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Abstract. Measuring surface fluxes using the surface re-
newal (SR) method requires programmatic algorithms for
tabulation, algebraic calculation, and data quality control. A
number of different methods have been published describ-
ing automated calibration of SR parameters. Because the
SR method utilizes high-frequency (10 Hz+) measurements,
some steps in the flux calculation are computationally expen-
sive, especially when automating SR to perform many itera-
tions of these calculations. Several new algorithms were writ-
ten that perform the required calculations more efficiently
and rapidly, and that tested for sensitivity to length of flux
averaging period, ability to measure over a large range of lag
timescales, and overall computational efficiency. These al-
gorithms utilize signal processing techniques and algebraic
simplifications that demonstrate simple modifications that
dramatically improve computational efficiency. The results
here complement efforts by other authors to standardize a ro-
bust and accurate computational SR method. Increased speed
of computation time grants flexibility to implementing the
SR method, opening new avenues for SR to be used in re-
search, for applied monitoring, and in novel field deploy-
ments.

1 Introduction

Originally described by Van Atta (1977), the SR model mea-
sures vertical flux that occurs during rapid events which man-
ifest as coherent structures in a turbulent flow. The physi-
cal mechanisms are statistically distinct from those described
in the eddy covariance (EC) method, which has been estab-
lished as a robust and accurate method to measure flux (Bal-
docchi, 2014). The surface renewal (SR) method offers sev-
eral advantages and complements the use of EC to measure
flux. While EC requires fast (10 Hz+) measurement of both

the vertical wind speed and air temperature to measure the
sensible heat flux, the SR method does not explicitly require
vertical wind speed, allowing flux to be determined solely
from rapid measurements of temperature or other scalar con-
centrations. Because fewer, lower-cost sensors are required,
the SR method theoretically can be used for general applied
monitoring (Paw U et al., 2005; Spano et al., 2000). Another
advantage of SR is the ability to measure flux very near the
surface or near the top of the plant canopy (Katul et al., 1996;
Paw U et al., 1992). By taking measurements very close to
the surface, the measurement fetch is reduced and the effec-
tive “flux footprint” is smaller (Castellví, 2012), yielding a
more localized flux estimate.

The SR method estimates turbulent transport rates from
fast response measurements of scalar properties such as tem-
perature or trace gas concentration. In the SR conceptual
model, rapid changes in scalar concentration are associated
with episodic displacement of near-surface air parcels, and
the surface condition is renewed from upper air. While in
proximity to the surface, the air parcels are gradually en-
riched or depleted in temperature or scalar concentration by
diffusion (Castellví et al., 2002; Paw U et al., 1995). The ma-
jority of flux from the surface is attributed to these rapid ejec-
tions, which distinguish coherent structures in near-surface
atmospheric motions (Gao et al., 1989). The duration and
amplitude of these rapid fluctuations (visible as ramps in
the scalar trace) are used to determine the magnitude and
direction of the flux density. Because of the short duration
of these events, the SR method complements spectral meth-
ods to evaluate the flux contributions made over timescales
shorter than the typical 15–30 min averaging time used for
EC (Katul et al., 2006; Shapland et al., 2012a, b). Rapid
flux measurement will facilitate new applications, such as
spatial mapping of flux using vehicle-mounted, near-surface
sensors, and real-time monitoring systems. Mobile SR im-
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plementations and other novel field methods could provide
new insights into the complexities of sub-basin-scale hydrol-
ogy, be used to validate downscaled models, and measure the
heterogeneity of flux at sub-field scales.

