

Supplement of

Flow rate and source reservoir identification from airborne chemical sampling of the uncontrolled Elgin platform gas release

James D. Lee et al.

Correspondence to: James D. Lee (james.lee@york.ac.uk)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

Error analysis:

Method 1:

To calculate the error for method 1 we have

$$\ln C_z = \ln C_0 - \frac{z^2}{2\sigma_z^2} \tag{Eq S1}$$

From the observations, the gradient is determined and then q found using the value of C₀ and σ_z obtained from the intercept and gradient, i.e. q = f(σ_z, C₀). However, C₀ and σ_z are not truly independent, since in the majority of cases in (8) a change in C₀ is accompanied by a change in σ_z (if there is some constraint on the root-mean square error, RMSE, of the functional fit to the data). This functional relation of C₀ and σ_z suggests that traditional methods of error analysis are not appropriate in this case, and so we adopt a Monte-Carlo-simulation approach to determine the uncertainty in q. The method is as follows.

We denote the intercept of the line of best-fit in (8) as $\ln C_0 = \gamma$, with standard error E_{γ} and denote the gradient $(-1/2\sigma_z^2) = \mu$ with standard error E_{μ} . A large number (~5000) of unique straight-line fits were constructed, based upon γ , μ , E_{γ} and E_{μ} . We then calculate the mean \overline{RMSE} (equivalent to the RMSE of the line of best fit) and standard deviation σ_{RMSE} of the RMSE for all of these fits and selected a large number (~1000) of these such that the RMSE of each individual fit is less than $\overline{RMSE} + \sigma_{RMSE}$ (this avoids combinations of intercept and gradient that lead to large RMSE values and would be considered poor fits to the data). From each line of best-fit, calculate σ_{z_k} and γ_k ($k = 1, ..., k_{max} > 1000$).

The remaining parameters are sampled as follows. (i) We constructed a series of σ_{y_i} (i = 1, ..., i_{max} ; $i_{max} \sim 1000$)

$$\sigma_{y_i} = \overline{\sigma_y} + \sigma'_{y_i} \tag{Eq S2}$$

20 The noise σ'_{y_i} is produced artificially from normally distributed random numbers and has zero mean, with a standard deviation corresponding to the standard error of the *observed* data; $\overline{\sigma_y}$ is the mean of the *observed* data. (*ii*) Similarly, we constructed a sample of wind speeds U_i ($j = 1, ..., j_{max}$; $j_{max} \sim 1000$)

$$U_i = \overline{U} + U'_i \tag{Eq S3}$$

25

15

Where, again, the noise U'_j is normally distributed noise with zero mean and standard deviation equal to the standard error of the *observed* data and \overline{U} is the mean of the *observed* data (the observations here referring to the appropriate flight legs). The assumption is made here that the wind speed U_j and dispersion parameter σ_{y_i} are distributed normally; more sophisticated assumptions, such as that the wind speed obeys a Weibull-type distribution, would be possible but are not likely to affect significantly the results).

We then, computed the mean source of the $i_{max} j_{max} k_{max}$ (typically 10⁹) reconstructed profiles:

$$\overline{q} = \frac{\sum_{i=1}^{l_{max}} \sum_{j=1}^{j_{max}} \sum_{k=1}^{k_{max}} \pi \sigma_{y_i} \sigma_{z_k} U_j e^{\gamma_k}}{i_{max} j_{max} k_{max}}$$
(Eq S4)

The standard deviation of q is then calculated, based upon the $i_{max} j_{max} k_{max}$ individual samples of q and the mean \bar{q} , as calculated above.

Method 2:

35 To calculate the error for this method we have:

$$q = \sqrt{2\pi}C_0 U\sigma_y H \tag{Eq S5}$$

Similar to the above, a series of sources is reconstructed. The wind speed U and dispersion parameter σ_y are sampled as for Method 1. In addition, a series of C_0 and H are produced:

$$C_{0_i} = \overline{C_0} + C'_{0_i} \ (i=1, ..., i_{max})$$
 (Eq S6)

$$H_l = \bar{H} + H'_l \ (l=1, ..., l_{max})$$
 (Eq S7)

where $\overline{C_0}$ and \overline{H} are the mean of the observed concentrations and mixing-layer heights, respectively (in practice, there is only one value of *H* observed.) The added noise C'_{0i} and H'_i is (as for Method 1) designed to have zero mean, and standard deviation equal to the observed variable. In the case of mixing-layer depth, this is taken to be 10% of the observed value, typically 100 m. Reconstructed sources are then taken to be

$$q_{i,j,k,l} = \sqrt{2\pi} C_{0_i} U_j \sigma_{y_k} H_l \tag{Eq S8}$$

where the total number of samples $i_{max} j_{max} k_{max} l_{max}$ is taken to be of the order of a billion. The mean and standard deviation are then calculated in the usual manner.

50

40

45

Figure S1: (a) radiosonde atmospheric profile taken from Ekofisk during the time of flight B688 (b) dropsonde atmospheric profile from flight B727.

Figure S2: NOAA 100 km global Sea Surface Temperature (data-set derived from 8 km resolution satellite images)
for the period of the flights. Air temperatures from radiosoundings and dropsondes.