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Abstract. Latent heat flux (LHF) is one of the main contrib-
utors to the global energy budget. As the density of in situ
LHF measurements over the global oceans is generally poor,
the potential of remotely sensed LHF for meteorological ap-
plications is enormous. However, to date none of the avail-
able satellite products have included estimates of systematic,
random, and sampling uncertainties, all of which are essen-
tial for assessing their quality. Here, the challenge is taken
on by matching LHF-related pixel-level data of the Ham-
burg Ocean Atmosphere Parameters and Fluxes from Satel-
lite (HOAPS) climatology (version 3.3) to in situ measure-
ments originating from a high-quality data archive of buoys
and selected ships. Assuming the ground reference to be bias-
free, this allows for deriving instantaneous systematic uncer-
tainties as a function of four atmospheric predictor variables.
The approach is regionally independent and therefore over-
comes the issue of sparse in situ data densities over large
oceanic areas. Likewise, random uncertainties are derived,
which include not only a retrieval component but also con-
tributions from in situ measurement noise and the colloca-
tion procedure. A recently published random uncertainty de-
composition approach is applied to isolate the random re-
trieval uncertainty of all LHF-related HOAPS parameters. It
makes use of two combinations of independent data triplets
of both satellite and in situ data, which are analysed in terms
of their pairwise variances of differences. Instantaneous un-
certainties are finally aggregated, allowing for uncertainty
characterizations on monthly to multi-annual timescales. Re-
sults show that systematic LHF uncertainties range between
15 and S0 Wm™2 with a global mean of 25 Wm™2. Local
maxima are mainly found over the subtropical ocean basins

as well as along the western boundary currents. Investiga-
tions indicate that contributions from g, (U) to the overall
LHF uncertainty are on the order of 60 % (25 %). From an
instantaneous point of view, random retrieval uncertainties
are specifically large over the subtropics with a global av-
erage of 37 Wm~2. In a climatological sense, their magni-
tudes become negligible, as do respective sampling uncer-
tainties. Regional and seasonal analyses suggest that largest
total LHF uncertainties are seen over the Gulf Stream and the
Indian monsoon region during boreal winter. In light of the
uncertainty measures, the observed continuous global mean
LHF increase up to 2009 needs to be treated with caution.
The demonstrated approach can easily be transferred to other
satellite retrievals, which increases the significance of the
present work.

1 Introduction

Exchanges of energy and moisture at the atmosphere—ocean
interface represent a critical coupling mechanism within the
climate system. Specifically, latent heat fluxes (LHFs) signif-
icantly control the surface energy budget and are, in addition
to radiative fluxes, one of the main contributors to heating
and cooling of the oceans. The fifth assessment report of the
Intergovernmental Panel on Climate Change (IPCC) empha-
sizes the role of heat transfer between ocean and atmosphere
in driving the oceanic circulation. Additionally, LHFs modify
the atmospheric stability distribution and trigger convection,
which in turn strongly impacts cloud formation and precipita-
tion. To improve our understanding of the global energy and
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water cycle variability as well as model simulations of cli-
mate variations, it is of great importance to accurately mea-
sure LHF over the global oceans at the highest possible reso-
lution (e.g. Chou et al., 2004). The need for accurate surface
fluxes has, for example, been picked up by the World Cli-
mate Research Programme (WCRP), the Global Energy and
Water Cycle Experiment (GEWEX), and the Climate Vari-
ations (CLIVAR) Science Steering Group (e.g. Curry et al.,
2004). Liu and Curry (2006), for example, stress that accu-
rate LHFs are essential for a correct forcing of ocean models
and for evaluating numerical weather prediction. Addition-
ally, reliable long-term global LHF data records represent
a substantial input to assimilation experiments, for instance
the oceanic synthesis performed by the German contribu-
tion to Estimating the Circulation and Climate of the Ocean
(GECCO and GECCO2; e.g. Kohl and Stammer, 2008; Kohl,
2015).

Several LHF data records exist, which differ in instrumen-
tation, creation process, data density, and spatial and tempo-
ral extent. These are based on either in situ measurements,
reanalysis, remotely sensed data, or a merged version of
these. Apart from isolated direct in situ measurements us-
ing e.g. sonic anemometers, all data methods share a need
for bulk flux algorithms such as Coupled Ocean—Atmosphere
Response Experiment (COARE) 3.0a (Fairall et al., 2003)
to derive LHF. The near-surface wind speed (U), the satu-
ration specific humidity at the sea surface (gs), and the near-
surface specific humidity (g,) serve as input bulk parameters,
on which the parameterized LHFs primarily depend.

In particular, satellite climatologies have a vast potential
for climate research applications, as they incorporate data
with high spatial resolution, cover time periods up to sev-
eral decades, and provide a complete oceanic coverage over
ice-free regions. Of these, the Japanese Ocean Flux data sets
with Use of Remote Sensing Observations (J-OFURO) satel-
lite climatology (Kubota et al., 2002), the Goddard Satellite-
based Surface Turbulent Heat Flux (GSSTF) version 3 prod-
uct (Shie et al., 2012), the updated version of the French Re-
search Institute for Exploitation of the Sea IFREMER) tur-
bulent flux estimates (Bentamy et al., 2013), the SeaFlux ver-
sions 1 and 2 data sets (Clayson et al., 2015), and the Ham-
burg Ocean Atmosphere Parameters and Fluxes from Satel-
lite (HOAPS) climatology (Andersson et al., 2010; Fennig
et al., 2012), amongst others, include LHF-related param-
eters. The HOAPS data set is a completely satellite-based,
single-source climatology of precipitation, evaporation, re-
lated turbulent heat fluxes, and atmospheric state variables
over the global ice-free oceans. The usefulness of HOAPS
for climatological applications has been demonstrated in nu-
merous intercomparison studies and promising results have
been published by Bentamy et al. (2003), Bourras (2006),
Klepp et al. (2008), Winterfeldt et al. (2010), Andersson et al.
(2011), and Stendardo et al. (2016). In the framework of as-
sessing sea surface freshwater fluxes, Romanova et al. (2010)
conclude that HOAPS version 3 is well suited for global ap-
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plications and serves as an important and independent data
set that should be included in future ocean syntheses.

Independent of the data source, all global LHF time se-
ries are subject to uncertainties, often of unknown magni-
tudes. On the one hand, in situ LHF climatologies, which in-
clude data from buoys and ships, are known to contain biases
(e.g. Wang and McPhaden, 2001), to be of variable quality,
and to be unevenly sampled. Although research vessel mea-
surements of e.g. g, are expected to be of good quality (e.g.
Roberts et al., 2010), they are regionally limited, which also
accounts for data from moored buoys (Weller et al., 2008). Is-
sues related to poor data densities over the Southern Ocean,
amongst others, are for example stressed in Yu and Weller
(2007), Bourassa et al. (2013), and Prytherch et al. (2014).
As a consequence, this impedes a meaningful discussion re-
garding the quality of LHF in this climatologically impor-
tant region (Josey, 2011). On the other hand, long global
reanalysis products such as ERA-Interim (Dee et al., 2011)
and NCEP-NCAR (Saha et al., 2010) have a high temporal
resolution but are not capable of resolving local-scale pro-
cesses due to a lack of spatial detail (Winterfeldt et al., 2010).
Specifically over data-sparse regions, more weight is given to
the atmospheric model, which is also prone to uncertainties
(e.g. Gulev et al., 2007). Thus, atmospheric reanalysis suffers
from problems in their freshwater budgets (e.g. Schlosser and
Houser, 2006; Trenberth et al., 2007).

Similarly, remotely sensed LHF climatologies are also
prone to uncertainties. In addition to calibration uncertain-
ties and aliasing problems (Bentamy et al., 2003), uncertainty
sources either originate from uncertainties in the parameter-
ization (Brunke et al., 2002, 2003) or may be linked to the
inaccuracy of the input bulk variables (Bourassa et al., 2013).
In the framework of an oceanic LHF assessment, Brunke
et al. (2011) conclude that the uncertainty of HOAPS 3 LHF
is to a great extent caused by the bulk variables due to inac-
curacies of their individual retrievals. Liu and Curry (2006)
reason similarly, while assessing discrepancies of remotely
sensed and reanalysis LHF during the 1990s. Romanova et al.
(2010) recall that specifically early satellite-based products
contain large uncertainties, as also shown by investigations
regarding the hydrological cycle by Mehta et al. (2005). Fi-
nally, irregular sampling from space introduces sampling un-
certainties, which may locally become substantial (e.g. Gulev
et al., 2007). A current overview study by Loew et al. (2017)
highlights the necessity of a thorough satellite-based data
validation and pools different approaches across communi-
ties.

To date, disagreements and/or weaknesses in data sets are
often revealed by performing intercomparison studies, such
as those presented by Kubota et al. (2003), Chou et al. (2004),
and Yu et al. (2011). Another example including HOAPS 3
LHEF is presented in Andersson et al. (2011), who show con-
siderable differences on a local scale. Similar findings are
published in Iwasaki et al. (2014), who compare HOAPS 3
and other data sets to a reference climatology. Results in-
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dicate that differences are largest close to 15° N-S, which
mostly arise from differing g,.

Generally, such intercomparison studies are valuable for
the research community. By this, however, the source of ob-
served differences remains unknown and can therefore not
be attributed to a specific data set. To better quantify the
quality of satellite-based data sets, Prytherch et al. (2014) re-
cently emphasized that comprehensive uncertainty estimates
are valuable for climate research purposes. To date, none of
the above-listed, satellite-based data records are accompa-
nied by LHF-related uncertainty estimates, which hampers
a quality assessment of the air—sea fluxes and related pa-
rameters. Such uncertainty assessments go beyond conven-
tional LHF intercomparison studies, as they allow for quan-
tifying the data’s accuracy (systematic uncertainty) and pre-
cision (random uncertainty). Consistency among two data
sets would, for example, be achieved when independent mea-
surements agree within their individual uncertainties; Imm-
ler et al. (2010) formulated the benefit of such an approach.
Assimilation schemes like GECCO require such uncertainty
information prior to assimilating respective fields in ocean
models.

