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Abstract. Since the late 1990s, the meteorological observa-
tory established in Anmyeondo (36.5382◦ N, 126.3311◦ E,
and 30 m above mean sea level) has been monitoring sev-
eral greenhouse gases such as CO2, CH4, N2O, CFCs, and
SF6 as a part of the Global Atmosphere Watch (GAW) Pro-
gram. A high resolution ground-based (g-b) Fourier trans-
form spectrometer (FTS) was installed at this observation
site in 2013 and has been operated within the frame work
of the Total Carbon Column Observing Network (TCCON)
since August 2014. The solar spectra recorded by the g-b
FTS cover the spectral range 3800 to 16 000 cm−1 at a res-
olution of 0.02 cm−1. In this work, the GGG2014 version
of the TCCON standard retrieval algorithm was used to re-
trieve total column average CO2 and CH4 dry mole fractions
(XCO2, XCH4) and from the FTS spectra. Spectral bands of
CO2 (at 6220.0 and 6339.5 cm−1 center wavenumbers, CH4
at 6002 cm−1 wavenumber, and O2 near 7880 cm−1 ) were
used to derive the XCO2 and XCH4. In this paper, we pro-
vide comparisons of XCO2 and XCH4 between the aircraft
observations and g-b FTS over Anmyeondo station. A com-
parison of 13 coincident observations of XCO2 between g-
b FTS and OCO-2 (Orbiting Carbon Observatory) satellite
measurements are also presented for the measurement pe-

riod between February 2014 and November 2017. OCO-2
observations are highly correlated with the g-b FTS mea-
surements (r2

= 0.884) and exhibited a small positive bias
(0.189 ppm). Both data set capture seasonal variations of the
target species with maximum and minimum values in spring
and late summer, respectively. In the future, it is planned to
further utilize the FTS measurements for the evaluation of
satellite observations such as Greenhouse Gases Observing
Satellite (GOSAT, GOSAT-2). This is the first report of the
g-b FTS observations of XCO2 species over the Anmyeondo
station.

1 Introduction

Monitoring of greenhouse gases (GHGs) is a crucial issue in
the context of global climate change. Carbon dioxide (CO2)
is one of the key greenhouse gases and its global annual mean
concentration has increased rapidly from 278 to 400 ppm
since the preindustrial data of 1750 (WMO greenhouse gas
bulletin, 2016). Radiative forcing due to changes in atmo-
spheric CO2 accounts for approximately 65 % of the total
change in radiative forcing by long-lived GHGs (Ohyama
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et al., 2015 and reference therein). Human activities such as
burning of fossil fuels and land use change are the primary
drivers of the continuing increase in atmospheric greenhouse
gases and the gases involved in their chemical production
(Kiel et al., 2016 and reference therein). There is a global
demand for accurate and precise long-term measurements of
greenhouse gases.

In the field of remote sensing techniques, solar absorp-
tion infrared spectroscopy has been increasingly used to de-
termine changes in atmospheric constituents. Today, a num-
ber of instruments deployed on various platforms (ground-
based and space-borne) have been operated for measuring
GHGs such as CO2. The g-b FTS at the Anmyeondo sta-
tion has been measuring several atmospheric GHG and other
gases such as CO2, CH4, CO, N2O, and H2O operated within
the framework of the Total Carbon Column Observing Net-
work (TCCON). XCO2 retrievals from the g-b FTS have
been reported at different TCCON sites (e.g., Ohyama et
al., 2009; Deutscher et al., 2010; Messerschmidt et al., 2010,
2012; Miao et al., 2013; Kivi and Heikkinen, 2016; Velazco
et al., 2017). TCCON achieves accuracy and precision in
measuring the column averaged dry air mole fraction of CO2
(XCO2), of about 0.25 %, or better than 1 ppm (Wunch et
al., 2010), which is essential to retrieve information about
sinks and sources, as well as validating satellite products
(Rayner and O’Brien, 2001; Miller et al., 2007). Precision for
XCO2 of 0.1 % can be achieved during clear sky conditions
(Messerschmidt et al., 2010; Deutscher et al., 2010). The net-
work aims to improve global carbon cycle studies and sup-
ply the primary validation data of different atmospheric trace
gases for space-based instruments, e.g., the Orbiting Carbon
Observatory 2 (OCO-2), the Greenhouse Gases Observing
Satellite (GOSAT, GOSAT-2) (Morino et al., 2011; Franken-
berg et al., 2015).

