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Abstract. In the past 2 decades, ground-based lidar net-
works have drastically increased in scope and relevance,
thanks primarily to the advent of lidar observations from
space and their need for validation. Lidar observations of
aerosol and cloud geometrical, optical and microphysical at-
mospheric properties are subsequently used to evaluate their
direct radiative effects on climate. However, the retrievals
are strongly dependent on the lidar instrument measurement
technique and subsequent data processing methodologies. In
this paper, we evaluate the discrepancies between the use of
Raman and elastic lidar measurement techniques and corre-
sponding data processing methods for two aerosol layers in
the free troposphere and for two cirrus clouds with differ-
ent optical depths. Results show that the different lidar tech-
niques are responsible for discrepancies in the model-derived
direct radiative effects for biomass burning (0.05W m™2 at
surface and 0.007 W m~2 at top of the atmosphere) and dust
aerosol layers (0.7 W m~2 at surface and 0.85 Wm™2 at top
of the atmosphere).

Data processing is further responsible for discrepancies
in both thin (0.55Wm™2 at surface and 2.7Wm™2 at top
of the atmosphere) and opaque (7.7 Wm™2 at surface and
11.8Wm™? at top of the atmosphere) cirrus clouds. Direct
radiative effect discrepancies can be attributed to the larger
variability of the lidar ratio for aerosols (20-150sr) than
for clouds (20-35 sr). For this reason, the influence of the
applied lidar technique plays a more fundamental role in

aerosol monitoring because the lidar ratio must be retrieved
with relatively high accuracy. In contrast, for cirrus clouds,
with the lidar ratio being much less variable, the data pro-
cessing is critical because smoothing it modifies the aerosol
and cloud vertically resolved extinction profile that is used as
input to compute direct radiative effect calculations.

1 Introduction

According to the International Panel for Climate Change
(IPCC, 2014), the major sources of uncertainty relating to
current climate studies include direct and indirect radiative
effects caused by anthropogenic and natural aerosols. Fur-
ther, current estimates of the global aerosol direct radiative
effect remain subject to large relative uncertainties affecting
even the actual sign (indicating either net cooling or heating
of the earth—atmosphere system), which may change from
positive to negative diurnally (e.g., Campbell et al., 2016;
Lolli et al., 2017a; Tosca et al., 2017). This depends on the
so-called albedo effect (or the capability of aerosols to re-
flect incoming solar light) and whether or not it outweighs
the greenhouse effect (or the capability of trapping/absorbing
outgoing longwave radiation; Campbell et al., 2016)

Studies on cloud and aerosol optical, geometrical and
microphysical properties greatly increased in the last 2
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decades through the abundance of passive ground-based
measurements (i.e., AErosol RObotic NETwork Network,
AERONET; Holben et al., 1998; Dubovik et al., 2000;
Smirnov et al., 2002; Eck et al., 2014; the Atmospheric
Radiation Measurement program, ARM; Campbell et al.,
2002; Ferrare et al., 2006; Perez-Ramirez et al., 2012; Mc-
Comiskey and Ferrare, 2016; Aerosols, Clouds and Trace
gases Research Infrastructure, ACTRIS; Asmi et al., 2013;
Pappalardo et al., 2014) and the use of satellite sensors (i.e.,
MODerate resolution Infrared Spectroradiometer, MODIS;
Tanré et al., 1997; King et al., 2003; Remer et al., 2005;
Multi-angle Imaging Spectro-Radiometer, MISR; Diner et
al., 1998; Di Girolamo et al., 2004; Kahn et al., 2009; Po-
larization and Anisotropy of Reflectances for Atmospheric
science coupled with Observations from a Lidar, PARASOL,;
Tanré et al., 2011; NASA Aerosol-Cloud Ecosystem, ACE;
Whiteman et al., 2018). Nevertheless, these measurements
provide only an estimate of the columnar aerosol (or cirrus
cloud) properties.

On the other hand, the Cloud-Aerosol Lidar with Orthogo-
nal Polarization (CALIOP; Winker et al., 2007), on board the
Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Obser-
vations (CALIPSO) satellite launched by the National Aero-
nautics and Space Administration (NASA) in 2006, is ca-
pable of estimating range-resolved aerosol and cloud phys-
ical properties. However, the sun-synchronous orbit limits
spatial and temporal coverage (orbital revisit time period of
16 days), making the datasets difficult to apply and interpret
for specific forms of process study. The vertical structure of
cloud and aerosol properties can also be retrieved through
combined lidar and radar ground-based measurements as
proposed in the frame of the CloudNet European Project
(Illingworth et al., 2007). Still, the radar technique proves
capable of characterizing only the relatively extreme fraction
of the aerosol size distribution (Madonna et al., 2010, 2013).