The implementation of SR requires a prescribed averag-
ing time period (on the order of minutes) and ramp time du-
ration (on the order of seconds), for which a representative
and statistically robust flux magnitude can be determined.
To implement SR on a moving vehicle (for instance, to map
spatially variable flux), finding a minimum averaging time
is desirable to increase the spatial resolution of the result-
ing map. The averaging time and lag time used in the SR
method relate the sensitivity of the scalar measurement to
the timescales at which most significant flux occurs (Shap-
land et al., 2014). To find the minimum measurement period,
field studies were conducted in 2014 and 2015 over various
types of surface conditions. This required a rapid computa-
tional method that worked over a range of different time av-
eraging periods, and which could implement the various cal-
ibration procedures used in the SR method. Initial attempts
to calculate flux followed methods as described by Paw U et
al. (2005) and Snyder et al. (2008). However, implementing
these methods as documented was hampered by slow compu-
tation time, which constrained the many iterations required to
determine the minimum flux averaging period.

Open-source software and online forums are abound with
methods that utilize advances in computing power, memory
availability, and the accessibility of multithreaded process-
ing. These methods reduce computational overhead, and can
augment the SR technique to allow implementation with low-
cost computers and data loggers, or where remote telemetry
is required. Three example methods are shown here which
streamline specific operational steps in the SR method. The
first is a method adapted from signal processing to “despike”
noisy data, a quality control technique commonly used in
processing raw meteorological data. Second is a method to
compute structure functions over multiple time lags rapidly
using convolution in two dimensions. Third, an algebraic ar-
ray calculation is used to find the cubic polynomials roots
used to determine the SR ramp amplitude. By using more ef-
ficient algorithms, rapid iterative trials can be conducted to
adjust calibration parameters, test hypotheses on the time av-
eraging of flux calculations, and potentially measure SR flux
in real time.

Advantages such as low-cost, relatively simple instrumen-
tation, and easier field implementation are all cited as mo-
tivating factors to use the SR method (Paw U et al., 2005),
yet work remains to standardize a robust method (French
et al., 2012; Suvočarev et al., 2014). Because sensor cost is
reduced, SR systems can be implemented to measure flux
more extensively than EC, and in situations where EC is
impractical. Extensive, site-specific SR estimates can aug-
ment the utility of sparsely located, permanent weather sta-
tions in mapping the heterogeneity of surface flux. Examples
of situations which could benefit from low-cost flux mea-

surements include direct crop ET monitoring, experiments
at remote field sites, and developing regions. While SR may
expand flux measurement applications, the method still re-
quires standardized calibration and quality control measures
to establish that SR is robust and accurate, and a critical step
in developing the method is to reduce computation costs.

2 Methods

The example algorithms shown here improve or economize
existing calculation methods, including despiking of time se-
ries data (Højstrup, 1993; Starkenburg et al., 2016), calcu-
lation of structure functions (Antonia and Van Atta, 1978),
and Fourier analysis of signals, i.e., spectral analysis (Press,
2007; Stull, 1988). In each case, dramatically faster execu-
tion times were accomplished using simple programming im-
provements. Most efficiency gains were a result of code vec-
torization, which is the conversion of iterative looping algo-
rithms into array calculations. All methods described here
were implemented in the MATLAB language (The Math-
works Inc., 2016), with the Statistics, Curve Fitting, and
Signal Analysis toolboxes. MATLAB’s Profiler (profile.m)
was used to track the memory demand and time to imple-
ment calculations. Trials were conducted on multiple desk-
top systems; for uniformity, analysis shown here only used
test runs that were conducted on a Windows 10 operating
system running on an Intel Core™ i7-3720QM processor op-
erating at 2.60 GHz with 16 GB of RAM. Processor clock
speed was verified using MATLAB’s Profiler tool at run time,
and processing times reported are described as run time (ac-
tual observed execution time) or as total run time, which is
the sum of CPU time for all calculation threads. Example
methods are indicated by function name in italics. Abbrevi-
ated, commented scripts for the example functions are pro-
vided in the Supplement. Example data were collected dur-
ing various field experiments from 2014–2017, using an in-
tegrated sonic anemometer and infrared gas analyzer (IR-
GASON) and fine wire thermocouples (FWTs), and were
recorded at 10, 20, and 100 Hz using a CR1000 data log-
ger (Campbell Scientific). The data used in verifying the
methods are provided through supplementary materials on-
line (https://doi.org/10.7267/N9X34VDS).

