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S1 PPFD corrections 

The LI-COR LI-190R PPFD sensor is designed to be stationary and level; thus, corrections are required to account for sensor 

tilt under flight conditions. The attitude of the aircraft with respect to the Earth’s surface is characterized by two angles: 

pitch (P) and roll (R). The sensor is not completely level with respect to the aircraft axes, necessitating additional terms to 

account for offsets (eP and eR). The sensor can also experience perturbations to the “direct sun” component, which depends 5 

on the aircraft heading (H, with potential offset eH) and attitude as well as the solar zenith () and azimuth () angles. For 

example, if the sun lies to the south and the aircraft is heading north with a positive pitch (nose pointed upwards), the sensor 

will be pointed more towards direct sunlight than if it were fully level. The sensor can also experience shading under high 

roll or pitch conditions. These effects are evident in the raw flight data (Fig. S3). 

 These considerations give rise to a trigonometric empirical correction for varying Earth-sensor and sun-sensor 10 

angles. The correction takes the following form: 

𝑃𝑃𝐹𝐷𝑐𝑜𝑟𝑟 =
𝑃𝑃𝐹𝐷𝑟𝑎𝑤 cos𝜃

cos[𝜃+(𝑃+𝑒𝑃) cos(𝐻+𝑒𝐻−𝜙)+(𝑅+𝑒𝑅) sin(𝐻+𝑒𝐻−𝜙)]
       (S1) 

The offset angles (eP = 6.1°, eR = 2.6°, eH = 1.4°) are estimated by optimizing the correlation between corrected PPFD and 

cos for two clear-sky flights. Fig. S3 demonstrates the quality of this correction. In addition, PPFD data are discarded when 

roll angles exceed 5° to minimize sensor shading artifacts. 15 

S2 Data gap filling 

The alteration of a time series to eliminate gaps can markedly perturb wavelet-derived fluxes. Linear interpolation is 

adequate for gaps that are small relative to the integral time scale (of order 1 s), but it is a poorer approximation for larger 

gaps. It is also possible to “stitch” a time series together (literally removing the gaps). This method can create scale-

dependent artifacts; in the Fourier analogy, this is similar to removing some portion of a sine wave and thereby creating a 20 

discontinuity. Figure S8 shows example errors introduced through these gap-filling methods for an artificially-gapped 

segment of potential temperature flux observations. Errors are particularly pronounced near gap edges but can propagate 

throughout the whole leg. Note that this is only an example, and the magnitude and breadth of errors will depend on the 

width and location of a gap as well as the nature of the underlying observations. 

 To reduce potential artifacts near gap edges, we have developed an empirical method that we refer to as “covariance 25 

filling.” Covariance filling exploits the fact that we have two time series, x and w, that are expected to co-vary. For 

illustration, let us assume that only x contains gaps. The basic steps are as follows: 

 

1. For each gap of width N, define a region of width 3N centered on the gap. 

2. Calculate the covariance within the region using all valid data pairs. 30 
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𝑐𝑜𝑣(𝑤, 𝑥) = (𝑤 − 𝑤̅)(𝑥 − 𝑥̅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅          (S2) 

Overbars indicate regional means that are restricted to times when both x and w are valid. 

3. Assume the gap contains the same covariance as the region. Then the predicted standard deviation of x within the 

gap, x, is calculated from the identity 

𝑐𝑜𝑣(𝑤, 𝑥) = 𝑟𝑤𝑥𝜎𝑤𝜎𝑥          (S3) 5 

Here, w refers to the standard deviation of w within the gap. The correlation coefficient rwx is assumed equal to 

one, as we will directly scale w below. 

4. Scale w within the gap to create a predicted time series of x and use this to fill the gap. 

𝑥𝑔(𝑡) =
𝜎𝑥

𝜎𝑤
(𝑤𝑔(𝑡) − 𝑤𝑔(𝑡)̅̅ ̅̅ ̅̅ ̅)         (S4) 

 10 

As evident in Figure S8, covariance filling can reduce artifacts in derived fluxes compared to the interpolation and stitching 

methods. We find this to be true in general, based on a Monte Carlo experiment where 10,000 gaps of random size (1 to 600 

points for 10 Hz data) and location were inserted into a potential temperature time series before wavelet flux calculation. 

Median maximum errors in this simulation are 30% for covariance filling, 45% for interpolation and 65% for stitching. 

Covariance filling does carry some limitations. Linear interpolation is used instead in the following cases: 1) a gap is small 15 

(less than 3 points), or 2) more than 50% of data pairs are missing in the region around a gap (due to adjacent gaps), or 3) 

overlapping gaps exist in both time series.  
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Table S1. Summary of flights for the 2016 and 2017 CARAFE missions. 