Based on the progress in optical technologies in the late
1990s and the beginning of 2000s, federated ground net-
works of lidars were established (NASA Micro Pulse Li-
dar NETwork, MPLNET; Campbell et al., 2002; Welton et
al., 2002; Lolli et al., 2013; European Aerosol Research LI-
dar NETwork, EARLINET; Pappalardo et al., 2014; Asian
Dust NETwork, ADNET; Sugimoto et al., 2010; Latin Amer-
ican Lidar NETwork, LALINET; Antufia-Marrero et al.,
2015; Lolli et al., 2015), the bulk of which are based on
single- or dual-channel elastic and Raman lidar instruments.
The Eulerian viewpoint of ground-based lidars is providing
important contextual measurements relative to satellite pro-
filing, like from CALIOP (Winker et al., 2007).

The emerging prominence of ground-based lidar, however,
strengthens the necessity for further studies of optical, ge-
ometrical and microphysical aerosols and clouds properties
resolved from multi-spectral lidar techniques, as claimed by
several papers (Pappalardo et al., 2004a; Mona et al., 2006;
Wang et al., 2012; Khor et al., 2015; Pani et al., 2016; Dion-
isi et al., 2013; Lolli et al., 2013, 2014, 2017a; Campbell
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et al., 2016). Multi-spectral and Raman lidars can retrieve
aerosol and cloud properties with much better accuracy than
elastic lidars, without many fundamental assumptions (e.g.,
Ansmann et al., 1992; Goldsmith et al., 1998; Mona et al.,
2012; Pappalardo et al., 2014), though at greater operational
expense. The High Spectral Resolution Lidar (HSRL; Ship-
ley et al., 1983; Grund and Eloranta, 1991) technique al-
lows for the separation of molecular and aerosol signals,
and thus affords an independent retrieval of aerosols extinc-
tion and backscattering coefficients. However, the technol-
ogy remains relatively complex and expensive, making it an
unattractive choice for operational networks (e.g., Hair et al.,
2008).

The Raman technique (Sect. 2.2) permits retrieval of
aerosol and cloud vertically resolved extinction coefficients
without any binding assumptions, which are the corner-
stone of elastically based retrieval techniques (Sect. 2.1).
Certain instabilities exist, however (Ansmann et al., 1992;
Wandinger et al., 1995). In order to reduce the random un-
certainty affecting the retrieval, a smoothing of the range-
resolved profile is required at the expense of the effective ver-
tical resolution (Pappalardo et al., 2004b; larlori et al., 2015)
of the extinction coefficient profile.

Ultimately, different lidar techniques and/or processing al-
gorithms lead to differences of the retrieved vertically re-
solved particulate optical properties, affecting the apparent
significance, position and geometry of observed aerosol and
cloud layers. The impact of these differences has never been
extensively evaluated. Since lidar-derived optical properties
obtained from different instrument techniques are more and
more frequently being used to assess the direct radiative ef-
fects of clouds and aerosols (e.g., Campbell et al., 2016; Lolli
et al., 2017a; Tosca et al., 2017), corresponding uncertain-
ties in determining direct radiative effects, which may help
reconcile inconsistencies in studies carried out at the global
scale based on different lidar techniques, are compulsory, es-
pecially now that several new space missions with lidar on
board have been launched (Cloud-Aerosol Transport Sys-
tem, CATS; McGill et al., 2015) or are scheduled (European
Space Agency Earth Care mission; Illingworth et al., 2007).

The primary goal of this paper is to evaluate the relative
differences between the aerosol and cloud direct radiative ef-
fects both at the surface (SFC) and at the top of the atmo-
sphere (TOA) computed using the aerosol and cloud opti-
cal properties estimated from more sophisticated versus ba-
sic lidar techniques (i.e., Raman vs. elastic lidar). To reach
this goal, we use the Fu-Liou—Gu (FLG; Fu and Liou, 1992,
1993; Gu et al., 2003, 2011; Lolli et al., 2017b) radiative
transfer model to calculate the difference in net direct radia-
tive effect for aerosols and clouds at TOA and SFC for pro-
files derived from both elastic and combined Raman—elastic
lidar techniques.

www.atmos-meas-tech.net/11/1639/2018/
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2 Method
2.1 Elastic and Raman lidar techniques

