Number of Percentage Number of
(%) detected data (%) detected data (%) detected data

AMS CH4 0.6 8801 0.2 3318 2.1 29 315
CO2 0.1 1454 1.7 24 210 1.8 24 672

FKL CH4 0.3 2096 1 7680 2 14 657
CO2 0.1 1052 0.6 4831 1.9 14 295
CO 0.2 1618 0.1 1002 2.1 15 617

OPE CH4 1.8 5473 1 2987 1.3 3864
CO2 1.1 3296 1 2749 1.5 4186
CO 1.3 3777 1.1 3120 1.4 4118

PDM CH4 7 56 548 2.3 19 056 1.8 14 243
CO2 0.3 2567 1 8757 1.9 15 618
CO 0.2 1970 0.2 1348 2 16 603

Figure 2. Comparison between two sets of ß parameter for REBS method. Red represents detected data for β = 3; orange is the detected
data for β = 8, applied on FKL measurement 6 of November 2014.

method with σb and α = 3 for CO and with σb and α = 1 for
CO2 and CH4. For the REBS method we use β = 8.

3.2 Statistics of the three spike detection methods

The statistics for local spike detection with the three methods
are given in Table 4. Due to the lack of completeness of the
reports by the staff about potential local contaminations, we
cannot compare those average statistics to the manual spike
detection. With COV we detect an average of about 2 % of
spikes with the 99th percentile threshold for all stations and
species (Sect. 2.2). With the methods SD and REBS, more
variable percentages of spikes are found depending on the
trace gas variabilities at each station. The percentages of con-
taminated data range from 0.1 % for CO2 at AMS to 7 % for
CH4 at PDM. The value of 7 % detected for CH4 at PDM is

higher than at all other sites and species and reveals the in-
fluence of a source of methane on a site (see below and next
paragraph). For OPE, we found a significant percentage of
spikes (between 1 and 2 %) for all species, which may be ex-
plained by the higher number of local emission sources com-
pared to other stations located in more pristine environments.
At FKL and AMS we obtain different percentages of spikes
between SD and REBS for CO2. In fact, we assume that this
difference can be related to the sea–land circulation when
winds turn, leading to a fast change in atmospheric concen-
trations. For FKL, AMS and PDM, the percentage of spikes
found with the SD and REBS methods vary by around 1 %
except for CH4 at PDM, where both SD and REBS detect
high percentages of spikes (7 % for SD method and 2.3 %
for REBS method). This is not expected for a high-mountain
station. The results of a field campaign organized at PDM in
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Table 5. Percentages and number of contaminated data detected by
SD and REBS methods for CO2 and CH4 at PDM.

ICOS site TDF site

SD REBS SD REBS

CH4 Percentage (%) 13 3 0.8 0.7
Number of 10 244 2396 684 602
contaminated data

CO2 Percentage (%) 0.2 0.5 1.1 1.4
Number of 158 390 849 1050
contaminated data

2015 (Sect. 3.3) revealed the influence of a local water treat-
ment facility at the station, producing CH4 (see Sect. 3.3).

Generally, the methods SD and REBS automatically detect
spikes. However, the COV method requires a prior knowl-
edge of datasets and the approximate number of data to be
filtered. Because of this limitation for automatic spike detec-
tion we have discarded the COV method from further tests
for the selection of the most reliable method for spike detec-
tion.

3.3 Comparison of SD and REBS methods to detect
CH4 spikes at the PDM clean-air mountain station

In this section we use field campaign data involving two
instruments at PDM to study the efficiency of the SD and
REBS methods. As noted above, the SD method detects 20×
more spikes for CH4 than for CO2 at PDM ICOS site (Ta-
ble 5). Looking for all possible local methane emissions at
the site, we identified a small sewage treatment facility lo-
cated about 20 m below the air intake of the analyzer (called
AN-1) to be responsible for local CH4 production. A test
campaign was then organized between July and August 2015
with a second analyzer (called AN-2) installed 200 m away
from of AN-1 (Fig. S4). The two analyzers were installed to
measure simultaneously CH4 and CO2 molar fractions from
1 July to 31 August, as presented in Figs. 3 and 4.

We applied the SD and REBS methods to the CH4 and
CO2 time series from both analyzers. For CH4, analyzer AN-
2 shows much fewer spikes than AN-1. For instance, between
early July and late August 2015 there is more than 12 %
of contaminated data with the SD method and 3 % with the
REBS method in the AN-1 record, compared to only 0.8 %
with SD and 0.7 % with REBS for the AN-2 instrument (Ta-
ble 5). Considering that the two analyzers are measuring am-
bient air sampled 200 m apart, this large difference is clearly
due to the local emission from the sewage facility. Interest-
ingly, for CO2 we detect more spikes in AN-2 than in AN-1
(Fig. 4). More than 1 % of CO2 spikes were found in the AN-
2 record compared to 0.5 % for AN-1 (Table 5, Fig. 4). This
is explained by the proximity of a diesel generator to AN-2,
used for a few hours during electrical storms. Both SD and

REBS detect the same CO2 spikes in both AN-1 and AN-2
time series (Fig. 4).