Vector and array calculations are more efficiently executed
than iterative methods; vectorization of MATLAB code en-
tails removing loops (which are not pre-compiled) and taking
advantage of implicit parallel methods in MATLAB’s pre-
compiled functions (Altman, 2015). Other significant im-
provements were enabled through the fast Fourier transform
by using convolution of number arrays, rather than iterative
operations. In the case of determining ramp geometry in the
SR method, Cardano’s solution for depressed cubic polyno-
mials (published in 1545) reduces a root-finding algorithm
from an iterative numerical approximation to an exact alge-
braic vector calculation. While some of the implementation
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Figure 1. The total computation time is the sum of CPU time
spent on all calculation threads. Triangles mark the mean run time
for multiple runs, which varied from 30 runs (15 min–4 h data) to
10 runs (8, 12, 24 h). The 48 h calculation is represented by one run
only. Error bars represent 1 standard deviation of all runs.

Figure 2. Fast calculation of larger data sets is due to implicit paral-
lel processing via the FFT, which is readily performed by multiple
simultaneous threads. The efficiency of parallel processing is shown
by a lower ratio of run time to total thread time.

of these methods are particular to the MATLAB language,
the general mathematical concepts are universal. Although
these methods were prototyped in MATLAB, the examples
shown are generally useful as solutions to challenges com-
monly encountered in micrometeorology.

2.1 Despiking of noisy data using convolution

Despiking is the removal of erroneous or extreme data points
from a time series of sampled values. It is a common pro-
cedure when measuring environmental parameters, espe-
cially in challenging conditions or complex environments

(Göckede et al., 2004; Starkenburg et al., 2016). The origin of
spikes in a time series may be electronic or physical (sensor
malfunction or actual physical non-errors); regardless of the
origin, spikes can be recorded as abnormally large or small
values, or may be marked by an error flag defined in the
firmware. Spikes become problematic if they are not read-
ily differentiated during automatic data imports (Rebmann et
al., 2012). Spikes interfere with statistical calculations, and
require some deliberate and objective method to identify, re-
move, and interpolate where they exist. For instance, a data
logger program may record an error as “9999” or a charac-
ter string, while MATLAB denotes missing values in a nu-
merical array as NaN (“not a number”). Because normally
distributed data may contain noise in a wide range of values,
robustness of the despiking algorithm is complicated by the
requirement to differentiate between “hard spikes” charac-
teristic of automatic flags (such as 9999) and “soft spikes”,
which are realistically valued but erroneous measurement.
An objective limit for soft spikes is usually defined as ap-
propriate for the signal-to-noise ratio of any particular data,
usually in terms of variance during a defined windowing pe-
riod. Clearly distinguishing errors can be achieved by a static
objective criteria, by a dynamic statistic, or in a separate pre-
processing operation. Previous authors have described a va-
riety of methods including use of autocorrelation (Højstrup,
1993) and statistics within a moving window (Vickers and
Mahrt, 1997). A comprehensive review of despiking meth-
ods is presented by Starkenburg et al. (2016), with emphasis
on the accuracy and statistical robustness of different com-
putation methods.