Elastic-scattering lidar instruments require assumptions and
careful consideration of measurement strategies to constrain
the single-scattering lidar equation (Eq. 1), defined as

Py =0mKP ,(zr ) exp25ar)ar (1
where P;(r) is the received power at a range » and O (r) is
the overlap function, which depends on intersection between
the respective telescope and laser field of view. O (r) equals
unity for a distance ro depending on the specific lidar sys-
tem, spanning from few hundred meters to 4-5 km for Micro
Pulse Lidar systems (MPL; Campbell et al., 2002). K is the
so-called lidar constant (instrument dependent, function of
detector quantum and optical efficiencies, telescope diame-
ter, etc.), followed by the two unknown variables: §(r), the
total backscattering coefficient, and «(r), the total extinction
coefficient.

A classical method to solving Eq. (1) for single-channel
elastic-backscatter lidars (Fernald, 1984) is based on the as-
sumption of the columnar-averaged value of the ratio be-
tween the two unknown coefficients, typically indicated by
S and called “lidar ratio”. The method, due to the large vari-
ability of S (i.e., 200—150 sr for aerosols; Ackermann, 1998;
Ferrare et al., 2001; Sakai et al., 2003; Miiller et al., 2007;
GroB et al., 2011, 2013, 2015; Veselovskii et al., 2015) trans-
lates into large uncertainties associated with the retrieval of
o and B (Lolli et al., 2013).

Through greater spectral complexity, it is possible to re-
trieve oand B with multi-spectral lidars without relying too
heavily on fundamental assumptions. For instance, the com-
bined detection of the elastically backscattered and inelas-
tically backscattered radiation due to the Raman effect by
nitrogen (or oxygen) molecules excited to a different vibra-
tional or rotational energy level is possible. Using the Raman
lidar technique, we can constrain and rewrite Eq. (1) as

d/dr {In[ng(r)/ Pe(r)r?]} — &' (r) — ot (r)
1+ (G /AR)*

where Ap is the elastic wavelength, while AR is the wave-

length of the Raman scattering; afir(r) represents the parti-

cle (aerosols or clouds) extinction coefficient at elastic wave-
length at range r, while 0 ol (r) and Aol (r) are the molec-

par
“,\L (r)=

. @

ular extinction coefficients at wavelengths A, and AR, re-
spectively; and P(r)r? is the detected range-corrected Ra-
man signal from range r, while nr(r) represents the num-
ber density of range-resolved scatter. The wavelength depen-
dence of the particle extinction coefficient is described by the
Angstrijm coefficient, &, defined from the relation

() AR\
apar(r) = (K) . 3
AR

www.atmos-meas-tech.net/11/1639/2018/

Equation (2) allows for independently retrieving vertically
resolved optical coefficients with only very limited a priori
assumptions (the Angstrém coefficient should be estimated
or assumed, but this estimate or assumption, involving a ra-
tio, typically amounts to less than 5 % of total error; Ans-
mann and Miiller, 2005). The particle backscattering coeffi-
cient, ,B)I:?:(V) and ﬁfir(r), can be derived directly from the
ratio of the Raman signal at AR and the elastic signal at Ap..

2.2 Fu-Liou—-Gu radiative transfer model

To calculate aerosol and cloud direct radiative effects, we
use the one-dimensional FLG radiative transfer model, devel-
oped in the early 1990s. The original code has been adapted
to retrieve cloud and aerosol direct radiative effects using the
aerosol and cloud vertical profile of lidar extinction as input.
There exist several parameterizations that provide the verti-
cal profile of cloud microphysics using lidar-retrieved cloud
extinction profile, each one with pros and cons, as shown
in Comstock et al. (2007). For the purpose of this study
and also considering authors’ past experience (Campbell et
al., 2016; Lolli et al., 2017a), we parameterize cirrus clouds
through the Heymsfield et al. (2014) empirical relationship
conceived expressly for lidar measurements. Here, the cir-
rus cloud ice crystal average diameter is directly proportional
to the absolute atmospheric temperature (obtained through a
radiosonde, regularly launched at measurement site, or nu-
merical reanalysis dataset). Cirrus cloud optical depth and
crystal size profiles are used to calculate the single-scattering
albedo (SSA), phase function and asymmetry factor (AF) at
each level.