 

Flight # Flight Date Flight Time (EDT) Destination Flux Legs Tower Overpass
a
 

1 7 Sep 2016 12:25 - 15:59 Pocomoke Forest (MD) 6   

2 9 Sep 2016 11:23 - 15:20 Pocomoke Forest (MD) 13   

3 12 Sep 2016 11:06 - 15:03 Choptank Ag (MD/DE) 9 
USDA-Chop, US-

StJ 

4 14 Sep 2016 11:07 - 15:17 Pine Barrens (NJ) 12 US-Slt, US-Ced 

5 16 Sep 2016 11:21 - 15:10 Pocomoke Forest (MD) 15   

6 22 Sep 2016 11:58 - 16:00 
Prince Frederick (MD)  

Charles County (MD) 

6  

8 
  

7 23 Sep 2016 11:12 - 15:05 Pine Barrens (NJ) 12 US-Slt, US-Ced 

8 24 Sep 2016 10:47 - 14:35 
Great Dismal (VA/NC)  

Alligator River (NC) 

7  

6 US-NC4 

9 26 Sep 2016 11:04 - 15:10 

Atlantic Ocean  

Chesapeake Bay 

Pocomoke Forest (MD) 

4  

5 

2 

  

      

1 3 May 2017 15:00 - 17:27 Pocomoke Forest (MD) 4   

2 4 May 2017 11:12 - 15:03 
Choptank Ag (MD/DE)  

Pocomoke Forest (MD) 

7  

3 

USDA-Chop, US-

StJ 

3 8 May 2017 10:42 - 12:23 Pocomoke Forest (MD) 7   

4 8 May 2017 14:02 - 17:40 Pocomoke Forest (MD) 16 
 

5 9 May 2017 11:01 - 15:05 Pine Barrens (NJ) 16 US-Slt, US-Ced 

6 10 May 2017 11:56 - 14:32 
Prince Frederick (MD)  

Charles County (MD) 

7  

8 
  

7 15 May 2017 12:59 - 15:49 Alligator River (NC) 6 US-NC4 

8 16 May 2017 11:08 - 15:02 
Great Dismal (VA/NC)  

Chesapeake Bay 

4  

6 
  

9 18 May 2017 11:05 - 15:05 Choptank Ag (MD/DE) 10 
USDA-Chop, US-

StJ 

10 19 May 2017 10:04 - 13:29 Pocomoke Forest (MD) 13   

11 26 May 2017 08:51 - 12:55 Alligator River (NC) 11 US-NC4 

aAbbreviations: USDA-Chop = Choptank, MD; US-StJ = St. Jones Preserve, DE; US-Slt = Silas Little, NJ; US-Ced = Cedar 

Bridge, NJ; US-NC4 = Alligator River, NC. More information on towers available at the ameriflux.lbl.gov/ and 

https://www.ars.usda.gov/northeast-area/beltsville-md/beltsville-agricultural-research-center/hydrology-and-remote-sensing-5 
laboratory/docs/research-sites/.  
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Fig S1. (a) Results for the angle of attack response during all speed variation maneuvers during both the 2016 and 2017 

campaigns. (right) Derived vertical wind speed (red) measured during pitching maneuvers and sideslip calibrations showing that 

measured vertical wind speed is unaffected by changes in both pitch (b) and sideslip angle (c). 5 
  

(a) 

(b) 

(c) 
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Figure S2. (a) Example frequency-multiplied vertical wind spectra for a single leg from the 2017 mission. Spectra are calculated 

from wavelet transforms for vertical wind data from the radome (solid blue) and 858 probe (dashed cyan) systems. The black 5 
dashed line denotes the -2/3 slope expected in the inertial subrange. (b) Comparison of sensible heat fluxes for all 2017 flights 

calculated using vertical winds from the radome or 858 probe. Gray dots represent 1 km average fluxes, orange crosses are 

averaged over whole legs. The red line represents the systematic error in 858 fluxes, based on a zero-intercept linear regression 

through all 2017 fluxes. The slope of this line is used to correct for the systematic bias in 2016 fluxes as described in Sect. 2.2. . 