Despiking is a problem of conditional low-pass filtering;
consequently this procedure can be treated as an applica-
tion of signal processing which can be performed efficiently
using convolution. Mathematically, convolution can be un-
derstood as a multiplicative function that combines a data
signal with a filter signal. For a discrete signal, the filter is
a weight array which is multiplied (in the Fourier domain)
with data inside a window. In the time domain, the window
can be visualized as moving along the data array as it is mul-
tiplied. As examples, a filter with a weight of 2 at the cen-
ter of the window, and zeros elsewhere, would amplify the
data signal by a factor of 2; a filter 10 samples wide, each
weighted at 0.1, generates a running average of the data. The
computational efficiency of convolution is a product of the
fast Fourier transform (FFT), which allocates memory ef-
ficiently by a process known as bit switching. A thorough
treatment of bit switching can be found in Chapters 12 and
13 of Press (2007). To demonstrate the increased efficiency
of the FFT, two methods were used to despike 8.5 h of 20 Hz
sonic temperature data (609 139 samples). One method uti-
lized a for loop, following the objective criteria described by
Vickers and Mahrt (1997). The second method (shown in de-
spike.m) used convolution to determine a running mean and
standard deviation used in the identification of spikes. Af-
ter multiple runs with different input criteria, the first pro-
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gram average run time was 27 s. Using convolution, the sec-
ond program average run time was 0.2 s, decreasing run time
by approximately 99 %. While this drastic improvement may
potentially overemphasize slow compile times of for loops
in MATLAB (compared to other languages), it nonetheless
demonstrates the value of the FFT in calculations with time
domain signals. Faster processing time facilitates more com-
prehensive, calibrated, and accurate analysis, and can reduce
data loss compared to coarser filtering techniques.

To test computation time uniformly, identical 10 Hz data
were sub-sampled to record lengths of 0.25 to 48 h, and mul-
tiple runs were despiked with each sample set. Raw data were
checked for hard error flags which required converting text to
number values. Data were not otherwise manipulated prior
to despiking. MATLAB Profiler was used to track the run
time for all threads, using the undocumented flag “built-in”
to track pre-compiled MATLAB functions as well as user
functions,1. The total run time for all threads was tabulated
and averaged across sets of each data length (Fig. 1). By us-
ing convolution, despiking was 2 orders of magnitude faster
for all lengths of data. To illustrate the effect of MATLAB’s
built-in parallel processes, Fig. 2 shows the ratio of actual run
time to total run time, indicating that the convolution method
relies on computations conducted in parallel for processing
increasingly longer data records. This benefit is directly ac-
crued from the efficiency of the FFT.

With increased computation speed, automatic and accu-
rate despiking can be accomplished, with reduced time cost
to determine any necessary calibrate for the procedure. The
various methods employed to despike data are variously lim-
ited by computational inefficiency (Starkenburg et al., 2016).
“Phase space thresholding”, originally described by Goring
and Nikora (2002), is one such method that Starkenburg
noted as being hampered by computational costs, and by a re-
quirement for iterative applications to calibrate despiking pa-
rameters. By decreasing the execution time, a similar method
was developed that allows rapid and accurate despiking of
data, for the detection of both hard and soft spikes. A phase
space method allows objective criteria to be calibrated for
specific sensor data, and a visual diagnostic phase space dia-
gram that allows for rapid calibration of the despiking criteria
(Fig. 3). Projecting the signal into a phase space diagram re-
veals modes related to sensor error, response time, and other
factors leading to spikes. Using convolution to determine
moving window statistics (such as a moving mean, standard
deviation), objective identification of behaviors characteris-
tic to a particular sensor response. In Fig. 3, infrared gas ana-
lyzer data (in this case, signal strength) collected at 20 Hz for
17 days are projected with 1 min moving window statistics.
Based on this projection, a cut-off in phase space for spike
identification can be assigned, and the subsequent percent-
age of removed data calculated. In this case, the sensor was

1http://undocumentedmatlab.com/blog/
undocumented-profiler-options-part-4 last access: January 2017

Figure 3. Phase space diagram showing moving window statistics
of IRGA signal (17 days of 20 Hz data).

Figure 4. Time series showing data removed as spikes (bolded)
from phase space criteria in Fig. 3.

repeatedly affected by dust from farm operations (Fig. 4), yet
only 1.5 % of the data were required to be removed as spikes
due to the precision of the despiking algorithm. This proce-
dure took less than 5 s of computation.