Few studies have taken on the challenge of uncertainty as-
sessments in context of LHF-related climatologies. Whereas
random uncertainties of ship-based LHF-related parameters
are, for example, discussed in Gleckler and Weare (1997),
Kent and Berry (2005), and Kent and Taylor (2006), system-
atic uncertainties are assessed in, for example, Kent et al.
(1993) and Kent and Taylor (1996). An example of an in situ
LHF climatology incorporating uncertainty estimates (based
on optimal interpolation) is given by NOCS v2.0 (Berry
and Kent, 2009). A satellite-related uncertainty assessment
is published by Brunke et al. (2011), who decomposed over-
all biases with respect to direct in situ records into a bulk
variable and a residual component, the latter of which also
includes the measurement uncertainty. Recently, Kinzel et al.
(2016) presented an elegant approach for decomposing ran-
dom uncertainties inherent to independent data sets using
triple collocation (TC). Apart from NOCS v2.0, none of the
remaining LHF-related climatologies, irrespective of their
data source, include comprehensive uncertainty information
appended to the data.

In the framework of the German Research Founda-
tion (DFG) initiatives “FOR1740” and “FOR21740” (“At-
lantic Freshwater Cycle”, http://for1740.zmaw.de/, last ac-
cess: 20 March 2018), the lack of uncertainty information
inherent to satellite data is overcome by specifying system-
atic, random retrieval, and sampling uncertainties exclusively
associated with HOAPS 3.3 LHF-related parameters. This
paper not only introduces the methodology but also demon-
strates its application to arrive at HOAPS 3.3 LHF-related
uncertainty estimates.

Whereas Sect. 2 introduces the data sets, Sect. 3.1 de-
scribes the procedure of matching HOAPS pixel-level data
to in situ records (double collocation analysis). This results
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in estimates of systematic uncertainties of LHF-related pa-
rameters, assuming the ground reference to be bias-free. It
is assumed that these biases depend on the unique combina-
tion of four atmospheric predictor variables (q,, U, sea sur-
face temperature, and vertically integrated water vapour), all
of which are observed simultaneously from space. The re-
sults from double collocation are then binned as a function
of these four state variables (regionally independent multi-
dimensional bias analysis, Sect. 3.2), resulting in bin-wise
mean systematic uncertainties and, owing to their spread,
random uncertainties. The random uncertainty estimates are
not only related to the satellite retrieval but also include
contributions from the in situ source as well as the spatial
and temporal matching. They can be decomposed into in-
dividual uncertainty components (random error decomposi-
tion, Sect. 3.3) following the method published in Kinzel
et al. (2016). The approach is based on two combinations
of data triplets originating from three independent sources
(HOAPS data, in situ data, and multiple triple collocation,
MTC), which are evaluated in terms of their variances of dif-
ferences and permit the isolation of the required retrieval-
related uncertainty component. Rigorous error propagation
to the instantaneous LHF-related data is performed subse-
quently, which allows us to quantify both systematic and ran-
dom retrieval uncertainties of LHF themselves (Sect. 3.4).
Aggregating these instantaneous uncertainty measures al-
lows for presenting monthly to multi-annual uncertainty dis-
tributions. Specifically regarding monthly mean sampling
uncertainties (Sect. 3.5), the approach by Tomita and Kub-
ota (2011) is employed. All uncertainty components are pre-
sented in Sect. 4, which includes regional and seasonal differ-
entiations. Section 4 also comprises a trend analysis apply-
ing the derived uncertainty estimates. A summary and a brief
outlook regarding ongoing work are provided in Sect. 5.

The introduced methods can easily be transferred to other
retrievals, highlighting the value of this study. The described
sequence particularly allows for assigning LHF-related sys-
tematic and random uncertainties to instantaneous HOAPS
3.3 satellite data, which are not available for any other satel-
lite data record to date. It extends the procedure described
in Kinzel et al. (2016), as it is not restricted to g,-related un-
certainties, presents aggregated uncertainty distributions, and
(next to random uncertainties) captures both systematic and
sampling components.

2 Data
2.1 HOAPS 3.3 pixel-level data records

Apart from the sea surface temperature (SST), all HOAPS
parameters are derived from intercalibrated Special Sensor
Microwave/Imager (SSM/I) and Special Sensor Microwave
Imager/Sounder (SSMIS) passive microwave radiometers,
which are installed aboard the polar orbiting satellites of
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the United States Air Force Defense Meteorological Satel-
lite Program (DMSP). HOAPS provides consistently derived
global fields of freshwater-flux-related parameters. Regard-
ing sensor specifications and orbital paths, the reader is re-
ferred to e.g. Andersson et al. (2010).

Here, the focus lies on HOAPS 3.3, which has been pro-
duced as an extension to the HOAPS 3.2 data set (Ander-
sson et al., 2010; Fennig et al., 2012) in the framework of
the ongoing DFG research activity. Its extensive documen-
tation is available online (Fennig et al., 2013). HOAPS 3.3
covers the time period from 1987 to 2015, during which a to-
tal number of nine satellite instruments were in operational
mode (F8-F18). The spatial resolution of the pixel-level data
is channel dependent. For SSM/I, it varies from 69 km by
43 km (19 GHz channel) to 37 km by 28 km (37 GHz). Like-
wise, it ranges from 74 km by 47 km (19 GHz channel) to
41 km by 31km (37 GHz) for SSMIS sensors. Compared to
HOAPS 3.2, HOAPS 3.3 has been temporally extended up
to 2015 and is based on a pre-release of the CM SAF SSM/I
and SSMIS FCDR. This reprocessing included a homoge-
nization of the radiance time series by means of an improved
inter-sensor calibration with respect to the DMSP F11 instru-
ment. Earth incidence angle normalization corrections were
applied, following a method described by Fuhrhop and Sim-
mer (1996). Since the HOAPS 3.1 release, HOAPS is hosted
by the EUMETSAT Satellite Application Facility on Climate
Monitoring (CM SAF), whereupon its further development is
shared with the University of Hamburg and the Max Planck
Institute for Meteorology (Hamburg). In this study, the pixel-
level HOAPS 3.3 data in sensor resolution are used, which
implies that no aggregation for gridding purposes has been
applied.

HOAPS 3.3 g, relies on a direct, four-channel retrieval
algorithm by Bentamy et al. (2003), which is based on
a modified version of the two-step multi-channel regression
model by Schulz et al. (1993) and its refinement by Schliis-
sel (1996). One thousand globally collocated pairs of SSM/I
brightness temperatures (TBs) and ship data between 1996
and 1997 were used to estimate the new values for the coef-
ficients in the Schulz model.

To account for the non-linearity of the problem, the
HOAPS 3.3 U algorithm uses a neural network approach
with three layers after Krasnopolsky et al. (1995) to derive
the wind speed at 10 ma.s.l. The network was trained with
a composite data set of buoy measurements, which was com-
piled using matchups of SSM/I F11 TBs and near-surface
wind speed measurements from the National Oceanographic
and Atmospheric Administration (NOAA) National Data
Buoy Center (NDBC) and the Tropical Atmosphere Ocean
(TAO) array between 1997 and 1998. Radiative transfer sim-
ulations based on radiosonde profiles served as input for the
training data set (Andersson et al., 2010).

HOAPS 3.3 SST is based on the AVHRR Pathfinder Ver-
sion 5.2 and is obtained from the US National Oceanographic
Data Center and the Group for High Resolution Sea Sur-
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face Temperature (http://pathfinder.nodc.noaa.gov, last ac-
cess: 20 March 2018). The data are an updated version of the
Pathfinder Version 5.0 and 5.1 collection described in Casey
etal. (2010). A static bias correction of +0.17 K has been ap-
plied to HOAPS 3.3 SST data in order to revert the Pathfinder
Version 5.2 skin correction and thus achieve consistency with
Version 5.0 used in HOAPS 3.2.

HOAPS 3.3 sea surface saturation specific humidity g is
derived by applying the Magnus formula (Murray, 1967) to
SST, while accounting for a constant salinity correction fac-
tor of 0.98.

HOAPS 3.3 LHF is based on the COARE 2.6a bulk flux
algorithm. With minor modifications of physics and param-
eterizations, the algorithm is published as COARE 3.0a by
Fairall et al. (2003). It includes atmospheric stability calcu-
lations, which necessitate surface air temperatures as input.
These are estimated by assuming a constant relative humid-
ity of 80 % (Liu et al., 1994) and air—sea temperature dif-
ference of 1 K (Wells and King-Hele, 1990). A constant sea
surface pressure of 1013.25 hPa is prescribed within the bulk
flux algorithm. COARE 3.0 is widely accepted within the sci-
entific community; its benefits are for example presented in
the framework of an intercomparison study by Brunke et al.
(2003).

2.2 DWD-ICOADS data archive

Hourly in situ measurements of U, g5, and g, (bulk param-
eters, as of now) have been provided by the Marine Climate
Data Center of the German Meteorological Service (DWD),
supervised by the Marine Meteorological Office (Seewetter-
amt, SWA). While data prior to 1995 are excluded due to
a comparatively poor in situ data coverage, the data set used
here includes measurements up to 2008. It comprises global
high-quality shipborne measurements as well as data pro-
vided by drifting and moored buoys. In case of data gaps
within the SWA archive, the in situ database was extended
at SWA by available International Comprehensive Ocean—
Atmosphere Data Set ICOADS) measurements (Version 2.5,
Woodruff et al., 2011). A comprehensive literature overview
on research applications involving ICOADS data is given
by Freeman et al. (2017). Both SWA and ICOADS records
contain hourly global measurements obtained from ships,
moored and drifting buoys, and near-surface measurements
of oceanographic profiles. Several quality checks were per-
formed at SWA prior to using the merged DWD-ICOADS
data, which resulted in quality index assignments to each ob-
servation. Details regarding the flagging procedures carried
out at SWA are given in Kinzel et al. (2016).

In preparation for the uncertainty analyses, further filter-
ing and correcting procedures to both ship and buoy data
were carried out. Regarding ship records, annual lists of vol-
untary observing ship (VOS) metadata (Kent et al., 2007)
were employed. Most of the supplementary buoy metadata
were extracted from the Data Buoy Cooperation Panel, which
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particularly includes a fleet of moored buoy arrays oper-
ated by NDBC. Metadata of the Global Tropical Moored
Buoy Array, such as TAO-TRITON (Pacific Ocean), PI-
RATA (Atlantic Ocean), and RAMA (Indian Ocean), were
obtained from the Pacific Marine Environment Laboratory
(PMEL).