  10 
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Figure S3. (a) 1 Hz PPFD observations from the 12 September 2016 flight under mostly clear-sky conditions. Raw data is shown in 

cyan, corrected/filtered data in blue. (b) Corresponding aircraft attitude (pitch: gray, roll: black) and solar zenith angle (orange 

dash) and cosine of difference of aircraft heading and solar azimuth (red). The latter is the relevant quantity for sun-sensor angle 5 
corrections.  
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Figure S4. Laboratory tests to characterize the time response of the LGR/nXDS15i combination. In these experiments, a miniature 

solenoid valve (The Lee Company) was used to add 5 ms pulses of 100 ppmv CH4 to room air while sampling at 20 Hz. Each pulse 

exhibits an exponential decay (a), and fitting the first 0.3 s of 1300 such decays gives a characteristic e-folding time of 90 ± 16 ms 5 
(b). We also performed a test analogous to that described in Aubinet et al. (2016), wherein the time between pulses is reduced 

(pulse frequency increased) and pulses “smear” together (c). The “cutoff frequency” is defined as the point where the difference 

between maximum and minimum concentrations decreases by 2 (d).  
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Figure S5. Empirical correction factors for conversion of ambient CO2 (blues) and CH4 (reds) observations from humid to dry 

mixing ratios. Correction factors are based on laboratory measurements of calibration gas with varying humidity levels controlled 

by a bubbler/dilution system. Correction factors inherently include both dilution and spectroscopic effects. Also shown for 5 
comparison is the correction factor for dilution only (solid black line) and the default correction factors for the Picarro G1301-m 

(solid blue and red lines). “True H2O” refers to the calibration-corrected Picarro water vapor mixing ratio. 
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Figure S6. Least squares fit lines (a-c) and correlation coefficients (d) for Picarro and LGR dry mixing ratios of CO2, CH4 and 

H2O obtained during flights in 2017. Fits are colored by flight and shown only over the range of mixing ratios observed on each 

flight. Dashed lines in a), b) and c) denote a 1:1 correlation. Fits are not available for flights 6 and 10 due to a malfunction of the 5 
Picarro instrument; in these cases, mission-averaged fit coefficients were used to correct the LGR data. 
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Figure S7. Comparison of stationarity and the ratio of CWT to EA fluxes for all scalars and flight legs of the 2017 mission. 

Stationarity is defined as described in the main text (Eq. (2)) but cast in percentage units. Analogously, the CWT/EA flux ratio is 

defined as 𝟏𝟎𝟎 × |𝟏 − ⟨𝑭𝑪𝑾𝑻⟩ 𝑭𝑬𝑨⁄ |. 5 
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Figure S8. Example of gap-filling effects on wavelet fluxes. The solid black line shows a portion of a sensible heat flux time series 

derived from wavelet transforms. A gap of random size (293 points) and location was inserted into the potential temperature time 

series, and wavelet fluxes were recomputed using one of three gap filling methods: stitching (magenta), linear interpolation (blue), 5 
or covariance filling (green). Perturbations  near the gap edges are evident. Vertical dotted lines indicate the window within which 

fluxes would be discarded due to potential influence from gap filling. The window width is thrice the size of the gap and centered 

thereon. 
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Figure S9. Comparison of random error estimates: (a) ensemble empirical vs semi-theoretical, (b) wavelet-derived vs ensemble 5 
empirical, and (c) wavelet-derived vs semi-theoretical. Errors are shown for all legs and fluxes in the 2017 mission as percentage 

units relative to leg-averaged fluxes. Recall that REturb is a theoretical upper limit, hence we expect (𝑹𝑬𝒕𝒖𝒓𝒃
𝟐 + 𝑹𝑬𝒏𝒐𝒊𝒔𝒆

𝟐 )
𝟏/𝟐

 to 

exceed REFS01 and REwave in cases where turbulence is the dominant driver of total random error. 
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Figure S10. Example of wavelet lag-covariance calculation (Sect. 3.4.2) for a single leg of CO2 fluxes. Gray lines represent 1 Hz 

wavelet cross-covariance functions of vertical wind and CO2 for all 960 points in the time series. The mean of all wavelet cross-

covariances (black) is nearly identical to the cross-covariance calculated on the ensemble dataset (red). 5 
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Figure S11. Illustration of tests for divergence correction variability in time and space. (a) Cartoon depicting the distribution of 

flux legs. For a given flight, two periods separated by 1.5 – 2.2 hours are chosen containing a high and low level leg over the same 5 
horizontal area. Fluxes of CO2, temperature and H2O (DLH and LGR) are used for these tests. For the temporal variability test, 

divergence corrections (Cdiv) for period 1 and period 2 (“sub-periods”) are compared to Cdiv calculated using all four legs (“full”). 

For the spatial variability test, Cdiv for regions 1 and 2 (“sub-regions”) are compared to Cdiv calculated using fluxes from both 

regions (“full”). The latter test is done separately for each period. (b) cumulative distribution of percent deviation of sub-period 

and sub-region Cdiv values from their “full” counterparts (essentially a measure of deviation relative to an “average” divergence 10 
correction). 