This study is focused on the initial characteristics of XCO2
retrievals from g-b FTS spectra over the Anmyeondo station,
and comparison with in situ aircraft overflights and the OCO-
2 satellite. The FTS spectra have been processed using the
TCCON standard GGG2014 (Wunch et al., 2015) retrieval
software. One of the unique aspects in this work is a new
homemade addition to our g-b FTS instrument that reduces
the solar intensity variations from the 5% maximum allowed
in TCCON to less than 2%. This paper presents an introduc-
tion to the instrumentation and measurement site, and pro-
vides initial results and discussion followed by conclusions.

2 Station and instrumentation

2.1 Station description

The g-b FTS observatory was established in 2013 at the An-
myeondo (AMY) station, located at 36.32◦ N, 126.19◦ E, and
30 m above sea level. This station is situated on the west coast
of the Korean Peninsula, 180 km SE of Seoul, the capital city

Figure 1. Anmyeodo (AMY) g-b FTS station.

of Republic of Korea. Figure 1 displays the Anmyeondo sta-
tion. It is also a regional GAW (Global Atmosphere Watch)
station that is operated by the Climate Change Monitoring
Network of KMA (Korean Meteorological Administration).
The AMY station has been monitoring various atmospheric
parameters such as greenhouse gases, aerosols, ultraviolet ra-
diation, ozone, and precipitation since 1999. The total area of
the Anmyeondo island is estimated to be ∼ 88 km2 and ap-
proximately 1.25 million people reside on the island. Some
of the residents in this area are engaged in agricultural ac-
tivities. Vegetated areas consisting of mainly pine trees are
located in and around the FTS observatory. The topographic
features of the area are low level hills that are on average
about 100 m above sea level. The minimum temperature in
winter season is on average 2.7 ◦C, and the maximum tem-
perature is about 25.6 ◦C during summer. Average annual
precipitation amount is 1155 mm; with snow in winter. The
site has been formally designated as a provisional TCCON
site since August 2014. Full acceptance requires calibration
via overflights with WMO-calibrated in situ vertical profiles,
as described in this paper. The AMY Station’s TCCON wiki
page can be found at: https://tccon-wiki.Anmyeondo.edu

2.2 G-b FTS instrument

Solar spectra are acquired using a Bruker IFS 125HR spec-
trometer (Bruker Optics, Germany) under the guidelines set
by TCCON. Currently, our g-b FTS instrument operation is
semi-automated for taking the routine measurements under
clear sky conditions. It is planned to make an FTS opera-
tion mode fully automated in 2018. The solar tracker (A547,
Bruker Optics, Germany) is mounted inside a remotely con-
trolled protective dome. The tracking ranges in azimuthal and
elevation angles are about 0 to 315 and −10 to 85◦, respec-
tively, while the tracking speed is about 2◦ s−1. The tracking

Atmos. Meas. Tech., 11, 2361–2374, 2018 www.atmos-meas-tech.net/11/2361/2018/

https://tccon-wiki.Anmyeondo.edu


Y.-S. Oh et al.: Characteristics of greenhouse gas concentrations 2363

Figure 2. Photographs of the automated FTS laboratory. The Bruker Solar Tracker type A547 is mounted in the custom made dome. A servo
controlled solar tracker directs the solar beam through a CaF2 window to the FTS (125HR) in the laboratory. The server computer is used for
data acquisition. PC1 and PC2 are used for controlling the spectrometer, solar tracker, dome, camera, pump, GPS satellite time, and humidity
sensor.

Figure 3. Single spectrum recorded on 4 October 2014 with a resolution of 0.02 cm−1. A typical example for the spectrum of -XCO2 is
shown in the inset.

accuracy of the ±4 min arc is achieved by the Camtracker
mode which centers an image of the sun onto the spectrom-
eter’s input field stop. Under clear sky conditions, the dome
is opened and set to an automatic tracking mode, in which
the mirrors are initially moved to the calculated solar posi-
tion, then. The Camtracker control is activated in such a way
that the mirrors are finely and continuously controlled to fix
the beam onto the entrance stop of the spectrometer. Figure 2

displays an overview of the general data acquisition system.
This ensures that all spectra are recorded under clear weather
conditions.