ICOADS VOS estimates of g, are based on wet bulb tem-
perature measurements, typically using mercury thermome-
ters, which are often exposed in either (ventilated) screens or
sling psychrometers (Kent et al., 2007). g, is eventually de-
rived by applying the psychrometric formula. By contrast, g,
estimates of buoys originate from measurements of air tem-
perature and relative humidity. For this study, g, of both VOS
and buoys was not corrected to the HOAPS 3.3 reference of
10ma.s.l., assuming neutral stratification. A discussion re-
lated to this approach is published in Kinzel et al. (2016). It is
in line with Prytherch et al. (2014), who conclude that a con-
version to 10 ma.s.l. (neutral stability) substantially adds to
the noise in the resulting in situ g,. The aspect of correcting
qa with respect to height and stratification is also elucidated
in Bentamy et al. (2003) and Bentamy et al. (2013), whereas
correction effects are presented in Kent et al. (2014). The au-
thors for example quantify the height correction effect due to
continuously increasing measurement platform heights be-
tween 1971 and 2006 to be 0.11 gkg~!. However, this effect
is masked by bias corrections associated with measurement
techniques, which are thought to be 2-3 times larger.

DWD-ICOADS VOS U are either measured using
anemometers (likewise for buoys) or are estimated from the
sea state, depending on the preference of the country re-
cruiting the VOS (Kent et al., 2007). By means of the mea-
sured wind speed and direction, the true wind speeds are de-
rived considering the ship’s speed and direction. If a specific
anemometer height was not given, it was estimated from the
annual global mean height difference with respect to the ther-
mometer platform. For each year, this single height differ-
ence value is based on all contributing ship records with com-
plete metadata information. Prior to 2002, no thermometer
heights were available; consequently, the height difference
was set to 6 m (average between 2002 and 2008). In case
both sensor heights were unknown, the linear fits shown in
Table 4 of Kent et al. (2007) were used to derive anemometer
heights based on available ship length metadata. It was as-
sumed that these ship-type-dependent linear fits (Kent et al.,
2007, their Fig. 11) introduce negligible uncertainties to the
sensor height derivation. Given the anemometer heights of
both VOS and buoys, in situ wind speeds were corrected to
the HOAPS 3.3 standard height of 10 ma.s.l. to remove in-
homogeneities, using the iterative equivalent neutral stability
approach of Fairall et al. (2003). With the exception of (stable
stratified) upwelling regimes or local instabilities, the equiv-
alent neutral stability assumption is valid over vast regions of
the open oceans. The correction using a neutral wind equiv-
alent profile has been suggested by, for example, Shearman
and Zelenko (1989). It is argued that in the case of VOS, the
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omission of a correction would lead to a positive wind speed
bias, as the average wind sensor height is given by 18 m (Kent
et al., 2014). By contrast, buoy U would be low biased.

VOS SST measurement techniques differ in terms of plat-
form, measurement depth, and extent of automation. Strictly
speaking, in situ SST are sub-surface temperatures and thus
differ from the HOAPS 3.3 Pathfinder SST, which are treated
as a skin SST for the surface flux calculations. This necessi-
tates an in situ cool-skin correction as a function of wind
speed, following Donlon et al. (2002). Their Eq. (2) was
applied, omitting all records subject to wind speeds below
2ms~! (corrected to 10ma.s.l.), as the exponential fit in-
troduces additional uncertainty for very calm conditions. On
average, the SST correction reduced the DWD-ICOADS SST
by approximately 0.17 K. Moreover, the warm layer part of
the COARE 3.0 algorithm is not implemented in HOAPS
3.3 due to the lack of a continuous diurnal cycle information
on the surface radiation budget from the SSM/I and SSMIS
measurements. To be directly comparable to the in situ coun-
terpart, all in situ measurements taken during local daytime
were excluded. As only nighttime in situ measurements dur-
ing non-calm conditions were considered, the seawater tem-
perature gradient within the uppermost metres of the water
column is thought to be negligible. A SST correction with
respect to the sensor depths was therefore omitted for both
VOS and buoys, independent of the measurement platform.

All VOS data processing described above was carried
out for research vessels (so-called “special ships”) and mer-
chant vessels only due to vast data amounts and in order
to minimize in situ uncertainties. In case of MTC analysis
(Sect. 3.3), buoy records were excluded to ensure having
a consistent, globally distributed data set as the ground ref-
erence for the random decomposition procedure. It is argued
that the vast amount of remaining triplets authorizes this re-
striction.

Despite strict filtering and correcting procedures, in situ
measurement uncertainties related to sensor types, measure-
ment heights and positions, and solar radiation contamina-
tion may remain (e.g. Bourassa et al., 2013). Assessments
regarding the quality of the reference data are beyond the
scope of this article. The in situ data basis is therefore con-
sidered as the bias-free ground reference. This assumption
is in line with calibration and validation approaches of Ben-
tamy et al. (2003), Jackson et al. (2009), and Bentamy et al.
(2013), amongst others. As will be shown in Sect. 3.2, the
HOAPS systematic uncertainties presented in this work are
interpreted as upper limit estimates. Therefore, the assump-
tion of a bias-free ground reference does not violate our main
conclusions, although a small contribution to the systematic
uncertainties may be caused by the in situ reference.

Atmos. Meas. Tech., 11, 1793-1815, 2018
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3 Methodology

This section describes the technical background for deriv-
ing systematic, random, and sampling uncertainties inher-
ent to HOAPS 3.3. In the first step, HOAPS LHF-related
pixel-level records are matched to DWD-ICOADS measure-
ments double collocation analysis, Sect. 3.1). Assuming the
ground reference to be bias-free, this allows for investigat-
ing the systematic uncertainty structure as a function of
four atmospheric state variables, namely g,, U, sea surface
temperature, and vertically integrated water vapour (multi-
dimensional bias analysis, Sect. 3.2). Resulting random un-
certainties, however, are not exclusively satellite-related, as
they include contributions from in situ measurement noise
and collocation. They can be corrected for by following the
recently published approach of Kinzel et al. (2016) (random
uncertainty decomposition, Sect. 3.3). The method is based
on two combinations of independent data triplets including
both pixel-level HOAPS 3.3 data and in situ records, which
are analysed in terms of their variances of differences. As
a consequence, all HOAPS LHF-related instantaneous data
are equipped with both systematic and random retrieval un-
certainty estimates, which can be aggregated for gridding
purposes and displayed as, for example, monthly or multi-
annual means. When aggregating, sampling uncertainties ad-
ditionally become important. However, it will be shown that
they receive considerably less weight compared to the sys-
tematic uncertainty measures (Sect. 3.5). The sequence of
analyses allows for a complete HOAPS 3.3 uncertainty char-
acterization of LHF-related parameters on various timescales
(Sect. 4), which goes beyond what has been published on
LHF-related climatologies to date.

3.1 Double collocation analysis

In preparation for uncertainty calculations, a double collo-
cation analysis is performed for the time period of 2001-
2008, resulting in paired matchups of LHF-related HOAPS
3.3 and in situ data. Although HOAPS 3.3 lasts until 2015,
collocations between 2009 and 2015 were not performed, as
the DWD-ICOADS data archive only lasts until 2008. The
collocated pairs are based on the so-called nearest neigh-
bour approach; that is, HOAPS 3.3 pixels are assigned to
respective in situ observations closest in time and space.
Parameter-independent collocation criteria of Ax =50km
and At =60 min are chosen. These are more restrictive than
those derived in, for example, Kinzel (2013). Due to the vast
number of available matchups this is justifiable and ensures
that strong spatial and/or temporal gradients associated with
fronts are discarded from further analysis.

Figure la presents the resulting collocation density for
2001-2008, exemplarily for g,. Matchups mainly occur in
coastal regions (associated with buoys) and along major ship-
ping lanes. By contrast, the Southern Ocean considerably
lacks high-quality in situ measurements. The number of U
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and g5 collocations exceeds those shown in Fig. la. For
brevity, their distributions are not shown.

Figure 2a—d show exemplary scatter density plots of the
ga bias (2001-2008) as a function of the atmospheric state
parameters g, (“Hair”), U (“Wind”), SST (“Asst”), and ver-
tically integrated water vapour (“WVPA”), resulting from the
double collocation analyses. Overall, 13.8 million matchups
contribute to each subplot. The illustrated bins are not
equidistant; in fact, their width depends on the data den-
sity of the matchups. This implies that 5 % of all collocated
pairs are assigned to a single bin. Analogously to Fig. 2, one-
dimensional bias analyses are performed for both dU and dgs
(not shown).

For g, values between 7 and 12gkg™!, HOAPS 3.3
overestimates near-surface specific humidities (see Fig. 2a).
Overestimations are also observed in the inner tropics, where
ga is on the order of 20 gkg™!. In return, biases are negative
for polar (< 5 gkg™") and subtropical (12-17 gkg ') humid-
ity regimes. The latter region is also subject to largest ran-
dom uncertainties, which exceed 2 gkg™'. See Kinzel et al.
(2016) and Prytherch et al. (2014) for more details on the
analysis of HOAPS 3.3 g, and its resemblance to GSSTF
3 ga (Shie et al., 2012). The spatial distribution of these g,
biases are shown in Fig. 1b. Specifically the underestima-
tions (overestimations) over subtropical (tropical) oceans are
well resolved. Humidity biases as a function of wind speed
are illustrated in Fig. 2b. The distribution is somewhat linear,
where low (high) wind regimes are overestimated (underes-
timated) in HOAPS 3.3. In contrast to the remaining atmo-
spheric state parameters, the random uncertainty decreases
fairly linearly with increasing wind speeds. The g, bias dis-
tribution as a function of SST (Fig. 2c) resembles that of
the g,-dependent distribution (Fig. 2a) regarding regimes of
over- and underestimation. A dependency of dg, on the to-
tal integrated water vapour (Fig. 2d) shows only few dis-
tinct features. Most matchups coincide with values below
20kgm~2. With the exception of smallest values, these re-
sult in positive biases with respect to HOAPS 3.3. As the
abscissa and ordinate variables in Fig. 2 are correlated, we
investigated the contribution from artificial biases by illus-
trating dg, as a function of in situ g,, U, and SST. Results
indicate that the percental difference of the mean bin values
of HOAPS and DWD-ICOADS, range between 6 and 10 %
(not shown). We are therefore confident that our approach is
robust. However, we are aware of these pseudo-biases due
to errors in the in situ records (e.g. Stoffelen, 1998), specif-
ically in the tail regimes, which consequently leads to an in-
crease of the HOAPS uncertainty estimates presented in Sect
4. Two-sided regression analyses could further reduce these
spurious biases, which are envisaged for future HOAPS un-
certainty characterizations.