For CH4, SD and REBS methods confirm the frequent
contamination of the AN-1 time series since 2014 and show
a good ability to detect the spikes, yet with significant dif-
ferences regarding the percentage of data detected as con-
taminated. Considering that the AN-2 analyzer provides a
less contaminated CH4 time series, we have used this ex-
periment to compare between the two methods and select
which one performs better for CH4 spikes at PDM. Figures 5
and 6 represent the CH4 and CO2 measurements of AN-1 and
AN-2. For AN-2, CH4 concentrations (black data point in
Fig. 5) rarely exceed 1950 ppb, whereas for AN-1 it exceeds
2000 ppb (black data point) and occasionally reaches almost
2200 ppb. SD and REBS methods both detect all contami-
nated data that range between 1980 and 2200 ppb for AN-1.
The differences between the two automatic methods are more
important for data that are below 1980 ppb. Furthermore, the
filtered data (green data point) using the SD method better
fit the 1 : 1 correlation line with the less contaminated an-
alyzer than the REBS method (Fig. 5). The REBS method
underestimates the lower part (foot) of the spikes (contam-
inated data that range between 1900 and 1980 ppb; Fig. 3b
AN-1). However, for CO2 the two methods detect nearly the
same spikes (Fig. 4) and provide a similar filtered time series
(Fig. 6). How can we explain the insufficient performance
of the REBS method to detect the lower part of the CH4
spikes? This method defines spikes using the estimated base-
line (Ruckstuhl et al., 2012). When the population of contam-
inated data is high, the baseline is flawed due to the influence
of spikes, and the baseline determination will be overesti-
mated. In Fig. 5, we notice the missed detection of a number
of contaminated data when using the REBS method due to
the high values of the baseline. The SD method detects most
of the local spikes at PDM, even if a slight underestimation
of contaminated CH4 data remains even after data filtering
(Fig. 5).

3.4 Comparison between automatic and manual spike
detection

In this section we analyse how SD and REBS methods detect
spikes of CO2, CH4 and CO that were independently identi-
fied by the station staff and related to a known local source
of contamination at FKL and PDM.

At FKL the contamination events reported by the site man-
ager are associated with local fires nearby the station. The
technical staff recorded dates of burning which could lead
to significant emissions of trace gases, especially CO and
CO2. It should be noted, however, that this information is
not exhaustive in the sense that the person in charge does not
necessarily have information on all burning events. We have
matched the trace gas time series with the logbook informa-
tion showing 17 days with local burning events between 2014
and 2015. We applied the SD and the REBS methods over 1-
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Figure 3. AN-1 CH4 measurement at T55 building in panels (a) and (b) and AN-2 TDF building in panels (c) and (d). Black data points are
the retained measurements; red points represent the flagged using SD method in panels (a) and (c) and REBS method in panels (b) and (d).

week time windows containing each burning event. First, we
run the algorithms separately on the three species (CH4, CO2,
and CO). Then, if the algorithm detects a spike in at least one
species, we consider data for all other species as spikes as

well. Figure S5 shows an example of the SD method applied
on a fire episode between 15:00 and 16:00 on 6 November
2014. The spike occurred for the three species CO, CO2 and
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Figure 4. AN-1 CO2 measurement at T55 building in panels (a) and (b) and AN-2 TDF building in panels (c) and (d). Black data points are
the retained measurements; red points represent the flagged using SD method in panels (a) and (c) and REBS method in panels (b) and (d).

CH4, with a similar pattern (spike also identified by the sta-
tion manager).

Figure 7a represents the number of contaminated data de-
tected by the automatic methods and manual flagging by the

station staff. The numbers of selected data are split into three
concentration ranges. The two automatic methods and the
manual flagging detect the same number of contaminated
data for CO classes higher than 400 ppb. We have an ex-
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Figure 5. Plots of CH4 measurements of AN-1 against AN-2. All data are in black, and the green points represent the retained data using SD
method in panel (a) and REBS method in panel (b).