The spectrometer is equipped with two room temperature
detectors; an Indium-Gallium-Arsenide (InGaAs) detector,
which covers the spectral region from 3800 to 12 800 cm−1,
and Silicon (Si) diode detector (9000–25 000 cm−1) used in
a dual-acquisition mode with a dichroic optic (Omega Opti-
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Figure 4. Modulation efficiency (a) and phase error (rad) (b) of HCl
measurements from the g-b FTS are displayed in the period from
October 2013 to September 2017. Resolution= 0.02 cm−1, aper-
ture= 0.8 mm.

cal, 10 000 cm−1 cut-on). A red longpass filter (Oriel Instru-
ments 59523; 15 500 cm−1 cut-on) prior to the Si diode de-
tector blocks visible light, which would otherwise be aliased
into the near-infrared spectral domain. TCCON measure-
ments are routinely recorded at a maximum optical path dif-
ference (OPDmax) of 45 cm leading to a spectral resolution of
0.02 cm−1 (0.9/max OPD). Two scans, one forward and one
backward, are performed and individual forward–backward
interferograms are recorded. As an example, Fig. 3 shows
a single spectrum recorded on 4 October 2014 with a res-
olution of 0.02 cm−1. A single forward-backward scan in
one measurement takes about 112 s. Measurement setting for
the Anmyeondo g-b FTS spectrometer of the Bruker 125HR
model is summarized in Table 1. The pressure inside the FTS
is kept at 0.1 to 0.2 hPa with an oil-free vacuum pump to
maintain the stability of the system and to ensure clean and
dry conditions.

2.3 Characterization of FTS-instrumental line shapes

For the accurate retrieval of total column amounts of the
species of interest, a good alignment of the g-b FTS is essen-

Table 1. Measurement setting for the Anmyeondo g-b FTS spec-
trometer of the Bruker 125HR model.

Item Setting

Aperture (field stop) 0.8 mm
Detectors RT-Si Diode DC,

RT-InGaAs DC
Beamsplitters CaF2
Scanner velocity 10 kHz
Low pass filter 10 kHz
High folding limit 15798.007
Spectral resolution 0.02 cm−1

Optical path difference 45 cm
Acquisition mode Single sided, forward backward
Sample scan 2 scans, forward, backward
Sample scan time ∼ 110 s

tial. The instrument line shape (ILS) retrieved from the reg-
ular HCl cell measurements is an important indicator of the
status of the FTS’s alignment (Hase et al., 1999). The anal-
yses of the measurements were performed using a spectrum
fitting algorithm (LINEFIT14 software) (Hase et al., 2013).
In Fig. 4 we show time series of the modulation efficiency
(Fig. 4a) and phase error (rad) (Fig. 4b) from the HCl cell
measurement in the period of October 2013 to September
2017 using a tungsten lamp as light source. Modulation am-
plitudes for TCCON-acceptable alignment should be within
5 % of the ideal case (100 %) at the maximum optical path
difference (Wunch et al., 2011). In our g-b FTS measure-
ments, it is found that the maximum loss of modulation ef-
ficiency is within 1 %, close to the ideal value. The phase
errors are less than± 0.0001 rad. Hase et al. (2013) reported
that this level of small disturbances from the ideal value of
the modulation efficiency is common to all well-aligned in-
struments. This result confirmed that the g-b FTS instrument
is well aligned and has remained stable during the whole op-
eration period.

We also confirmed that the ILS was not affected by the
variable aperture (OASIS) during the operation of this sys-
tem (see Sect. 2.5). The modulation efficiency and phase
error were estimated to be 99.98 % and 0.0001 rad. Sun et
al. (2017) reported the detailed characteristics of the ILS
with respect to applications of different optical attenuators
to FTIR spectrometers within the TCCON and NDACC net-
works. They used both lamp and sun as light sources for the
cell measurements, which were conducted after the insertion
of five different attenuators in front of and behind the inter-
ferometer.