A comparison of Fig. 2a and b indicates that the sim-
ple one-dimensional bias analyses may be misleading when
it comes to HOAPS 3.3 g,-related uncertainty characteriza-
tions. Average g, off the Arabian Peninsula, for example,
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Figure 1. (a) Global map showing the distribution of collocated g, measurements (HOAPS vs. high-quality in situ) between 2001 and
2008. Overall, more than 13.8 million matchups contribute to this density map. Note that the colour bar is logarithmic. (b) Two-dimensional
illustration of the near-surface humidity biases dga (HOAPS minus in situ, 2001-2008) shown in Fig. 2. Note that the colour bar is not linear.
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Figure 2. Scatter density plots of g, bias (HOAPS 3.3 minus in situ, gkg™ l) as a function of (a) g, (“Hair”), (b) U (“Wind”), (¢) SST (“Asst”),
and (d) vertically integrated water vapour (“WVPA”), based on global double collocations between 2001 and 2008. The black squares and
error bars represent bin-averaged systematic uncertainties (significant at the 95 % level) and their SDs, whereby each bin contains 5 % of
all double collocated matchups. Note that the bars include random uncertainty contributions from the satellite retrieval, the collocation
procedure, and the in situ measurement uncertainty. Panel (a) is a revised version of Fig. 3 published in Kinzel et al. (2016).

are on the order of 14-15 gkg™! (not shown). According to
Fig. 2a, this is associated with a HOAPS 3.3 g, underes-
timation, as is also seen in Fig. 1b. At the same time, cli-
matological mean wind speeds are as low as 3-5ms~! (not
shown), which goes along with a HOAPS 3.3 g, overesti-
mation (Fig. 2b). This is no contradiction, but rather indi-
cates that the HOAPS 3.3 g, retrieval seems to encounter
challenges for specific humidity and wind regimes. Further-
more, a constraint to one-dimensional analyses implies for
example that parts of the random uncertainties illustrated
in Fig. 2a (bars) receive a systematic component in Fig. 2b
(squares). This conclusion motivates to proceed with multi-
dimensional bias analyses, where all possible atmospheric
states, i.e. combinations of the four chosen atmospheric state
parameters, are accounted for simultaneously. This approach
finally allows for separating systematic from random uncer-
tainties. Results illustrated in Fig. 2 can therefore be con-
sidered as a preliminary stage of the four-dimensional bias
analyses introduced in Sect. 3.2, where each of the four at-
mospheric state variables (Fig. 2, x axes) represent one di-
mension.

Atmos. Meas. Tech., 11, 1793-1815, 2018

3.2 Multi-dimensional bias analyses

The bulk formula for LHF is given by
LHF = pa LyCeU (g5 — qa), (1

where p, is the density of moist air and Ly the latent heat
of vaporization. p, is derived as a function of HOAPS 3.3 ¢,
and near-surface air temperature. Likewise, Ly is computed
simultaneously as a function of HOAPS 3.3 SST. Assuming
uncertainties in p, and Ly to be negligible and according
to standard error propagation, the overall LHF uncertainty is
a function of the systematic and random uncertainties intro-
duced by the remaining parameters.

As to the dalton number Cg, the estimates of Fairall
et al. (2003) are applied by assigning 5 % (10 %) of system-
atic uncertainty of Cg for wind speeds smaller (larger) than
10ms~!. For wind speeds exceeding 20ms ™!, the estimate
of Gleckler and Weare (1997) of 12 % is taken on. Indepen-
dently of U, random uncertainties of 20 % are assigned, as
proposed by Gleckler and Weare (1997).

In case of U, g5, and g,, the uncertainties are assumed to
depend on the concurrent atmospheric state. The combina-
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tion of g,, U, SST, and vertically integrated water vapour is
thought to represent the concurrent atmospheric state best.
Therefore, the one-dimensional consideration presented in
Sect. 3.1 is expanded by creating four-dimensional look-up
tables (LUTSs) including 20 entries, respectively. The dimen-
sion is reflected in the exponent, whereas its base represents
the number of bins per dimension. As described in Sect. 3.1,
these bins are not equidistant. In case of dg,, bin means of
each of the four dimensions are indicated by the x values of
the black squares shown in Fig. 2a—d, respectively. The val-
ues of all four-dimensional vectors are essential for assign-
ing instantaneous, absolute differences (HOAPS 3.3 minus
in situ) to the correct LUT. By averaging the content of each
bin, systematic and total random uncertainties finally result
as a function of the four atmospheric state parameters. The
approach is therefore geophysically motivated, but imple-
mented in a statistical manner. Processing absolute measures
of the observed differences allows for moving from a simple
bias analysis to an uncertainty characterization. The resulting
systematic uncertainties shown throughout Sect. 4 can there-
fore be treated as an upper boundary of a more simple bias
distribution.

The multi-dimensional uncertainty characterization ap-
proach overcomes the issues introduced by data-sparse re-
gions, such as the Southern Ocean and the tropical oceans
(e.g. Kent and Berry, 2005). Here, it is knowingly turned
away from the dependency on matchup density, which im-
plies that the LUTs are valid on a global scale. Due to the
immense data availability, their pairwise input biases are con-
fined to matchups from 2001 to 2008 (dg,, dU) and from
1998 to 2001 and 2006 to 2008 (dgs). A thorough elucida-
tion of the multi-dimensional bias analysis is presented in
Kinzel et al. (2016), exemplarily for HOAPS 3.2 g, (Sect. 2¢
and Fig. 5a). Here, it is applied to all three bulk parameters,
which results in both systematic and total random uncertainty
LUTs.

3.3 Random uncertainty decomposition

The total random uncertainties introduced in Sect. 3.2 (and
also those represented by the black error bars in Fig. 2) in-
clude random uncertainties associated with the collocation
procedure (Ec) and in situ measurement noise (Ejps) (e.g.
Bourras, 2006). To isolate the random retrieval uncertainty,
E3, which is exclusively HOAPS related, MTC analysis
is applied to matchups of U, g5, and g, for the time period
1995-2008. This section briefly summarizes the concept of
random uncertainty decomposition. For more mathematical
and technical details, the reader is referred to Kinzel et al.
(2016).

MTC analysis includes a twofold TC (introduced by Stof-
felen, 1998), whereupon double collocated data described in
Sect. 3.1 serve as input. Triplets incorporating two indepen-
dent in situ measurements and one HOAPS 3.3 pixel rep-
resent the first arrangement, whereas a single in situ record
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and two HOAPS 3.3 pixels of independent satellite instru-
ments form the second triplet structure (see Fig. 1 in Kinzel
et al., 2016). The collocation criteria applied in Sect. 3.1 are
adopted and data poleward of 60° N-S are excluded to avoid
biases associated with sea ice effects.

Subsequent to a bias correction with respect to the in situ
measurements, the variances of differences between two in-
dependent data sources X and Y, that is Vxy, are calculated
following O’Carroll et al. (2008).

Given three data sources and two types of TCs, this re-
sults in six combinations of Vyxy. Next, error models for both
ship and satellite records are defined (Kinzel et al., 2016). In
case of ship records, these include Ej,s, whereas for satellite
records they incorporate satellite sensor noise (EN, syntheti-
cally derived) and retrieval model uncertainty (En). Apply-
ing these error models to the derived Vyy, while explicitly
accounting for error correlation terms, results in six equa-
tions incorporating Eins, EM, EN, and Ec. These equations
are successively solved for all random uncertainty sources
as a function of U, gs, and g, that is for 20 individual bins
per parameter. Each of these bins include thousands of triple
collocated matchups. Finally, E™% = /(Em)? + (En)? is the
required random satellite retrieval uncertainty, which is de-
rived for all 20 bins as a function of U, gs, and gj,.

MTC is a powerful tool to decompose total random un-
certainties (i.e. Equm = Efg + Eins + Ec) inherent to LHF-
related bulk parameters in order to isolate the random re-
trieval contribution E}3}. Depending on the magnitude of the
respective bulk parameter, the fractional contribution from
E3 to Egyy is finally derived. That is, each entry of the to-
tal random uncertainty LUTSs introduced in Sect. 3.2 is “ad-
justed”.

Section 4.1 presents a statistical summary of the instanta-
neous, decomposed random uncertainties inherent to U, ¢,
and g,.

3.4 Deriving HOAPS 3.3 LHF-related uncertainties

The uncertainties in LHF are caused by uncertainties in all
bulk input parameters contributing to Eq. (1). Assuming the
underlying parameterizations to be correct, LHF uncertain-
ties can thus be derived by carrying out standard error prop-
agation. These uncertainty estimates are assigned to each
HOAPS pixel, depending on the four atmospheric state pa-
rameters.

Total instantaneous LHF uncertainties, o1 g, are derived
as follows:

aLHF)2 5 (aLHF :
=) o2+ (=) o

oLHF 0LHF ’
+2ryxy or oy 0,0y

OLHF =

where x and y are placeholders of U, gs, ga, and Cg. ryy
is the correlation coefficient between x and y. For each
combination of x and y, the average of daily global mean
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correlation coefficients between 1995 and 2008 is applied.
Global mean coefficients are preferential compared to instan-
taneous ryy for two reasons. First, the amount of instanta-
neous data for a specific region is limited, which may dis-
tort the results of the correlation analysis. Second, omitting
all correlation-related terms in Eq. (2) modifies opHgsys by
merely 0.5+£5 Wm—2 (not shown), which indicates that these
terms do not receive much weight after all.

o, and oy are total uncertainties in x and y. These can be
decomposed into systematic and random components. Note
that the random component has been corrected for colloca-
tion and in situ uncertainty effects (see Sect. 3.3) and already
represents the random retrieval uncertainty Efa

retr*
JLHF\? , _ (dLHF\® ,
ax K ax T, sys
OLHF\? , _1\2
+( ox ) Gx, retr, ran(N / ) (3)

N is the number of HOAPS 3.3 satellite observations (N =
1 for instantaneous LHF uncertainties). In case of temporal
and spatial averaging over a sufficiently long time period,
the random component becomes negligibly small. Sampling
uncertainties do not exist on an instantaneous basis and are
therefore not considered in Egs. (2)—(3).

3.5 Sampling uncertainty

In addition to systematic and random uncertainties, inho-
mogeneous sampling may occur, specifically when tempo-
ral resolution in observations are coarse. As remotely sensed
data are measured at selected times only, temporal sampling
uncertainties therefore become an issue (Gulev et al., 2010),
as the diurnal cycle may not be captured correctly.

