

Parameters used to calculate $M^2(z)$ in Eq. (16)

$C_n^2(t, z)$, $\epsilon(t, z)$, $\frac{dV(t, z)}{dz}$:

provided by the radar every 15 min

$\alpha^2(t)$ lower layers:

from a 15 min interpolation between the radar–RS1 and radar–RS2 calibration coefficients

$\alpha^2(t)$ upper layers:

from a 15 min interpolation between the radar–RS1 and radar–RS2 calibration coefficients

Parameters used to retrieve $q(z)$ from Eq. (12)

$\theta(t, z)$, $P(t, z)$:

15 min interpolated profiles from RS1 and RS2 $\theta(z)$ and $P(z)$

$q_o(t)$ bottom:

15 min interpolated q from RS1 and RS2 at the lower common level

$q_o(t)$ top:

15 min interpolated q from RS1 and RS2 at the upper common level

$H_{\text{lim}}(t)$:

extracted from the radar C_n^2 profile every 15 min (usually the peak value)

constraint of sign of M at level z and time t :

depends on the sign of $M(z, t)$ (or humidity vertical gradient) for RS1 and RS2

$q(t, z)$ saturated value (to constraint $q(t, z)$):

from a 15 min interpolation of $T(z)$ and $P(z)$ between RS1 and RS2