Similarly, FLG calculates the direct radiative effect of
aerosols as a function of the partial contribution of each
aerosol species to the total optical depth at each altitude
level. FLG uses a lookup table (LUT) with single-scattering
properties for 18 different types of aerosols coming from the
OPAC (Optical Properties of Aerosol and Clouds) database
(d’Almeida et al., 1991; Tegen and Lacis, 1996; Hess et al.,
1998). Among all aerosol species, for the initial cases intro-
duced in Sect. 2.2 we assume that the dust layer is consti-
tuted by pure dust advected from the Saharan region (aerosol
type 17 in FLG), while in the second case we assume pure
biomass burning aerosol (aerosol type 11 in FLG). Nev-
ertheless, if the measured aerosol atmospheric profiles do
not match exactly the two-selected aerosol types, this does
not affect the results because we are interested in evaluat-
ing the relative discrepancies among the different lidar tech-
niques/data processing. Therefore, what is most relevant in
the approach is the application of the same parameterization
to each of the different techniques/data processing.

The aerosol—cloud direct radiative effect is calculated sub-
tracting from the FLG total-sky run (where aerosols or clouds
are present) the FLG run with a pristine atmosphere (control),

Atmos. Meas. Tech., 11, 1639-1651, 2018
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expressed as
DRE = FLGTotalSky _ FLGPristine’ @)

where DRE is the direct radiative effect (from aerosols or
clouds), while the superscript TotalSky means that FLG is
computed taking into account the aerosol-cloud profile and
Pristine represents a hypothetical “clear-sky” atmosphere
with no aerosols or clouds.

Direct measurements of aerosol microphysical properties
require multi-wavelength lidar (e.g., Veselovskii et al., 2002,
2013), which are not common in many networks and also are
sensitive to systematic and random errors in the optical data
(Perez-Ramirez et al., 2013). We focus here on lidar systems
that can operate continuously in different networks, and our
direct radiative effect calculations do not vary much when
changing effective radius and single-scattering albedo.

2.3 Direct radiative effect computation

For the analysis in this study, we analyzed lidar data collected
with the MUIti-wavelength System for Aerosols (MUSA) li-
dar (Madonna et al., 2011), deployed at Consiglio Nazionale
delle Ricerche (CNR), Istituto di Metodologie per I’ Analisi
Ambientale (IMAA) Atmospheric Observatory (CIAO) in
Potenza, Italy (40.60° N, 15.72° E; 760 m above sea level,
a.s.l). MUSA is a mobile multi-wavelength lidar system
based on a Nd:YAG laser source equipped with second and
third harmonic generators and on a Cassegrain telescope with
a primary mirror of 300 mm diameter.

MUSA full-angle field of view (FOV) and laser beam di-
vergence are large enough (1.0 mrad and 0.6 mrad, respec-
tively) to add important multiple-scattering (MS) contribu-
tions to the retrieved cirrus extinction coefficient profiles.
The Raman extinction coefficient profiles have been cor-
rected for MS as described in Wandinger (1998), taking into
account MS contributions by introducing in the respective
lidar equation the multiple-scattering parameters. These pa-
rameters have been calculated by applying Eloranta’s model
(Eloranta, 1998) to estimate the contributions of individ-
ual orders of multiple scattering. In the model simulations,
MUSA specifications (FOV and laser beam divergence) have
been used, and a mono-disperse size distribution profile of
cirrus cloud ice crystals has been assumed with effective di-
ameters derived from the same parameterization used in the
FLG model (Heymsfield et al., 2014). The first five scattering
orders have been summed.

The MUSA lidar system is not tilted due to technical con-
straints. However, the averaged cirrus cloud retrieved lidar
ratios from the combination of Raman and elastic lidar tech-
niques (corrected for MS effects) are 24 and 26 sr, for cir-
rus cloud cases highlighted here from 10 June 2010 and
17 February 2014, respectively. Those values are consistent
with a very low probability of significant specular reflection.
The previous statement is supported by the fact that crystal
size diameter computed with Heymsfield et al. (2014) param-
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eterization is below 100 um, a threshold value above which
specular reflection can arise. Moreover, in Hogan and Illing-
worth (2003), it is found that specular reflection tends to be
much stronger and more common for temperatures between
250 and 264 K (which corresponds to much lower altitudes
with respect to the examined cirrus cloud cases), where plate
crystals, which induce the greatest specular signal, are most
common.