Daily mean sampling uncertainties of HOAPS 3.3 LHF-
related parameters are derived, using high-resolution buoy
measurements. Overall, data of eight tropical (PMEL, hourly
resolution) and 15 extratropical (NDBC, 10 min resolution)
moored buoys account for a possible climate regime depen-
dency. All chosen buoy records comprise several years of
data (1995-2008) and hardly show temporal data gaps. Here,
the approach by Tomita and Kubota (2011) is followed to
derive the sampling uncertainties by simulating two satellite
data overpasses per day, using the buoy values. In case of U
and SST, records are corrected for sensor heights and cool
skin effects, respectively, as explained in Sect. 2.2. In situ
LHF are computed by means of the COARE 2.6a algorithm
(Fairall et al., 2003). Daily means of “true” buoy data are de-
rived by averaging all daily buoy records, where only high-
quality data (indicated by quality flags 1-2) are considered.
The weighted average of the two closest (in time) “true” buoy
observations to local satellite overpasses corresponds to the
so-called “simulated” satellite data record (Tomita and Kub-
ota, 2011, their Fig. 2). All daily sampling uncertainties are
derived as a function of the number of simultaneously operat-
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ing SSM/I instruments. These daily values form the basis for
the monthly averages of selected parameters (Esmp), which
are outlined in Table 2 (Sect. 4.4). The estimates are global
means; an earlier, regime-dependent investigation resulted in
negligible differences. This implies that monthly mean sys-
tematic uncertainties do not exhibit a latitudinal dependency.

4 Results and discussion

4.1 Magnitudes of HOAPS 3.3 decomposed random
uncertainties

Table 1 presents a statistical summary of the instantaneous
random uncertainty decomposition for the bulk parame-
ters U, gs, and g,, following the approaches described in
Sects. 3.1 to 3.3. Note that Ey is not included, as its syn-
thetically derived value remains constant throughout the re-
spective parameter range (for procedure, see Kinzel et al.,
2016). Asterisked values indicate global mean weighted av-
erages and pooled variances of Kent and Berry (2005), result-
ing from a semivariogram approach. These are based on their
Fig. 1, taking the illustrated grid averaged random uncertain-
ties, the SD, and the number of observations into account. In
the following, individual contributions to the overall random
uncertainties are discussed but not shown in terms of supple-
mentary figures.

E3 (ga) ranges between 0.7 and 1.8 gkg™ ", where min-
ima (maxima) are found below 5gkg™' (between 13 and
17 gkg™!) g, regimes. Whereas largest relative uncertainties
are associated with polar ¢, values (3-5 gkg™!), lowest rela-
tive contributions below 10 % are confined to the inner trop-
ics (20 gkg_l). On average, both E. (g,) and Ejns (qa) are
approximately half the size of E}3]} (¢ga). The average of Eiys
(ga) is 0.4 gkg ™! below the mean estimate of Kent and Berry
(2005). It is hypothesized that the lower estimate of Ejng (¢a)
is a direct consequence of the rigorous in situ filtering proce-
dure prior to MTC analysis. The difference may furthermore
be triggered by the fact that Kent and Berry (2005) include
data records dating back to the 1970s and 1980s, which may
imply that ship records are included which do not fulfill the
here-applied quality control standards. In contrast to Ei:
(ga), Eins (qa) increases rather linearly with g,, which im-
plies that smallest (largest) random in situ measurement un-
certainties are found for lowest (highest) g,. In contrast, E.
(qa) shows a similar distribution as E}3} (ga), yet with con-
siderably smaller amplitude. These random collocation un-
certainties range between 0.4 and 0.7 gkg ™!, corresponding
to 3—-18 %. A graphical illustration of the g, random uncer-
tainty decomposition is shown in Kinzel et al. (2016) (their
Fig. 2).

In case of U, all random uncertainties tend to be larger
compared to g, in a relative sense. In contrast to g,, all
three relative uncertainties exhibit a clear increase over

large ranges of U, where minima and maxima in E}3} (U)

1
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Table 1. Absolute and relative random statistical measures resulting from the multi-dimensional LUTs, i.e. MTC and random uncertainty
decomposition (Sects. 3.2 and 3.3). “SD” is standard deviation, “abs” is absolute, and “rel” is relative. Apart from the LHF-related bulk

parameters themselves (U, gs, and ¢a), global mean ranges of the random retrieval (E

ran

retr)» Tandom collocation (Ec), and random in situ

measurement uncertainty (Ej,s) are shown. Relative measures result from bin-wise relative uncertainty calculations. For comparison, the
asterisks indicate respective estimates published in Kent and Berry (2005), which are based on a semivariogram approach.

Parameter/stat. measure Mean SD Min (abs) Min (rel) Max (abs) Max (rel)
ga [gkg™ 1 8.8 4.4 2.8 - 19.3 -
Ergi () 1.0 0.3 0.7 6% 1.8 24 %
Ec (ga) 0.5 0.1 0.4 3% 0.7 18 %
Eins (qa) 0.5[0.9%] 0.3 [0.3%] 0.1 4% 1.2 7%
U [ms™!] 7.9 3.6 1.8 - 15.4 -
EM™ (V) 1.4 0.4 1.0 12 % 2.6 63 %
E. (U) 1.4 0.3 0.8 12 % 2.0 44 %
Eins (U) 1.8[2.5%] 0.2[0.4%] 1.5 15 % 23 111%
gs [gkg™ 1] 10.2 5.7 45 - 243 -
Egr (4s) 0.5 0.2 0.2 2% 0.9 9%
Ec (gs) 0.5 0.1 0.4 2% 0.6 14 %
Eins (gs) 0.6 0.5 <0.1 1% 1.5 8 %

(Eins (U), Ec (U)) range between 1.0 and 2.6ms~! (1.5-
2.3ms~ !, 0.8-2.0ms™!). Whereas E% (U) and Ejys (U)
are fairly constant for moderate wind speeds before continu-
ously increasing, E; (U) seems to already saturate for mean
wind speeds on the order of 10ms~! (not shown). Similar
to Eins (ga), the Ejps (U) estimate of Kent and Berry (2005)
is roughly 40 % larger. Again, this difference is suspected to
arise from the differences in the data set compositions. Kent
and Berry (2005) furthermore elucidate that no corrections
for height or adjustments to the Beaufort scale have been ap-
plied to their data, which would have caused a reduction in
random uncertainty of 13 &1 %, according to the authors.
However, Ejns (U) almost exclusively represents the largest
contribution to the random uncertainty budget of U. For all
random uncertainty sources, strong wind regimes are linked
to smallest relative uncertainties on the order of 12-15 %.
In low-wind regimes, however, relative uncertainties exceed
50 % to even 100 %.

Both absolute and relative contributions from g-related
random uncertainties remain well below those of g,. Global
mean values of all three random uncertainty sources are
on the order of 0.5-0.6gkg™!. Regarding E™" (gs), this is
comparable to the value published in e.g. McClain (1989),
who estimated the global RMSE of AVHRR-derived SST
to be on the order of 0.6-0.7K (= 0.4-0.5 gkg™"). Similar
to ERL (U), Efif (gs) (Eins (¢s)) shows a positive propor-
tionality with largest values of 0.9 gkg™' (1.5gkg™!). As
for Eins (U), Eins (gs) exceeds E[ZL (gs), specifically for
gs larger than 8 gkg™!. In contrast to g, relative uncertain-
ties are smallest in extratropical regimes with contributions
of merely few percent. Largest relative uncertainties remain
well below those of g, and are on the order of 8-14 %.
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4.2 Global patterns of HOAPS 3.3 random retrieval
uncertainties

The results presented in Sect. 4.1 are expanded by showing
the global patterns of E}%} in two-dimensional space.

Depending on the time period and thus on the number
of SSM/I and SSMIS instruments in operation, the monthly
global mean sum of instantaneous observations per 0.5° x
0.5° grid cell ranges from approximately 90 (1988) to 650
(2006). As a consequence, monthly means of E[3 are con-
siderably below the systematic counterpart (see scaling ef-
fect of N in Eq. 3). Specifically from 1991 onwards, monthly
globally averaged E}3} of LHF-related parameters only reach
0.5-3 %. This reduction becomes even more striking when
investigating multi-annual or even climatological means;
LHF-related E3} virtually vanishes on these scales. An in-
crease (decrease) in these climatological random uncertainty
values often directly results from a decrease (increase) in the
number of pixel-level observations and thus not from a phys-
ical change due to shifts in the climate. This implies that
results of trend analyses in random uncertainties, for exam-
ple, may be misinterpreted. Therefore, the attention is drawn
to the pixel-level (instantaneous) random uncertainty fields.
This instantaneous point of view causes their orders of mag-
nitude to be similar to the results of E%} presented in Ta-
ble 1. Note that the global averages shown in Fig. 3 in the
form of text strings are cosine-weighted, whereas the means
illustrated in Table 1 do not take a regional dependency into
account.

Figure 3 shows the instantaneous E}3; patterns of HOAPS
3.3 LHF-related parameters between 1988 and 2012. The
magnitudes presented in Fig. 3a are below those shown in

Fig. 2a, as the random uncertainties have been corrected
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Figure 3. Temporal averages (1988-2012) of HOAPS 3.3 instantaneous E}3} of (a) ga (“hair™), (b) U (“wind”), (¢) gs (“hsea”), and (d) LHF
(“late”). (e) Relative random retrieval uncertainty of HOAPS 3.3 LHF with respect to its natural variability. This variability is defined as the
range between the 5th and 95th percentile of instantaneous LHF between 2000 and 2008. The global averages (text strings) were derived
by considering a latitudinal cosine dependency. All patterns result from the multi-dimensional bias analyses, MTC, random uncertainty
decompositions, and, in case of panel (d), uncertainty propagation described in Sects. 3.2-3.4. Note that the colour bar ranges of panels (a)

and (c) are identical to allow for direct comparisons.

for the impact of Ejns (qa) and E. (qa) (Sect. 3.3). Max-
ima above 1.5 gkg™! are located over all subtropical ocean

The distribution of instantaneous E'3" (U) (Fig. 3b) shows

retr
a rather reversed pattern of ¢, and closely resembles the cli-

basins, where g, is on the order of 13—17 gkg~'. A reduction
within the inner tropics is clearly resolved, specifically over
the warm pool region. E}3} (ga) sharply decreases poleward
to values of 0.6-0.9 gkg™!. The global mean instantaneous

E™ (g,) takes on a value of 1.2 gkg_l.

retr

Atmos. Meas. Tech., 11, 1793-1815, 2018

matological distribution of U itself. The global mean is given
by 1.0ms~!. Global maxima cover large areas of the extrat-
ropical oceans, specifically over the Southern Ocean. Here,
averages partly exceed 1.5ms~!. However, this results in
less than 15 % retrieval uncertainty in a relative sense (not

shown). In contrast, instantaneous E[3: (U) remain low (that
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is, below 0.8ms~!) over the (sub-)tropical ocean basins.
This also applies to the warm pool area, which indicates
a maximum in relative contribution close to 20 % due to cli-
matological low wind speeds (not shown).