Figure 6. Plots of CO2 measurements of AN-1 against AN-2. All data are in black, and the green points represent the retained data using SD
method for (a) and REBS method for (b).

cellent agreement for the spikes with the highest concentra-
tions. For the low-concentration spikes (< 400 ppb), the auto-
matic methods are less selective than the manual flagging. In
Fig. 8 we show an example of contaminated data detected by
automatic and manual flagging methods at FKL. When the
difference between uncontaminated (identified as reference)
and spike data is not significant compared to a certain stan-
dard deviation threshold, the methods may thus fail. The data
highlighted by the blue circle in Fig. 8 give an example of
when spikes identified by automatic methods diverge from
the manual identification. Such data are either close to the
baseline REBS selection (Fig. 8c) or close to the Cunf value
for the SD method (Fig. 8b). At this point it is important to
note that the person in charge of data flagging selects spikes
using a known period (from a starting to an ending time).

A second comparison study between automatic meth-
ods and manual detection has been performed at PDM us-
ing the CO time series from December 2014 to February
2015. During winter, the station experienced several snow-
fall episodes and snow was removed with a diesel-powered
snow blower. This operation influenced the GHG concentra-

tions and leads to sharp spikes easily observed in the CO
time series (Fig. S6). Most of the spikes are successfully de-
tected by the SD and the REBS methods. Figure 7b repre-
sents the number of contaminated data detected by SD in red
and REBS in green and data manually eliminated by the site
manager in blue. Similar to the FKL local fires, the SD and
the REBS methods detected the same number of spikes as
the manual selection for high concentrations; 857 contami-
nated data points are detected by the SD method (same as
the principal investigator, or PI) for concentrations higher
than 400 ppb, and 828 data points are detected by the REBS
method. The main difference between the automatic and the
manual flagging methods are related to the lower part of
the spikes. For 2861 data (CO < 400 ppb) flagged manually
by the PI station, the SD method detects 2270 data points
whereas the REBS method detects only 1799 data points. In
fact, for moderate spikes the SD method selects 70 % of con-
taminated data according to the PI whereas the REBS method
retrieves only 60 %. We have also calculated the number of
events not considered by the manual flagging and considered
by the automatic methods. For a total of 3402 data detected
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Figure 7. Number of flagged CO measurements using manual method (blue), SD method (red) and REBS method (green) for Finokalia (a)
and Pic Du Midi (b).

Table 6. Classification of the number of hours in which the SD method filtered at least 1 min data point for CO, CO2, and CH4 at the four
sites. The intervals represent the differences between filtered and the non-filtered time series averaged at a hourly scale in ppm for CO2 and
(ppb) for CO, and CH4. The values in brackets represent the percentages of the impacted hours on the whole time series.

CO2 (ppm) CH4 (ppb) CO (ppb)

]0–0.5[ [0.5–1[ >= 1 ]0–5[ [5–10[ >= 10 ]0–5[ [5–10[ >= 10

AMS 64 (0.3 %) 21 (0.1 %) 19 (0.1 %) 21 (0.1 %) 0 0
FKL 133 (1 %) 12 (0.1 %) 5 (0.04 %) 134 (1 %) 11 (0.1 %) 7 (0.05 %) 218 (1.7 %) 8 (0.06 %) 8 (0.06 %)
PDM 522 (3.7 %) 30 (0.2 %) 16 (0.1 %) 4696 (34 %) 741 (5.3 %) 623 (4.4 %) 518 (3.7 %) 4 (0.03 %) 1 (0.01 %)
OPE 36 (0.3 %) 24 (0.2 %) 69 (0.5 %) 53 (0.5 %) 10 (0.08 %) 36 (0.3 %) 107 (0.9 %) 20 (0.2 %) 111 (0.9 %)

by the SD method, only 211 data were not considered by
the PI, which represents 0.25 % on the whole period. For the
REBS method, 133 data out of 2981 were not detected by the
PI (nearly 0.15 %). However, these statements should be used
with caution since the manual spike detection information is
not exhaustive, and the person in charge does not necessarily
have information on all contaminated events.

3.5 Influence of the spike detection on hourly averages:

In this section we estimate the impact of the spike detection
on data used for atmospheric inversions, which are typically
hourly or half-hourly averages. For this purpose we have cal-
culated the differences between the hourly averages of the
filtered and non-filtered time series. In Table 6, we present
the number of hours in which at least 1 min data for each
species was filtered. We classified the results into three inter-
vals. For CO2, the first interval represents the values lower
than 0.5 ppm, the second interval is for differences between
0.5 and 1 ppm and the third stands for the higher differ-
ences (values more than 1 ppm). For CH4 and CO we set
the first interval for values lower than 5 ppb, the second in-
terval represents the data between 5 and 10 ppb and the third
for differences higher than 10 ppb. Most of the differences
between filtered and non-filtered hourly data vary between
0 and 0.5 ppm for CO2 and between 0 and 5 ppb for CH4