The three laser beams at 1064, 532 and 355 nm are simul-
taneously and coaxially transmitted into the atmosphere in a
biaxial configuration. The receiving system has three chan-
nels for the detection of the radiation elastically backscat-
tered from the atmosphere and two channels for the de-
tection of the Raman radiation backscattered by the atmo-
spheric N, molecules at 607 and 387 nm. The elastic channel
at 532 nm is split into parallel and perpendicular polariza-
tion components by means of a polarizer beamsplitter cube.
The backscattered radiation at all the wavelengths is acquired
both in analog and photon-counting mode. The typical ver-
tical resolution of the raw profiles is 3.75 m with a tempo-
ral resolution of 1 min. The system is compact and trans-
portable. It has operated since 2009, and it is one of the ref-
erence systems used for the intercomparison of lidar systems
within the EARLINET (Pappalardo et al., 2014; Wandinger
et al., 2016) quality assurance program. In this paper, the
data analysis has been carried out considering four observa-
tion scenarios at night, as the Raman channel signal shows a
much higher signal-to-noise ratio during nighttime:

1. Dense dust aerosol and biomass burning events: the
aerosol extinction profiles are retrieved using the UV
(355 nm) channel. For each case, the extinction profile
is both retrieved with the Raman technique (Ansmann
et al., 1990; Whiteman et al., 1992; Veselovskii et al.,
2015) and estimated using the sole elastic channel, ap-
plying an iterative algorithm (Di Girolamo et al., 1999)
with an assigned lidar ratio (S =157 sr for the dust case
(Mona et al., 2006) and S = 63 sr for biomass burning,
retrieved averaging the lidar ratio from the MUSA Ra-
man channel). Both the Raman and elastic lidar sig-
nals have been smoothed by performing a binning of 16
range gates, resulting in a vertical resolution of 60 m.
For the Raman channel retrieval, the extinction profile
has been calculated using the sliding linear fit technique,
with a bin number resulting in an effective vertical reso-
lution of 360 m (Pappalardo et al., 2004b). For the elas-
tic channel retrieval, the estimated extinction profile has
been first calculated with the signal full vertical reso-
lution of 60 m and then smoothed to the same effec-
tive vertical resolution as the Raman extinction profile
(360m), using a 2nd-order Savitzky—Golay smoothing
filter (Press et al., 1992; Iarlori et al., 2015).

2. Thin and opaque cirrus clouds: like aerosols, cirrus
cloud extinction profiles are retrieved using the UV
(355 nm) channel with the Raman technique. The elastic

www.atmos-meas-tech.net/11/1639/2018/
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Figure 1. (a) Composite plot of the range-corrected signal at 1064 nm showing a well-defined dust layer centered at about 5kma.s.l. (b)
and a biomass burning aerosol layer centered at about 2.5 km. (c¢) Aerosol lidar extinction profiles at 355 nm retrieved with the Raman
(spatial resolution: 360 m) and the elastic lidar techniques with different spatial resolutions (60 and 360 m) for a dust (signal temporally
integrated from 19:34 to 21:40 UT) outbreak on 3 July 2014 and for biomass burning (signal temporally integrated from 19:27 to 20:48 UT)
on 19 June 2013 (d). The iterative method used a fixed lidar ratio value of § =57 sr, determined by climatological measurements (Mona et
al., 2006) for the dust aerosol layer. For the biomass burning we used the averaged value of S = 63 sr obtained from the MUSA Raman lidar.

channel retrieval for thin cirrus cloud is obtained apply-
ing the same iterative algorithm followed for dust and
biomass burning. However, for the opaque cirrus cloud,
due to convergence problems of the iterative method
for higher cloud optical depths, we used the MPLNET
Level 1.5 cloud product algorithm (Lewis et al., 2016)
based on a Klett inversion (Klett, 1985). For both cases
(iterative and MPLNET), we assumed a fixed lidar ratio
value obtained from Raman and elastic measurements
corrected by MS effects of 24 sr for thick and 26 sr for
thin cirrus cloud.

The Raman extinction profile has been calculated with
an effective vertical resolution of 420m (thin cirrus
cloud) and 780 m (opaque cirrus cloud). The iterative
(thin cirrus) and MPLNET Level 1.5 cloud algorithm
(opaque cirrus; Lewis et al., 2016) extinction profiles

www.atmos-meas-tech.net/11/1639/2018/

W

are calculated with the original signal vertical resolu-
tion of 60 m and smoothed at a resolution of 420 m (thin
cirrus) and 780 m (opaque cirrus), using the Savitzky—
Golay filter to match Raman channel spatial resolution.