The pattern of instantaneous E3; (gs) (Fig. 3c) resembles
that of ¢,. However, the global mean magnitude of 0.3 gkg™!
represents only 25 % of the atmospheric counterpart. Abso-
lute maxima on the order of 0.4 gkg™! are located over the
Indo-Pacific warm pool region, which stands in contrast to
the local EfZ (ga) minimum in that region. The compara-
tively small Ef2% (gs) also find expression in the low global

retr
mean relative uncertainty of 2 % (not shown). Values exceed-
ing 4 % are confined to the extratropical ocean basins in both
hemispheres.

Instantaneous Ejo (LHF) (Fig. 3d) shows a strong propor-
tionality to the climatological mean LHF pattern. In that re-
spect, maxima are generally located over the subtropical cen-
tral parts of all ocean basins (specifically the Indian Ocean)
as well as along the western boundary currents (WBCs). In
these areas, values are found in excess of 50 Wm™2. Apart
from extratropical minima, low values in the tropics are con-
fined to the eastern margins of the basins and the warm pool
region.

Figure 3e shows the instantaneous random uncertainty of
LHEF relative to its natural variability. For each grid box, this
variability is derived as the difference between the 5th and
95th percentile of instantaneous LHF observations between
2000 and 2008 (F13 platform only). Globally averaged, the
relative random uncertainty equals to 17 %. Due to the large
range of LHF along the WBCs and over the central Indian
Ocean, the absolute maxima seen in Fig. 3d are not resolved
in Fig. 3e. Largest relative uncertainties exceeding 25 % are
confined to the southern central tropical Pacific and along the
equatorial Atlantic.

4.3 Global patterns of HOAPS 3.3 climatological
uncertainties

Figure 4 shows the distribution of the climatological uncer-
tainties (E¢jim) for LHF and its related bulk parameters. E¢jim
is defined grid point wise as the mean root-mean-squared
sum of instantaneous Egyg, E13, and Egyp between 1988 and
2012. As the contribution from E%} and Egy,, converges to-

retr

wards 0 % due to the vast number of observations, Fig. 4a—e
can also be treated as the systematic uncertainty distribution.

In an absolute sense, Fig. 4a mirrors the bias distribution
shown in Fig. 2a. Ejim (ga) (Fig. 4a) generally range between
0.4 and 0.9 gkg™!, where the global mean of 0.63 gkg™!
is approximately half the size of the instantaneous random
counterpart shown in Fig. 3a. Maxima are found over the
tropical central and western Pacific Ocean as well as the
Caribbean and off the easternmost tip of South America. In
the framework of a LHF intercomparison study, Smith et al.
(2011) argue that satellite products have difficulties estimat-
ing g, due to persistent stratus clouds, as observed west of
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Peru over the tropical eastern Pacific. This conclusion may
be the cause for the elevated systematic uncertainties over
the tropical eastern Pacific. In contrast, minima are located
along both extratropical belts poleward of 50-60° N-S. Iso-
lated minima also lie over the subtropical eastern margins
of all ocean basins in the vicinity of 15-30° N-S, specifi-
cally over the Pacific basin. Interestingly, regions of com-
paratively low systematic uncertainties often coincide with
regional maxima in random uncertainties (compare Fig. 3a).
According to Fig. 2a, biases are smallest for climatological
mean ¢, of 4-5 and 13 gkg™!, which fits well to the men-
tioned minima in Fig. 4a. Likewise, absolute bias maxima
for g, of 10 and 16-17 gkg™! are resolved in both Figs. 2a
and 4a.

The global mean of Ejiy (U) shown in Fig. 4b equals
to 0.81 ms~!. On the one hand, maxima exceeding Ims™!
are located along the extratropical storm tracks, specifi-
cally over the Northern Hemisphere. On the other hand,
local maxima are found along broad regions at 30° S and
further equatorward over the central Indian Ocean, off the
Arabian Peninsula (both monsoon-related), and the central
northern tropical Pacific. With the exception of the South-
ern Ocean, this is in line with Brunke et al. (2011), who
conclude that reanalysis, satellite, and combined data sets
tend to overestimate wind speeds compared to in situ records
of inertial dissipation wind stresses, specifically over strong
wind regimes. Monsoon-related characteristic features of In-
dian Ocean LHF variability, which also exhibit an impact
on climatological uncertainties, are elucidated in e.g. Mo-
hanty et al. (1996). Minima on the order of 0.5 ms~! are
mostly confined to the eastern margins of all ocean basins
(Fig. 4b). The maxima over the northern hemispheric storm
track are associated with climatological mean wind speeds
of 9—11ms~!. This range also reveals largest positive bi-
ases in the one-dimensional bias consideration with respect
to the in situ source (analogously to Fig. 2, but not shown for
U). This also targets the maximum over the central northern
tropical Pacific and all southern hemispheric maxima along
40-50° S. Although climatological mean wind speeds maxi-
mize over the Southern Ocean, respective systematic uncer-
tainties rather show a slight poleward decrease. Again, this
is in line with results from the one-dimensional dU analy-
sis (not shown), which indicates that systematic uncertain-
ties reduce for wind speeds above 12 ms~ L. Likewise, abso-
lute bias minima are associated with low-wind regimes on
the order of 4-6 ms~!. Climatologically lowest wind speeds
of 2-4ms~! are for example found along the Pacific coast of
Central America (15° N), over the Arabian Sea, and over the
Indo-Pacific warm pool region. HOAPS 3.3 tends to under-
estimate these wind speeds, as is mirrored in moderate E¢jim
(U) (Fig. 4b).

The climatological uncertainty estimates illustrated in
Fig. 4b exceed those found in e.g. scatterometer records in
comparison to buoy measurements (e.g. Verhoef et al., 2017).
On the one hand, this is linked to the fact that estimates in
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Figure 4. HOAPS 3.3 climatological total uncertainties (Ejiy) of (a) ga (‘“hair™), (b) U (“wind”), (¢) gs (“hsea”), and (d) LHF (“late”). E¢jim
is defined as the mean root-mean-squared sum of Esys, Ef&}, and Esmp (1988-2012). (e) Climatological mean relative Ejiy, (LHF) with
respect to its natural variability. This variability is defined as the range between the 5th and 95th percentile of instantaneous LHF between
2000 and 2008. The global averages (text strings) were derived by considering a latitudinal cosine dependency. All patterns result from the
multi-dimensional bias analyses and subsequent uncertainty propagations described in Sects. 3.2 and 3.4. Note that the colour bar ranges of

panels (a) and (c) are identical to allow for direct comparisons.

Fig. 4b should be treated as upper boundary uncertainty esti-
mates. On the other hand, scatterometers are specifically de-
signed to derive near-surface wind speeds at highest accu-
racy. Passive microwave measurements, in return, allow for
a much broader range of applications, which is a unique fea-
ture of HOAPS. An inclusion of scatterometer data into the
HOAPS wind speed retrieval was not envisaged, due to dif-
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fering overflight times and data coverage, that is additional
uncertainties of unknown magnitude. Further potential un-
certainty sources, which may contribute to the distribution
shown in Fig. 4b, target currents, sea states, and the treat-
ment of air mass density (i.e. the concept of stress-equivalent
wind speeds; e.g. de Kloe et al., 2017).
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Eim (gs) covers the range of 0.1-0.6 gkg_l and its global

average is given by 0.23 gkg™! (Fig. 4c). The pattern re-
flects a latitudinal dependency, which is equivalent to small-
est (largest) biases towards the poles ((sub-)tropics). This ob-
servation is not generally valid, as is shown by the compara-
tively low values over large parts of the eastern tropical Pa-
cific and Atlantic. Distinct maxima are found over the Ara-
bian Sea and along northwestern Australia, the Caribbean,
and west of Madagascar. Narrow bands of elevated system-
atic uncertainty are also resolved along the WBCs. With the
exception of the WBCs, the regions of maxima are exposed
to g, in the range of 20-22 gkg ™.

Figure 4d shows the resulting E.jim (LHF). It closely re-
sembles that of the global mean LHF pattern itself with val-
ues ranging between roughly 15 and 50 Wm™2 and a global
mean of 25 Wm™2. Relating this pattern to Fig. 4a—c shows
a substantial contribution of E¢jim (¢a) to the absolute max-
imum of Ejiy, (LHF) in the northern—southern tropical cen-
tral Pacific, the Caribbean, and the western tropical South
Atlantic (compare Fig. 4a). However, due to the large cli-
matological mean LHF, respective relative systematic uncer-
tainties of g, are merely on the order of 5-7 %. Correspond-
ingly, imprints of Eji, (U) are clearly seen along the WBCs,
the central Indian Ocean (10-15 % in a relative sense), and
off the Arabian Peninsula (partly exceeding 15 %) (Fig. 4b).
Likewise, the maxima in Ein (LHF) over the Arabian Sea,
along the northwestern coast of Australia, and close to Mada-
gascar show the footprint of E.im (gs) (Fig. 4c). However,
relative systematic uncertainties in gs generally do not ex-
ceed 2.5 %. Locally, isolated E i, (LHF) maxima are re-
solved along 35°S. Specifically over the Agulhas Current,
Santorelli et al. (2011) conclude that different satellite data
sets show discrepancies, as they are not able to properly han-
dle strong LHF associated with storm systems and potential
LHF amplifications due to dry air advection northwards from
the Antarctic (Grodsky et al., 2009). Furthermore, note that
the maximum in the Arabian Sea is somewhat special, in as
much as climatological mean LHF in this region are elevated,
yet not extraordinarily large. This striking uncertainty max-
imum may be linked to occasionally occurring advection of
hot, dry air masses from the deserts, which poses problems to
the HOAPS 3.3 satellite retrieval. This hypothesis is strength-
ened by the fact that Iwasaki et al. (2014) show largest devi-
ations in HOAPS 3 g with respect to their reference clima-
tology, which are not seen in the remaining data sets.