2.2 Structure function calculation

Another computationally intensive process in SR is the de-
termination of the second-, third-, and fifth-order structure
functions. Ramps are an identifiable feature in the measured
temperature trace above any natural surface, yet determining
the characteristic ramp geometry from high-frequency data
requires an efficient, robust, and preferably automated pro-
cedure. There are several methods to determine ramp geom-
etry, including visual detection (Shaw and Gao, 1989), low-
pass filtering (Katul et al., 1996; Paw U et al., 1995), wavelet
analysis (Gao and Li, 1993), and structure functions (Spano
et al., 1997). Structure functions in particular provide both
objective criteria to detect ramps and an efficient method to
tabulate statistics of time series data, and use of structure
functions has become the predominant method used for SR.
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The general form for a structure function is

Sn(r)=
1

N − r

i=N−r∑
1

[T (i+ r)− T (i)]n, (1)

in which a vector of length N−1 is composed of differences
between sequential (temperature) samples T (i), separated by
lag r . The structure function Sn(r) of order n for a given
sample lag r is obtained by raising the difference vector to
the n power, summing the vector and normalizing by N − 1.
In a turbulent flow field, the sampled fluctuations of scalar
time series 1T (i) are a combination of random fluctuations
and coherent structures (Van Atta and Park, 1972). The ran-
dom (incoherent) part of the signal is a product of isotropic
turbulent processes, and over an adequately large sample this
sample should have no particular directional sense or orienta-
tion (by the isotropic definition). On the other hand, coherent
structures generate characteristic anisotropic signatures, with
periods of gradually change punctuated by sharp transitions.
These sharp transitions occur during “sweeps and ejections”
of parcels enriched or depleted in scalar concentration (heat
or water trace gas), evidence of transport from an Eulerian
perspective. Structure functions can be used to decompose
the time series fluctuations into isotropic and anisotropic
components and identify the characteristic ramp amplitude
and duration of coherent structures (Van Atta, 1977). Ad-
vances in sensor response time and processor speed have re-
vealed an increasingly detailed picture of the coherent ramp
structures. In deriving a method to find ramp geometry, Van
Atta (1977) calculated structure functions for eight different
lags. Two decades later, increased processor power and mem-
ory size allowed Snyder et al. (1996) to calculate structure
functions on 8 Hz data for lags from 0.25 to 1.0 s, but they
were unable to resolve fluxes accurately at some measure-
ment heights and surface roughness conditions. Later it was
realized that determining the contributions from “imperfect
ramp geometry” would require more thorough examination
of ramp durations (Chen et al., 1997a; Paw U et al., 2005).

For this analysis, data were used from several field ex-
periments. The data records used ranged in length from
8 h to over 2 months, with sampling frequencies of 10, 20,
and 100 Hz (fastest frequency for short duration trials only).
Initially, computation of structure functions with the first
method (series of nested for loops) for 3 min periods with
lags up to 10 s required an average 39 s computation time.
In contrast, using the convolution method, this same cal-
culation was accomplished in 7.6 s, an ∼ 80 % reduction in
execution time. The function strfnc.m (provided in Supple-
ment, Sect. S1) also simultaneously time stamps the averag-
ing period, finds the sign of S3(r) (used to find flux direc-
tion), and indexes the maximized value of S3(r)/r , prepar-
ing the data for subsequent steps in determining flux. Using
100 Hz FWT data increased processing time using the convo-
lution method to 38.4 s. The loop method would be unable to
process 100 Hz data in real-time applications, and would re-

Figure 5. Ten iterations of the structure function calculations using
a range of averaging periods.

quire long calculation time when using large continuous data
records.