2.4 Data processing

Using the TCCON standard retrieval strategy, we have
derived the column-averaged dry-air mole fractions CO2
(XCO2) and other atmospheric gases (O2, CO, CH4, N2O,
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Table 2. Spectral windows used for the retrievals of the columns of
CO2 and O2.

Gas Center of spectral Width Interfering
window (cm−1) (cm−1) gas

O2 7885.0 240.0 H2O, HF, CO2
CO2 6220.0 80.0 H2O, HDO, CH4
CO2 6339.5 85.0 H2O, HDO

and H2O) using the GFIT algorithm and software. The spec-
tral windows used for the retrieval of CO2 and O2 are given
in Table 2. The TCCON standard GGG2014 (version 4.8.6)
retrieval software was used to obtain the abundance of the
species from FTS spectra (Wunch et al., 2015). XCO2 is de-
rived from the ratio of retrieved CO2 column to retrieved O2
column,

XCO2 =
CO2 column

O2 column
× 0.2095. (1)

Computing the ratio using Eq. (1) minimizes systematic and
correlated errors such as errors in solar zenith angle pointing
error, surface pressure, and instrumental line shape that may
exist in the retrieved CO2 and O2 columns (Washenfelder et
al., 2006; Messerschmidt et al., 2012). Figure 5a depicts the
time series of laser sampling error (LSE) obtained from In-
GaAs spectra at the Anmyeondo FTS station in the measure-
ment period of February 2014 to December 2016. LSE is due
to inaccuracies in the laser sample timing, which have been
reduced to acceptable levels by the instrument manufacturer.
In the AMY FTS, the LSE is small and centered around zero.
Slightly large LSE values were shown on 10 March 2014 (see
Fig. 5a). On this date, we conducted the laser adjustment in
FTS.

Xair is the ratio of atmospheric pressure to total column
O2, scaled such that for a perfect measurement Xair = 1.0.
Xair is a useful indicator of the quality of measurements
and the instrument performance (Wunch et al., 2015). Due
to spectroscopic limitations there is a TCCON wide bias
(Xair∼ 0.98) and small solar zenith angle (SZA) depen-
dence. The retrieval of Xair deviating more than 1 % from
the TCCON-wide mean value of 0.98 would suggest a sys-
tematic error. The time series of Xair is shown in the bottom
panel of Fig. 5. The Xair record reveals that the instrument
has been stable during the measurement period. It shows that
the values of Xair fluctuate between 0.974 and 0.985, and the
mean value is 0.982 with a standard deviation of 0.0015 in
which the scatter for Xair is about 0.15 %. The low variability
in time series of Xair indicates the stability of the measure-
ments.

2.5 Operational Automatic System for the Intensity of
Sunray (OASIS) effect on the retrieval results

The OASIS system was developed for improving the quality
of the spectra recorded by the spectrometer by maintaining a
constant signal level. OASIS is beneficial for minimizing the
variability that may be induced in the spectra due to intensity
fluctuations of the incoming solar radiation that reaches the
instrument. The main function of the OASIS is to control an
aperture diameter in the parallel-inlet beam to the interferom-
eter. This aperture is placed inside the OASIS system, in the
parallel input solar beam external to the FTS. The fundamen-
tal purpose of this system is to optimize the measurement of
solar spectra by reducing the effect of the fluctuations of the
intensity of the incoming light due to changes in thin clouds
along the line of sight over the measurement site. The maxi-
mum threshold value of the solar intensity variation (SIV) is
5 %, the TCCON standard value (Ohyama et al., 2015). This
value has been reduced to ≤ 2 % in our case by introducing
the OASIS system to our g-b FTS since December 2014.

In order to assess the impact of the OASIS system on the
retrieval results of XCO2 and XCH4, we have conducted ex-
periments on recording alternate FTS spectra with and with-
out operation of this system under clear sky conditions. As
an example, Fig. 6 depicts the retrieval results of XCO2
(Fig. 6a) and XCH4 (Fig. 6b) as a function of time (KST,
UTC+9), taken 23 November 2017 with OASIS on (blue)
and off (red) positions. Mean differences of 0.12 ppm for
XCO2 and 7.0× 10−4 ppm for XCH4 were found between
OASIS on and off position (i.e., with and without operating
of OASIS system). This suggests that the impact of OASIS
system on the retrieval is negligible.