Figure 4e relates E.;im (LHF) to its natural variability
(compare Sect. 4.2). The global average is on the order of
12 %. Apart from the WBC regimes and the Southern Ocean,
largest relative uncertainties are in line with the Eqjjy, (LHF)
maxima illustrated in Fig. 4d.

4.4 Monthly mean HOAPS 3.3 sampling uncertainties

Table 2 summarizes the average of monthly mean sampling
uncertainties of several LHF-related HOAPS 3.3 parameters
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as a function of concurrently operating SSM/I instruments.
From a climatological perspective, all magnitudes are negli-
gibly small compared to respective systematic uncertainties.
SST-related parameters show largest sampling uncertainties
when three SSM/I instruments are simultaneously operating.
This is not contradictory, as HOAPS 3.3 SST are AVHRR-
based and thus not linked to the coverage of SSM/I instru-
ments. Regarding the main bulk parameters, orders of mag-
nitude closely resemble those of monthly mean scaled E[3;
(not shown). It is concluded that their relative contribution
to the monthly mean uncertainty budget is on the order of
merely 1-2 %. However, one should keep in mind that sam-
pling uncertainties become essential on considerably shorter
timescales, i.e. in the framework of daily analyses.

4.5 Fractional contributions to total HOAPS 3.3 LHF
uncertainty

Simply comparing Fig. 4a—c to d allows for qualitatively
assessing which LHF-related parameter contributes most to
Ecim (LHF). However, this does not permit a quantitative
conclusion. Following a modified version of the “Q-term”
approach demonstrated in Bourras (2006), Ejim (LHF) is
decomposed into fractions associated with U, ¢s, ga, and
CE. Results indicate that the global mean contribution from
Elim (ga) is largest (60 %). This specifically targets the cen-
tral northern and southern tropical Pacific, the Caribbean, the
regime off the eastern tip of South America, and the cen-
tral Indian Ocean. This finding is in line with that of Iwasaki
et al. (2014), who show that HOAPS 3 ¢, contributes most
to the observed deviation in E with respect to their reference
climatology.

On average, the contribution from Ejiy, (U) takes on
a value of 25 %. Local hotspots are considerably larger, espe-
cially over the Arabian Sea, along the WBCs, and off North-
western Australia. The fractional contributions due to both
Elim (gs) and E¢jim (Cg) equal to 7.5 %, respectively. Eclim
(gs) is largest over the Arabian Sea (SST retrieval issues due
to dust particles), whereas Ejim (Cg) maximizes over the
central Indian Ocean and along the North Atlantic WBC. The
latter has also been shown by Bourassa et al. (2013), in as
much as accuracy issues in Cg tend to occur over very low
and very high wind speed regimes.

All findings are in line with Bourras (2006), Liu and Curry
(2006), Grodsky et al. (2009), and Santorelli et al. (2011),
who conclude that the main LHF uncertainty sources are
related to the accuracy of g, (and U). Similar conclusions
are drawn by e.g. Tomita and Kubota (2006), who show that
the main source of discrepancy between tropical satellite and
buoy estimates may be attributed to the accuracy of g,. The
findings of the above-quoted studies are restricted to either
regional analyses, considerably shorter investigation periods,
and/or comparatively thin reference databases. Again, this
points at the high value of the presented HOAPS 3.3 uncer-
tainty analyses.
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Figure 5. (a) Expected ranges of ¢, (“hair”) as a function of different regions and seasons. The colour-coded boxes show Ejjn, (1988-2012),
whereas the bars indicate the average instantaneous random uncertainty component E[3; (1988-2012). The following regions are presented:
global (orange), North Atlantic (60° W-5° E, 35-65° N; dark blue), North Atlantic western boundary current (WBC, 60-80° W, 30-40° N
brown), Southern Ocean (50-60° S; cyan), Pacific upwelling regime (80—100° W, 5° N-5° S; red), and Indian monsoon region (50-75° E

15-30° N; green). (b) As for panel (a), but for U (“wind”). (c) As for panel (a), but for LHF (“late”).

Table 2. Average of monthly mean HOAPS 3.3 LHF-related sampling uncertainties (Esmp) as a function of simultaneously operating SSM/I
instruments (1995-2008). g, is “hair”, U is “wind”, gs is “hsea”, LHF is “late”, SST is “asst”, E is “evap”, and air temperature is “tair”. All
magnitudes are negligible compared to the instantaneous random (E[3}) and climatological uncertainties (EJim) presented in Sects. 4.2 and
4.3.

No. of satellites/ “hair”  “wind” “hsea” “late”  “asst” “evap”  “tair”
parameters gkg™ @ms™H  (gkeg™H Wm?) (K) (mmd 1 (K)
1 0.05 0.14 0.04 2.3 0.04 0.08  0.08
2 0.03 0.12 0.04 1.9 0.03 0.07  0.05
3 0.03 0.11 0.05 1.8 0.04 0.06 0.04

4.6 Regional and seasonal HOAPS 3.3 uncertainty
analyses

Global mean E75; and Ejim of LHF-related HOAPS 3.3 pa-
rameters are fairly constant in time throughout the whole cli-
matology (Figs. 3 and 4). Absolute deviations from the global
mean LHF (g,, U) uncertainty become as large as 18 % (3,
8 %). Apart from seasonal signals, these are footprints of dis-
tinct local anomalies. On the one hand, these anomalies seem
to originate from events that temporarily modify the global
climate. On the other hand, Figs. 3 and 4 resolve consider-
able regional variability. Therefore, the aim is to (1) identify
climate features that are manifested in both temporal and spa-
tial uncertainty anomalies and discuss their origin (descrip-
tive only). At the same time, (2) regional uncertainty differ-
ences shall be highlighted by focusing on climate hotspots
(Fig. Sa—c).

(1) The imprints of moderate to strong El Nifio events
during boreal spring 1998 and 2010 are manifested in LHF-
related E¢jim and E;5. During these events, wind speeds over
the Pacific upwelling regime are 1.5-2.0ms~! below the cli-
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matological average. As has been mentioned in Kinzel et al.
(2016), this causes an increase in systematic uncertainties in
U. Along with an enhanced Ejim (gs), the respective Eclim
(LHF) over the Pacific upwelling regime reaches 25 Wm™2,
specifically during boreal spring 1998. This is approximately
10 Wm~2 above the seasonal mean and more than 50 % of
climatological mean LHF. As g, are anomalously high with
20gkg™!, EL (ga) is up to 0.2gkg™! below the seasonal
mean (see Fig. 2 in Kinzel et al., 2016, for clarification).

By contrast, global minima in E¢ji (LHF) and E75 (LHF)
are confined to boreal autumn 1991, taking on a mean value
of 20 and 33 Wm™2, respectively. These estimates are 20
and 11 % below their climatological averages and are asso-
ciated with absolute minima in HOAPS 3.3 LHF. The com-
paratively small systematic component is induced by Ecjim
(U) (Eclim (gs)) of =8 % (—14 %). The absolute minimum
in LHF and its uncertainties during 1991 is a footprint of
the Mount Pinatubo eruption, which caused low-biased SST
due to AVHRR aerosol issues and thus unrealistically low
near-surface humidity gradients (Romanova et al., 2010).
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Amongst others, this shortcoming in the HOAPS 3.3 clima-
tology has already been picked up by Andersson et al. (2011).

(2) Figure 5a—c summarize the ranges of seasonal, regime-
dependent uncertainty distributions. The colour-coded boxes
in Fig. 5a—c represent the expected parameter ranges when
considering multi-annual (1988-2012) means of systematic
uncertainty contributions, that is E¢jjm. At the same time,
the error bars indicate the instantaneous random uncertainty
components, that is Ef3. Both are shown separately, as they
are independent of each other. With few exceptions, the ran-
dom uncertainty contributions exceed the systematic coun-
terpart, as is also mirrored in Figs. 3 and 4.

Figure 5a indicates that the total uncertainty ranges in g,
are largest in (sub-)tropical regimes, concurrent to high g,. In
contrast to the Pacific upwelling region (red) and the South-
ern Ocean (cyan), the seasonal g, variability over the In-
dian monsoon regime (green), the North Atlantic basin (dark
blue), and specifically the North Atlantic WBC (brown) is
striking. This also finds expression in differences in abso-
lute uncertainties of up to £0.6 gkg~! between January and
July. Largest uncertainties are on the order of £2.40 gkg™!
and are confined to the Indian summer monsoon season,
whereas smallest uncertainties around +1 gkg™" occur over
the Southern Ocean.

Climatological regional wind speeds range between 4.5
and 11ms™! (Fig. 5b). As for g, the seasonality is most
pronounced over the Indian monsoon region, WBC, and
the North Atlantic. Largest total uncertainties exceeding
+2ms~! throughout the year are observed over the South-
ern Ocean, which is primarily due to large E;} (U) (com-
pare Fig. 3b). The Indian monsoon region is somewhat spe-
cial, in as much as summertime total uncertainties are largest
on a global scale, while wintertime ranges are almost 50 %
lower.

Figure 5c presents regionally dependent LHF and associ-
ated uncertainty ranges. As for Fig. 5a and b, seasonality is
most distinct over the North Atlantic, WBC, and the Indian
monsoon region. Largest Eji, (LHF) exceeding 35 Wm—2
are confined to the WBC regime (specifically during win-
ter) and the monsoon region (climatological average, com-
pare also Fig. 4d). Total uncertainty ranges maximize along
the WBC, where +65-95 Wm~2 are to be expected, which
is 2-3 times larger compared to the ranges observed along
the Pacific upwelling regime. Grodsky et al. (2009), for ex-
ample, recall that an accurate representation of LHF along
the Gulf Stream is challenging due to strong surface currents
and SST gradients as well as intraseasonal dependencies of
how the stratified atmospheric boundary layer amplifies air—
sea interactions. This reasoning may also apply to the Agul-
has and Kuroshio region. The wintertime WBC uncertainty
maximum is particularly caused by vast E3} (LHF) of up
to 60 Wm™2 (see also signal in Fig. 3d). By contrast, re-
gional Eim (LHF) become largest in the Indian monsoon
region, where their climatological average is on the order of
+40 Wm™2 (compare also Fig. 4d).
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4.7 Uncertainty application: trends in HOAPS 3.3 LHF

Figure 6 shows the HOAPS 3.3 global monthly mean
LHF (thin black line) between 1988 and 2012 (70° S-
70° N, cosine-weighted average). The global minimum be-
low 80 Wm™2 during boreal summer 1991 is linked to the
Mount Pinatubo eruption. Overall maxima on the order of
110 Wm~2 occur during 2008 and 2009.

