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Error analysis: 

Method 1: 

To calculate the error for method 1 we have  

ln 𝐶𝑧 = ln 𝐶0 − 
𝑧2

2𝜎𝑧
2                                                                  (Eq S1) 

From the observations, the gradient is determined and then 𝑞 found using the value of 𝐶0 𝑎𝑛𝑑  𝜎𝑧 obtained from 5 

the intercept and gradient, i.e. 𝑞 = 𝑓(𝜎𝑧 , 𝐶0 ). However, 𝐶0  and 𝜎𝑧   are not truly independent, since in the 

majority of cases in (8) a change in 𝐶0 is accompanied by a change in 𝜎𝑧  (if there is some constraint on the root-

mean square error, RMSE, of the functional fit to the data). This functional relation of 𝐶0 and 𝜎𝑧 suggests that 

traditional methods of error analysis are not appropriate in this case, and so we adopt a Monte-Carlo-simulation 

approach to determine the uncertainty in q. The method is as follows.  10 

We  denote the intercept of the line of best-fit in (8) as ln 𝐶0 = γ, with standard error Eγ and denote the gradient 

(− 1 2𝜎𝑧
2⁄ ) = μ with standard error Eμ. A large number (~5000) of unique straight-line fits were constructed, 

based upon γ, μ, Eγ  and Eμ. We then calculate the mean 𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅  (equivalent to the RMSE of the line of best fit) 

and standard deviation 𝜎𝑅𝑀𝑆𝐸  of the RMSE for all of these fits and selected a large number (~1000) of these 

such that the RMSE of each individual fit is less than 𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅ +  𝜎𝑅𝑀𝑆𝐸   (this avoids combinations of intercept 15 

and gradient that lead to large RMSE values and would be considered poor fits to the data). From each line of 

best-fit, calculate 𝜎𝑧𝑘
and 𝛾𝑘 (k = 1, … , kmax  ; kmax ~ 1000). 

The remaining parameters are sampled as follows. (i) We constructed a series of 𝜎𝑦𝑖
 (i = 1, … , imax ; imax ~1000)  

𝜎𝑦𝑖
=  𝜎𝑦̅̅ ̅ + 𝜎𝑦𝑖

′                                                                        (Eq S2) 

The noise 𝜎𝑦𝑖
′  is produced artificially from normally distributed random numbers and has zero mean, with a 20 

standard deviation corresponding to the standard error of the observed data; 𝜎𝑦̅̅ ̅ is the mean of the observed data. 

(ii) Similarly, we constructed a sample of wind speeds 𝑈𝑗 (j = 1, …, jmax ; jmax ~1000)        

𝑈𝑗 =  𝑈 +  𝑈𝑗
′                                                                         (Eq S3) 

Where, again, the noise 𝑈𝑗
′ is normally distributed noise with zero mean and standard deviation equal to the 

standard error of the observed data and 𝑈  is the mean of the observed data (the observations here referring to 25 

the appropriate flight legs). The assumption is made here that the wind speed 𝑈𝑗  and dispersion parameter 

𝜎𝑦𝑖
 are distributed normally; more sophisticated assumptions, such as that the wind speed obeys a Weibull-type 

distribution, would be possible but are not likely to affect significantly the results). 

We then, computed the mean source of the  𝑖𝑚𝑎𝑥  𝑗𝑚𝑎𝑥  𝑘𝑚𝑎𝑥   (typically 10
9
) reconstructed profiles: 

�̅� =  
∑ ∑ ∑ 𝜋𝜎𝑦𝑖

𝜎𝑧𝑘
𝑈𝑗𝑒𝛾𝑘𝑘𝑚𝑎𝑥

𝑘=1
𝑗𝑚𝑎𝑥
𝑗=1

𝑖𝑚𝑎𝑥
𝑖=1

𝑖𝑚𝑎𝑥 𝑗𝑚𝑎𝑥 𝑘𝑚𝑎𝑥
                                                          (Eq S4) 30 
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The standard deviation of q is then calculated, based upon the 𝑖𝑚𝑎𝑥  𝑗𝑚𝑎𝑥  𝑘𝑚𝑎𝑥   individual samples of q and the 

mean �̅�, as calculated above. 

 

Method 2: 

To calculate the error for this method we have: 35 

𝑞 =  √2𝜋𝐶0𝑈𝜎𝑦𝐻                                                             (Eq S5) 

 

Similar to the above, a series of sources is reconstructed. The wind speed U and dispersion parameter 𝜎𝑦 are 

sampled as for Method 1. In addition, a series of 𝐶0 and H are produced: 

𝐶0𝑖
=  𝐶0

̅̅ ̅ + 𝐶0𝑖

′   (i=1, …, imax)                                                (Eq S6) 40 

𝐻𝑙 =  𝐻 +  𝐻𝑙
′  (l=1, …, lmax)                                                  (Eq S7) 

 

where 𝐶0
̅̅ ̅ and 𝐻 are the mean of the observed concentrations and mixing-layer heights, respectively (in practice, 

there is only one value of H observed.) The added noise 𝐶0𝑖

′  and 𝐻𝑙
′ is (as for Method 1) designed to have zero 

mean, and standard deviation equal to the observed variable. In the case of mixing-layer depth, this is taken to 45 

be 10% of the observed value, typically 100 m. Reconstructed sources are then taken to be 

𝑞𝑖,𝑗,𝑘,𝑙 =  √2𝜋𝐶0𝑖
𝑈𝑗𝜎𝑦𝑘

𝐻𝑙                                                         (Eq S8) 

where the total number of samples 𝑖𝑚𝑎𝑥  𝑗𝑚𝑎𝑥  𝑘𝑚𝑎𝑥  𝑙𝑚𝑎𝑥   is taken to be of the order of a billion. The mean and 

standard deviation are then calculated in the usual manner.  
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Figure S1: (a) radiosonde atmospheric profile taken from Ekofisk during the time of flight B688 (b) dropsonde 

atmospheric profile from flight B727. 
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Figure S2: NOAA 100 km global Sea Surface Temperature (data-set derived from 8 km resolution satellite images) 

for the period of the flights. Air temperatures from radiosoundings and dropsondes. 70 

 