The thermodynamic profile of the atmosphere, needed
to calculate the direct radiative effect, is estimated us-
ing a standard thermodynamic profile (USS976) mid-
latitude model. Emissivity and albedo values are taken
from the MODIS Bidirectional Reflectance Distribution
Function (BRDF)/Albedo algorithm product (Strahler
et al., 1999), with a spatial resolution of 0.1° aver-
aged over a 16-day temporal window (Campbell et al.,
2016). As each measured cloud and aerosol extinction
profile comes with a relative uncertainty per range bin,
the sensitivity of FLG to the input parameters is evalu-
ated applying a Monte Carlo technique. Each extinction

Atmos. Meas. Tech., 11, 1639-1651, 2018
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Figure 2. (a) Composite plot of the range-corrected signal at 1064 nm showing a thin cirrus cloud at about 10km (b) and an opaque
cirrus cloud centered at about 13 km. (b) Lidar extinction profiles at 355 nm from the Raman and elastic channel of the cirrus cloud on
17 February 2014 (signal temporally integrated from 01:29 to 02:13 UT). The iterative method at the two different resolutions (60 and 420 m)
used a fixed S value (26 sr), determined by climatological measurement. (d) Same as (c) but for a cirrus cloud detected on 10 June 2016 (signal
temporally integrated from 19:42 to 20:44 UT). The Raman lidar channel is smoothed over a 420 and 780 m spatial window. On 10 June 2016,
the elastic channel was retrieved using the MPLNET algorithm (Lewis et al., 2016) with S =24 sr at 60 and 780 m respectively.

profile is replicated 30 times (i.e., a statistically mean- 3 Results

ingful number), running the Monte Carlo code on the

original profile random uncertainty. Likewise, for each 3.1 Dust and biomass burning event

replicated extinction profile, the Monte Carlo technique . .

gives a value of surface albedo and profile temperature, The analyzed dust event is re.trleved from measurements
based on their respective uncertainties. The direct radia- taken on 3 July 20_14 a.t CIAO. Figure 1 Sh.OWS both the range-
tive effect parameters derived for each profile are then ~ corrected composite signal at 1064 nm (Fig. la) and the lidar
represented with a box plot. It is possible then to quan- aerosol extlnctlon. proﬁle.s at 355 nm '(Flg. 1c) optalned using
tify the effect of the smoothing calculating the uncer-  the Raman technique with an effective resolution of 360m
tainty from the mean and the standard deviation of the and estimated using the elastic lidar technique at two differ-
values of net forcing. ent resolutions (60 and 360 m) and a fixed S value obtained

analyzing climatological data (S =57 sr; Mona et al., 2006).
The Raman extinction profile is noisier than those obtained
with the iterative method. All profiles, calculated with an in-
tegration time of 121 min, in the time window from 19:34 to
21:40 UT show no significant aerosol loading above 5.5 km.
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Figure 3. The direct radiative effect for the dust aerosol case study (a, b) on 3 July 2014 and biomass burning case on 19 June 2013 (c,
d) computed for retrievals obtained with Raman lidar channel smoothed over a window of 360 m, elastic channel at full resolution (60 m)
and elastic channel smoothed over a 360 m window to be compared with the Raman channel . The results, represented as a distribution
of values obtained with the Monte Carlo simulations by the box plots, are calculated at TOA (a, ¢) and SFC (b, d). As is clearly visi-
ble, the larger discrepancy in radiative effects is related mostly to the lidar measurements technique (red arrows), not the data processing

constraints/assumptions (blue arrows).

Figure 3a shows the difference between the estimation
of the direct radiative effect using the two considered lidar
techniques and data processing at the top-of-the-atmosphere
(TOA,; Fig. 3a) and surface (SFC; Fig. 3b). The most impor-
tant contribution to this difference in FLG calculations for
this case is related to the adopted lidar technique (red arrows
in Fig. 3a and b) and not to the effective vertical resolution
determined by the smoothing (blue arrows in Fig. 3a and b).
This characteristic is invariant, switching from TOA (Fig. 3b)
to SFC (Fig. 3a), and is mainly the result of the assumption
of a fixed lidar ratio to estimate the aerosol extinction profile
using the elastic technique.

For the dust case, the net direct radiative effect determined
with the two different lidar techniques differs by 0.7 W m=2
(5%) at SFC and 0.85Wm™2 (6 %) at TOA. In absolute
magnitudes, these net total forcing values are on average
larger than the uncertainty of the direct effect estimated by
IPCC (mean: —05Wm2; range: —0.9 to —0.1). The con-
tribution due to smoothing is negligible in comparison.