For a total of N sample lags, two-dimensional convolu-
tion is performed using a filter matrix which is composed of
N column vectors of length N + 1: [1− 1000], [10− 100],
[1000.− 1]. Each column represents a sample lag increasing
distance. When the filter matrix is convolved with time se-
ries data, the column vectors of the resulting matrix are vec-
tors of the element-wise differences (T (i+ r)− T (i)) as in
Eq. (1); these vectors correspond to each sample lag in the
filter. Trials of 10 Hz data using MATLAB’s Profiler showed
that calculation efficiency is not accrued directly from con-
volution, but by changing the order of implementation. In the
looping method, exponentiation (n= 2,3,5) is conducted on
the difference vectors for each lag separately. The accelerated
exponentiation in strfnc.m is possible by using matrix multi-
plication on the convolved matrix, and is faster due to com-
pact memory allocation of the FFT. The resulting efficiency
(calculation time for a given data size) does not depend on
total data size, but is strongly dependent on the length of the
averaging period used to partition the data (Fig. 5). In other
words, the choice of averaging period length is the most sig-
nificant factor in computation time of the maximized struc-
ture functions used to determine ramp geometry. Computa-
tion time increases rapidly for periods shorter than 5 min.
The length of averaging time is a critical consideration in
developing a rapid SR measurement method.

In most SR studies to determine flux, a lag time is assigned
to the structure function calculation, with only a few authors
allowing for a procedure to maximize the ratio S3(r)/r (Sha-
pland et al., 2014). Yet lag time has been identified as a crit-
ical parameter in the linear calibration of ramp geometry to
calculate flux (French et al., 2012).

Because the ideal SR calculation identifies the lag which
maximizes the ratio S3(r)/r , the strfnc.m procedure calcu-
lates structure functions for a continuous range of lags up to
an assigned maximum lag. Based on repeated trials over a
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Figure 6. The performance gains using convolution are more signif-
icant for short averaging periods, regardless of maximum lag used
in calculating structure functions.

broad range of stability conditions, a short maximum lag (3–
5 s) is usually adequate under unstable conditions. Following
the model of parcel residence time, this is likely a result of
buoyancy and higher flux magnitude leading to shorter ramp
duration. Under stable conditions, though, longer lags are re-
quired to detect the true maximum of the ratio S3(r)/r , in-
dicating that the timescale contributing to flux increases. To
evaluate sensitivity to the maximum calculated lag, the struc-
ture functions were calculated iteratively, varying the averag-
ing period and maximum tested lag time (Fig. 6). Regardless
of the length of the assigned range of lags, the convolution
method was between 4 and 14× faster than the loop method,
with short averaging periods again the largest factor in the
difference between the two methods. Using the 2-D convolu-
tion, automated selection of a lag in a continuous time series
is feasible.

2.3 Cardano’s method for depressed cubic polynomials

For the idealized SR method, the structure functions are re-
tained (for each averaging period) for the lag which maxi-
mizes the ratio S3(r)/r – this lag is associated with the the-
oretical maximum contributing scale of flux. The resulting
values are used as coefficients in a cubic polynomial, the root
of which is the ramp amplitude (A) used to calculate flux:

A3
+

(
10S2(r)−

S5(r)

S3(r)

)
A + 10S3(r)= 0. (2)

The magnitude of the real root (of 3 possible roots) is the
characteristic ramp amplitude of the scalar trace (Spano et
al., 1997). The MATLAB root-finding algorithm computes
eigenvalues of a companion matrix to approximate the solu-
tion to a nth-order polynomial, regarding the input function
as a vector with n+ 1 elements (roots.m documentation2).

2http://www.mathworks.com/help/matlab/ref/roots.html, last
access: 9 August 2016

Consequently, this function cannot be executed directly on
an array. On the other hand, an algebraic solution method
can be applied to vectors. An appropriate method for this
type of cubic polynomial was found by Gerolamo Cardano
in the 1545 Ars Magna. Cardano’s solution for “depressed”
cubics (with no squared term) is found by substituting A with
(m1/3

+n1/3) into the abbreviated equationA3
+pA+q = 0.