and CO. For CO2 at the AMS station, the SD method detects
1454 1 min data points (Table 4), which occur in 104 h dur-
ing the 3 years of measurements. Of those hours, 62 % are
characterized by a difference up to 0.5 ppm, and 18 % show
more than 1 ppm of difference. For CH4 measurements in
AMS, the 8801 contaminated data points detected by the SD
method (Table 4) occur during only 21 h, this modifies the
hourly averages by 5 ppb as a maximum. For four sites, we
notice similar effect on the hourly averages. Most of the im-
pacted hours are characterized by a difference within the first
interval (0.5 ppm for CO2; 5 ppb for CH4 and CO). However,
for OPE we observe higher differences with 53, 36 and 47 %
of the impacted hours in the highest interval, respectively,
for CO2, CH4 and CO. This feature is probably related to the
higher number of the nearby local emission sources nearby
OPE site compared to the other stations, which are located in
more pristine environments. Figure S7 shows a decrease of
the number of impacted hours for higher intervals (the same
pattern as the three other stations). Overall, the aggregation
of filtered measurements at the hourly timescale showed a
relatively weak impact of the filtered data for background
sites, but more significant effect for stations located closer to
local sources.
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Figure 8. Example of a spike detection using manual (a), SD (b) and REBS (c) methods during a known biomass burning event at Finokalia.

4 Conclusions

The recent increase in the number of studies that have been
applied to study the spatial representativeness of GHG ob-
servations demonstrates the need to define efficient and re-
liable methods for the identification spikes related to local
contamination sources. Three methods based on the standard
deviation calculation were compared in order to provide an
objective algorithm for the GHG data spike detection.

We addressed the problem of identifying concentration
spikes of a few minutes duration in GHG continuous time
series by applying automatic detection methods (COV, SD
and REBS) previously used for atmospheric pollution but

not systematically for GHG time series. Stations with dif-
ferent regimes of variability where local emission sources
are identified without ambiguity (engines/waste near the sta-
tion buildings, or fires nearby) are chosen to evaluate the per-
formance of the automatic methods against spikes manually
identified by station managers. The COV algorithm can be
considered as a semiautomatic method since it requires an a
priori choice of a percentage of data rejected as spikes. We
tested the COV method with a percentage of 1 % of spike
data for all species and for all stations. This limitation made
the COV method less flexible and informative for universal
automatic spike detection across different sites. For the two
fully automatic methods (SD and REBS) we performed sev-
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eral sensitivity tests in order to recommend the best set of
parameters for our four chosen stations, which are consid-
ered to be representative of most ICOS stations (disregarding
those located in suburban environments).

The application of the automatic methods on contaminated
time series at the Pic du Midi observatory showed the ability
of SD and REBS to detect real spikes on the CH4 time series
caused by the sewage treatment facility of the observatory.
Nevertheless, significant differences regarding the rejection
percentage were noticed between the methods. Both methods
have a tendency to unduly keep a certain fraction of the spike
base (lowest concentrations in spikes). REBS is worse than
SD in this respect. In the REBS method, when the percentage
of spikes is high, the baseline determination is biased toward
high concentrations, leading to underestimate spike anoma-
lies above this baseline. However, the SD method correctly
detects most of the contaminated data. The comparison be-
tween SD, REBS and the manual flagging methods showed
good agreement with an overall percentage of 70 % of suc-
cessful spike data detection for SD and 60 % for REBS, at
two stations (FKL and PDM) where local contaminations are
well identified by the local staff. These two automatic algo-
rithms detect short-term spikes, allowing for a more consis-
tent and automatic filtering of the time series even if they
identify less contaminated data than by manually flagging.
The estimation of the impact of the spike detection on data
used for atmospheric inversions showed a relatively weak
impact of the filtered data for background sites and a more
significant effect for stations located closer to local sources.
However, even if the implementation of an automatic algo-
rithm can successfully identify short-term spikes due to local
contaminations, it is important to note that the priority in the
selection of a background site should be to avoid as much
as possible the occurrence of such spikes. In the case where
the spikes can not be totally avoided, it is then important to
try to understand their cause and look for possible actions to
minimize them. The modification of the air inlet at the Pic du
Midi, described in this study, is a very good example of what
can be done once the origin of spikes is understood.

The SD method is found to be efficient and reliable for the
purpose of spike detection. It has been proposed for oper-
ational implementation in the ICOS Atmospheric Thematic
Centre Quality Control (ATC-QC) software to perform daily
spike detection of the near-real-time dataset of continuous
ICOS stations. The first step will be to run the SD method in
a test mode over all ICOS stations and compare with man-
ual detection when available in order to set optimal values of
parameters. This analysis can be complemented with wind
speed and direction data in order to possibly attribute spikes
to fixed local sources.

Data availability. The used data are available from the ICOS
database (https://icos-atc.lsce.ipsl.fr/), and can be shared on request.
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