The analyzed biomass burning case study is retrieved from
measurements taken on 19 June 2013 at CIAO integrating
the signal temporally from 19:27 to 20:48 UT. The extinc-
tion profiles used as input into the FLG radiative transfer
model were retrieved in the same way as for the dust case.

www.atmos-meas-tech.net/11/1639/2018/

Instead of a climatological lidar ratio value at 355 nm, how-
ever, we used S = 63 sr, obtained by averaging the lidar ratio
profile retrieved with combined Raman—elastic techniques in
the biomass burning layer. In Fig. 1d are the extinction pro-
files obtained from both the Raman and iterative methods
(full resolution and smoothed over 360 m window). Figure 3b
shows the difference in biomass burning direct radiative ef-
fects with respect to the different lidar and data processing
techniques. Similar to the dust case event, the bigger differ-
ences are found to be related to the different lidar techniques
both at SFC (0.05 W m™2 or 5 %; red arrows, Fig. 3d) and at
TOA (0.007 W m~2 or 5 %; Fig. 3c).

The analysis shows how the mixing of different lidar tech-
niques in a specific study or in the routine operations of an
aerosol network at regional or global scale must take into
account the uncertainties related to the assumptions that are
behind the retrieval of the optical properties. This is impor-
tant not only to provide a complete assessment of the total
uncertainty budget for each lidar product but also to enable
a physically consistent use of the lidar data in the estimation
of the direct radiative effect and, likely, for many other user-
oriented applications based on lidar data.
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Figure 4. Same as Fig. 3 but for two cirrus cloud cases (a, b: 17 February 2014; ¢, d: 10 June 2016). The Raman lidar channel is smoothed
over a 420 m window for cirrus on 17 February 2014 and 780 m window for cirrus on 10 June 2010. The net radiative effect is calculated at
TOA (a, ¢) and SFC (b, d). As is clearly visible, in both cases the larger discrepancy in radiative effect is related mostly to the data processing

(blue arrows), not the lidar technique (red arrows).

3.2 Cirrus cloud

Similar to Fig. 1, Fig. 2 shows the composite range-corrected
signal and three extinction profiles retrieved from Raman li-
dar measurements of cirrus clouds with a vertical resolution
of 420 m (thin cirrus, Fig. 2a, c) and 780 m (opaque cirrus,
Fig. 2b, d), and with the elastic channel at two vertical resolu-
tions (60 and 420 m, iterative method for thin cirrus cloud; 60
and 780 m, MPLNET Level 1.5 cloud product algorithm for
opaque cirrus cloud) using a MS corrected lidar ratio of 24 sr
(opaque cirrus) and 26 sr (thin cirrus). The obtained cloud
extinction profiles from the different lidar and data process-
ing techniques are averaged over 42 min, in the time window
from 01:29 to 02:13 UT on 17 February 2014 (thin cirrus)
and from 19:40 to 20:44 UT on 10 June 2010 (opaque cir-
rus).

Figure 4a and b depict the results obtained for cirrus cloud
measurements taken on 17 February 2014. Here we have
a completely different situation with respect to the aerosol
cases. That is, the discrepancies between the Raman and
elastic lidar techniques (red arrows in Fig. 4a, b) are much
smaller than the discrepancies due to the effective vertical
resolution of the extinction coefficient profile both at TOA
and SFC (blue arrows in Fig. 4a, left and right panels). This
is related to what is typically a much stronger extinction co-
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efficient for clouds than for aerosols. In this cirrus cloud case,
the direct radiative effect determined with the two different
lidar techniques differs by about 1.2Wm~2 (16 %) at TOA
and 0.04 W m~2 (4 %) at SFC, while the effect of smoothing
within a window of 420 m provides an additional difference
of 2.7W m~2 (47 %) at TOA and about 0.55 Wm~2 (53 %)
at SFC.

Results from the opaque cirrus cloud (Fig. 4c, d) exhibit a
similar behavior to the thin cirrus cloud, with signal smooth-
ing outweighing the impact of the lidar technique (blue ar-
row). The order of magnitude is similar to the thin cir-
rus cloud, with a difference at TOA between techniques of
4.6Wm~2 (14 %) and 1.6 Wm~2 (11 %) at SEC. In contrast,
the difference in data processing is of 11.8 Wm™2 (39 %)
at TOA and 7.7W m~2 (64 %) at SFC. The results are evi-
dence of the critical need to study cirrus clouds using high-
resolution profiles of the optical properties to provide an ac-
curate estimation of the cloud direct radiative effect.