The bold black line in Fig. 6 shows the annual running
mean climatology of HOAPS 3.3 LHF. On average, it in-
creases by roughly 4.5 Wm~2 (4.7 %) per decade (dark red
line). If uncertainty ranges were discarded, this trend would
be considered as significant at the 95 % level (p < 0.00001,
based on a two-tailed ¢ test). The addressed uncertainty es-
timates are illustrated as grey shadings and represent 1 SD
of the 12-month running mean E .}, (global average). They
take on a mean value of =17 Wm™2. A Bayesian approach
to linear regression is applied including LHF uncertainty es-
timates following Kelly (2007), which yields a large range
of linear trends (light red lines). Although the majority has
a positive slope, some even indicate a climatological de-
crease in LHF. In light of the illustrated uncertainty range,
the mean upward trend in HOAPS 3.3 LHF (dark red line)
should therefore be treated with caution, as the magnitude of
linear increase lies well within the grey shaded area.

The overall increase in LHF has been elucidated in sev-
eral studies concerning various LHF data sets (e.g. Liu and
Curry, 2006; Yu and Weller, 2007; Santorelli et al., 2011; Yu
et al., 2011; Iwasaki et al., 2014). The authors attribute it to
increases in both g (i.e. SST) and U, whereas the latter may
be linked to stronger Hadley and Walker circulations (Cess
and Udelhofen, 2003). The global mean increase of 9 Wm2
between 1981 and 2002, as is seen in Objectively Analyzed
Air—Sea Heat Fluxes (OAFlux; Yu and Weller, 2007), is on
the order of 10 %, which is in line with findings of Santorelli
et al. (2011) and those illustrated in Fig. 6 of the present
work.

Figure 6 also shows that recent global means decrease
again. Time series analyses for single satellite instruments
suggest that this is a physical signal (i.e. associated with ei-
ther multi-annual variability or a climate signal) rather than
being associated with intercalibration issues among SSM/I
and SSMIS instruments. Additionally, the decrease may also
be attributed to the slight negative SST bias from 2011 on-
wards. This bias is caused by anomalously high NOAA-
19 sensor noises, which themselves may be traced back to
erroneous flag assignments during cloud detection. This is
thought to cause up to 5-10 % reduction in LHF. Closer in-
vestigations that involve other LHF climatologies exceed the
scope of this study but are needed to interpret this gradual
decay.

First intercomparisons of HOAPS 3.3 LHF to in situ and
further satellite climatologies have been carried out, where
preliminary results indicate that nearly all compared data
sets lie within the uncertainty range presented in Fig. 6 (not
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Figure 6. The thin (thick) black line shows the monthly (annual running mean) time series of HOAPS 3.3 LHF (70° S-70° N, cosine-
weighted average). The dark red line illustrates the linear trend, which takes on a value of 4.5 Wm—2 per decade (p < 0.00001, based on
a two-tailed ¢ test). The grey shading represents £1 SD of the annual running mean E i, (global average). The light red regression lines
were iteratively derived following Kelly (2007) by taking &1 SD of Ej;;, into account.

shown). A more detailed intercomparison study is envis-
aged; it will benefit from uncertainty estimates available in
NOCSv2.0 and allow for concluding whether global mean
deviations among the data sets lie within or outside of the
HOAPS 3.3 prescribed uncertainty range.

5 Conclusions and outlook

By means of multi-dimensional bias and MTC analyses,
a universal approach for characterizing systematic, random
retrieval, and sampling uncertainties inherent to HOAPS
3.3 LHF-related parameters has been presented. The multi-
dimensional approach overcomes the issues of sparse data
densities in remote regions, as it expresses the uncertainties
as a function of the ambient atmospheric conditions. At the
same time, MTC enables a decomposition of random uncer-
tainty sources to isolate the contribution from the satellite
retrieval. Both methods represent the main procedures to ar-
rive at pixel-level uncertainty information, which essentially
increases the value of HOAPS 3.3. As to sampling uncertain-
ties, monthly mean estimates have been calculated follow-
ing the approach of Tomita and Kubota (2011). To conclude,
HOAPS 3.3 can be considered as the first LHF satellite-only
climatology including instantaneous and gridded uncertainty
estimates. As the method can be easily transferred to other
retrievals, it lays the foundation for uncertainty characteri-
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zations of further LHF-related data sets, which increases the
significance of this work.

It has been shown that maxima of systematic uncertain-
ties (Eclim) reach up to 50 Wm™2, specifically over the large
regions of the subtropical oceans (mainly g,-induced) and
along the western boundary currents (mainly U-induced). In-
stantaneous random retrieval uncertainties (E3;) maximize
along 20-30° N=S with values up to 60 W m~2, clearly show-
ing the footprint of random uncertainties of g,. From a clima-
tological perspective, all random retrieval uncertainty com-
ponents contribute to the total uncertainty by merely 1-2 %
on a monthly basis (and even less for longer periods), which
also accounts for respective sampling uncertainties. Consid-
erable regional and seasonal variability of LHF uncertainty
ranges have been resolved from an instantaneous point of
view, with maxima over the Gulf Stream and Indian monsoon
region during boreal winter. Climate events, such as strong El
Nifio signals and the Mount Pinatubo eruption, are well man-
ifested in both systematic and random LHF uncertainties,
even on a global scale. In light of the available uncertainty
estimates, it has been shown that the positive trend in global
mean LHF during the last 25 years lies within the derived
uncertainty boundaries and needs to therefore be treated with
caution.

Results of the Q-term analysis presented in Sect. 4.5 and
other studies suggest that more effort is necessary to im-
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prove the g, retrieval. This would ultimately reduce the over-
all LHF uncertainty, which, according to e.g. Bourras (2006),
ought to be below 10 Wm~2 for a quantitative use over the
global oceans. An increase in the reliability of HOAPS 3.3
LHF-related parameters could for example be achieved by
referring to a new ground truth reference. Freeman et al.
(2017), for example, recently presented a new version of
ICOADS (release 3.0, up to 2014), highlighting its improve-
ments compared to earlier versions, which target topics such
as data quality, data traceability, and database extension.
Apart from new in situ reference data, the effect of approxi-
mations in bulk flux parameterizations should also be picked
up, as has been done in detail in Brodeau et al. (2017).
Amongst others, this concerns implications of sensor height
corrections, algorithm choices, the gg reduction due to the
salinity effect, cool-skin and warm-layer effects, and the as-
sumption of constant sea level pressure.

According to Andersson et al. (2011), the E-P budget of
HOAPS 3.2 is not closed. This also accounts for HOAPS
3.3, with a climatological mean value of 0.45 mmd~! (1988—
2012, 70° S=70° N). Long-term run-off estimates are sum-
marized and published by the Global Runoff Data Center
(GRDC), adding up to a mean value of 0.34 mm d~! (Wilkin-
son et al., 2014). According to Andersson et al. (2011),
the uncertainty of these run-off estimates is on the order
of 10-20%. Comparing these values to the HOAPS 3.3
global freshwater flux leaves an imbalance of approximately
0.10mmd~"!, which is 0.30mmd~"! below the HOAPS 3.2
estimate and can be evaluated as an improvement towards
closing the global freshwater flux imbalance. As E¢jim (E)
is on the order of +£0.6 mmd~!, the imbalance clearly lies in
the range of freshwater flux uncertainty. Keeping this uncer-
tainty range in mind sheds new light on the conclusion by
Iwasaki et al. (2014) that the HOAPS 3 freshwater budget
(including river run off) is largest compared to the remain-
ing data sets. A unit conversion from mmd~! to kgyr~! al-
lows for qualitatively estimating, whether the intercompared
data sets in Iwasaki et al. (2014) (their Fig. 6a) lie within the
derived uncertainty range of HOAPS. As 0.6 mmd~! corre-
sponds to roughly 0.8 x 10'7 kg year—!, we conclude that all
satellite- and hybrid-related time series lie within the uncer-
tainty range. This does not account for the reanalyses; ac-
cording to the authors, these tend to overestimate E, which
is associated with the underlying bulk flux algorithm.

Recall, however, that uncertainty estimates of HOAPS
3.3 precipitation have not been accounted for in this quan-
titative estimation. Generally, the availability of remotely
sensed precipitation uncertainty estimates is complicated by
sparse reference data and its intermittency. A recent study
by Burdanowitz et al. (2016) presents an automatic phase
distinction algorithm for optical disdrometer data. Together
with a continuously growing high-quality in situ database of
ship-based precipitation measurements (OceanRAIN, Klepp,
2015), it will serve as a valuable basis for a characterization
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of HOAPS 3.3 precipitation and hence freshwater flux uncer-
tainty ranges in the near future.

Future work also aims at investigating trends in wa-
ter vapour transports (WVT), using HOAPS 3.3 monthly
mean freshwater fluxes. Sohn and Park (2010), for exam-
ple, demonstrated that trends in WVT can be used to ex-
amine circulation changes and conclude that the large-scale
Hadley Circulation has experienced an increase in strength
since 1979. Similarly, Durack et al. (2012) recently high-
lighted a considerable water cycle intensification during
global warming. Available uncertainty estimates will allow
for quantifying the WVT uncertainty range, the necessity of
which has been picked up by e.g. Sohn et al. (2004).

A new version of HOAPS 3.3, that is HOAPS 4.0, has
been released in October 2017 (Andersson et al., 2017).
Major changes compared to HOAPS 3.3 include a tempo-
ral extension up to 2014, a new SST product (Version 2 of
the NOAA Optimum Interpolation SST (OISST) product;
Reynolds et al., 2007), and the implementation of a 1D-Var
retrieval for several geophysical parameters. Preliminary re-
sults suggest that the new U estimates have improved com-
pared to HOAPS 3.3 in terms of bias and RMSD behaviour
relative to in situ ground reference data. As a consequence,
estimates of LHF and E have been updated, along with LHF-
related uncertainty estimates.

Data availability. HOAPS 3.3 is a prolongation of HOAPS 3.2
(Fennig et al., 2012) and is based on a pre-release of the CM SAF
SSM/T and SSMIS FCDR (Fennig et al., 2013). It was created in
the framework of the DFG FOR1740 research activity for inter-
nal use. The monthly mean HOAPS 3.2 climatology and the re-
spective FCDR are publicly available and may be downloaded free
of charge (http://www.cmsaf.eu/EN/Products/DOI/Doi_node.html,
last access: 20 March 2018). Instantaneous and gridded HOAPS 3.3
data are available upon request from the author.
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