Expanding terms and using the quadratic equation yields an
exact solution:

A=

(
−
q

2
+

√(q
2

)2
+

(p
3

)3
) 1

3

+

(
−
q

2
−

√(q
2

)2
+

(p
3

)3
) 1

3

, (3)

where p and q are coefficients in the depressed cubic and
derived from the structure functions (Edwards and Beaver,
2015). The function cardanos.m was adapted from a func-
tion by Bruno Luong,3, in a reduced form for the real-valued
cases used to implement the SR method. The function output
was verified against the MATLAB function roots.m for poly-
nomials with both positive and negative real valued inputs
(imaginary inputs are applicable to ramp parameters). Solu-
tion for the real roots in this manner expedites determination
of flux magnitude and direction. The algebraic root-finding
method simplifies and speeds iterative application of the SR
method by operating directly on arrays.

Solving for the roots of this function yields a single, pre-
dominant ramp amplitude from a given temperature trace
(with units of ◦C or K). In addition to ramp amplitude, the
timescale or ramp duration must also be determined. Van
Atta (1977) suggested that ramp time τ should be related lin-
early to amplitude A and proposed

τ =
−A3r

S3(r)
. (4)

In practice, determination of ramp time τ from A using this
equation requires an empirical calibration; this calibration
has been shown to be related to surface conditions and instru-
mentation (Chen et al., 1997b; Shapland et al., 2014). Ongo-
ing work using replicate measurements at multiple heights
(Castellvi, 2004) and frequency response calibration (Shap-
land et al., 2014; Suvočarev et al., 2014) has begun to resolve
the causes of variability in this parameter. In this study, it was
found that the ratio in Eq. (4) remains essentially constant for
a given surface roughness condition, allowing determination
of τ algebraically. Automated computation of Eq. (2) using
the exact solution facilitates rapid evaluation of the ramp ge-
ometry, and determining flux magnitude from ramp geometry
is a relatively simple matter of linear scaling when calibrat-
ing to a control measure such as eddy covariance.

3https://de.mathworks.com/matlabcentral/fileexchange/
27680-multiple-eigen-values-for-2x2-and-3x3-matrices last
access: 9 April 2018
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3 Conclusions

As with other methods for measuring flux from the surface,
analytic solutions do not always translate easily into straight-
forward numerical computation, especially when working
with large data records or when calculating in real time. In
applied research, custom algorithms are often developed by
individual researchers, requiring special training in program-
ming, significant time investment, and the motivation to use
sophisticated techniques that fully utilize available memory
and processing power. Efforts to standardize the eddy co-
variance method (Aubinet et al., 2012; Baldocchi, 2014) and
data quality control (Allen et al., 2011; Foken et al., 2012)
have not yet been similarly applied to the SR method, al-
though substantial work has been made to validate and unify
SR methods (Castellví, 2012; Chen et al., 1997b; French et
al., 2012; Suvočarev et al., 2014). By appropriating methods
common in signal processing, and by sharing open-source
tools on online forums, more sophisticated approaches can
be implemented. In particular, reducing the computational
overhead of calculating flux enables broad implementation
and robust verification of the SR method. Rapid algorithms
allow for automated assignment of lag time, rather than fixed
assignment, and allow flux determinations while varying the
length of flux averaging periods. These procedures allow for
comprehensive analysis of both the physical timescales of
surfaces flux, and the sensor response and uncertainty associ-
ated with the SR derived flux. Calibration of despiking crite-
ria can be implemented quickly at low computational cost. In
summary, efficient methods for computing SR flux allow im-
plementation in novel deployments such as low-cost, contin-
uous monitoring and on moving platforms. Future work re-
mains to transfer efficient methods from the MATLAB devel-
opment platform to open-source implementations, and to en-
able hardware to perform these techniques directly for real-
time applications. Reducing the cost and power requirement
of the required data loggers, computers, and telemetry will
facilitate the extensive deployment of SR sensors to aid in
describing the heterogeneity of flux across the landscape.

Data availability. All data used in this analysis and scripts im-
plementing the algorithms described above are available online at
https://doi.org/10.7267/N9X34VDS (Kelley, 2017).

Abbreviated scripts for the three example methods may be found
in the Supplement. Requests for phase space despiking methods can
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