4 Conclusions and future perspectives
We applied the adapted Fu—Liou—Gu (FLG) radiative transfer

model to quantitatively evaluate how much the lidar and/or
data processing technique influence the net direct radiative

www.atmos-meas-tech.net/11/1639/2018/
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effect exerted by two different upper atmospheric aerosol
layers (dust and biomass burning) and a thin versus opaque
cirrus cloud layer, both at the top of the atmosphere (TOA)
and the surface (SFC). The evaluation has been made using
aerosol—cloud extinction atmospheric profiles as inputs into
the FLG radiative transfer model retrieved using the Raman—
elastic technique and as estimated by lidar elastic measure-
ments only (iterative method for aerosol layers and thin cir-
rus cloud; NASA Micro Pulse Lidar Network Level 1.5 cloud
algorithm for opaque cirrus cloud). Because the Raman mea-
surement retrieval is unstable due to the derivative of the sig-
nal at the numerator (see Eq. 2), a smoothing of the range-
corrected signal is necessary to reduce the associated random
uncertainty. The same processing treatment has also been ap-
plied to the elastic measurement signals.

The results show that the difference in direct radiative ef-
fect between the lidar and data processing/smoothing tech-
niques applied is mostly unvaried at TOA and SFC. For
the dust and biomass burning episodes, the data process-
ing/smoothing does not play a major role, but instead the li-
dar measurement technique is more important with respect to
the final result. This can be explained by the large variability
of the lidar ratio (i.e., the unknown extinction-to-backscatter
ratio used to constrain the single-solution lidar equation)
compared to the assumed value. The opposite is true for
cirrus clouds, where the applied data processing/smoothing
plays a fundamental role in determining sensitivities in the
final results. This is due to the smoothing effect on the ob-
served sharp structures that strongly alters the vertical struc-
ture and the extinction of the cloud.

In summary, we found that for the aerosol cases the main
difference both at TOA and SFC is driven by the respective
lidar technique and not the data processing, with a differ-
ence the the dust direct radiative effect of 0.7 W m~2 (5 %) at
SFC and 0.85Wm™2 (6 %) at TOA. Similarly, for biomass
burning we found a discrepancy of 0.05 W m~2 (5 %) at SFC
and 0.007 W m~—2 (5 %) at TOA. For the cirrus clouds, the
data smoothing is producing larger differences with respect
to the lidar technique. However, using a different data pro-
cessing/smoothing implies a larger difference in cirrus cloud
direct radiative effect. A discrepancy of 0.55 W m~2 (53 %)
is found at SFC, while a discrepancy of about 2.7 W m~>
(47 %) is found at TOA, for the thin cirrus cloud. Similarly
for the opaque cirrus, the discrepancies produced by data
processing/smoothing are larger with respect to the different
lidar technique. At SFC we find a difference of 7.7 W m—2
(64 %) and 11.8 W m~2 at TOA (39 %).

A possible explanation of this different behavior is that
the FLG radiative transfer model calculations are strongly
dependent on the optical depth of the examined atmospheric
layer. At coarse resolution (cloud) the smoothing is produc-
ing changes in the extinction profile that translate into cre-
ation/suppression of ice crystals that have a strong influence
on direct radiative effect. At finer resolution, as in the case of
aerosol case studies, the smoothing is just producing fluctu-
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ations that do not influence the total radiative effect. In this
case, the lidar technique is making a big difference, as an as-
sumed wrong value for lidar ratio (S) that has a much larger
variability with respect to the clouds will amplify or suppress
the aerosol peak, which will translate into a higher/lower ra-
diative effect.

With this study, we wish to draw attention in speculating
how dependent the derived aerosol and cloud radiative effect
is on the lidar measurement and retrieval techniques, as well
as on the data processing constraints/assumptions. This de-
pendence looks increasingly relevant for existing and future
space missions involving lidar instruments, as well as for the
GAW Atmospheric LIdar Observation Network (GALION;
Hoff et al., 2008; Bosenberg et al., 2008) project, which fea-
tures the main objective of federating all existing ground-
based lidar networks to provide atmospheric measurement
profiles of the aerosol and cloud optical and microphysical
properties with sufficient coverage, accuracy and resolution.
For future work, it is imperative for the community to con-
tinue understanding and refining what the limits are of the
each lidar technique along with the related retrieval algo-
rithms adopted in each ground-based network. FLG or any
other well-established radiative transfer model then can be
used as a diagnostic tool to assure data quality through con-
tinued intercomparisons with real observation at ground level
(using flux measurements), in situ (aircraft measurements)
and at TOA (using satellite-based measurements).
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