2.6 Aircraft observation campaigns over Anmyeondo
station

2.6.1 Aircraft instrumentation

In this section, we present a comparison between aircraft in
situ observations and g-b FTS column measurements over
the Anmyeondo station. In situ profiles were conducted over
Anmyeondo station by the National Institute of Meteorolog-
ical Sciences (King Air C90) and as part of the KORUS-AQ
campaign from NASA’s DC8 (https://www-air.larc.nasa.gov/
missinns/korus-aq). For the NIMS profiles, the flight take-off
and landing was carried out from Hanseo University which
is approximately 5 km away from the Anmyeondo FTS sta-
tion. The aircraft was equipped with a Wavelength Scanned
Cavity Ring Down Spectrometer (CRDS; Picarro, G2401-
m), (see Fig. 7) providing mixing ratio data recorded at 0.3
Hz intervals. The position of the aircraft was monitored by
GPS and information on the outside temperature, static pres-
sure, and ground speed was provided by instruments carried
on the plane. The temperature and pressure of the gas sam-
ple have to be tightly controlled at 45◦ and 140 Torr in the
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Figure 5. Time series of LSE (a) and Xair (b) from the g-b FTS during 2014–2017 is shown. Each marker represents a single measurement.

Table 3. Summary of the column averaged dry-air mole fractions obtained during the inter-comparison between the in situ instrument on
board the aircrafts and the g-b FTS at the Anmyeondo station. A and D represent ascending and descending, respectively. Note that FTS
values given below are without TCCON common scale factor and FTS column averaging kernels are applied to the aircraft data.

Date of measurements Aircraft Aircraft
(hours in KST) NIMS g-b FTS NIMS g-b FTS

XCO2 (ppm) XCO2 (ppm) XCH4 (ppm) XCH4 (ppm)

2017-10-29

09:59:16–10:31:08 (A) 409.152 404.242 1.8900 1.8460
10:31:09–11:03:24 (D) 409.336 403.877 1.8854 1.8454
12:58:58–13:37:07 (A) 407.011 401.051 1.8562 1.8265
13:37:07–14:19:40 (D) 406.898 400.537 1.8720 1.8249

2017-11-12

11:12:20–11:38:01 (A) 406.541 401.839 1.8513 1.8221
11:38:02–12:13:00 (D) 406.839 401.930 1.8512 1.8220
14:14:46–14:45:55 (A) 406.517 401.592 1.8479 1.8201
14:45:56–15:23:47 (D) 407.628 401.473 1.8504 1.8191
Mean±SD 407.491± 1.137 402.068± 1.311 1.8630± 0.0170 1.8283± 0.011

KORUS TCCON KORUS TCCON
2016-05-22 405.80± 0.42 401.91± 0.57 1.8641± 0.0132 1.8100± 0.002

CRDS, which leads to highly stable spectroscopic features
(Chen et al., 2010). Any deviations from these values cause
a reduction of the instrument’s precision. Data recorded be-
yond the range of variations in cavity pressure and temper-
ature were discarded in this analysis. Variance of the cavity
pressure and temperature during flight results in variance in
the CO2 and CH4 mixing ratios. The Picarro CRDS instru-
ment has been regularly calibrated with respect to the stan-

dard gases within the error range recommended by the World
Meteorological Organization. Measurements were made in
wet air, and dry air mixing ratios were derived following the
method described in Chen et al. (2010). Water was measured
and its effect was accounted for in the column integration of
CO2 and CH4

On NASA’s DC8, CO2 was measured by the Atmospheric
Vertical Observations of CO2 in the Earth’s troposphere (AV-
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Figure 6. G-b FTS XCO2 (a) and XCH4 (b) values as function of time in KST (Korean Standard time, UTC+9) taken 23 October 2017 with
OASIS system on (operating) and off (without operating) positions are shown. Each marker represents a single measurement.

Figure 7. NIMS CRDS instrument on board the King Air 90C.

OCET) instrument, a non-dispersive IR spectrometer (Vay et
al., 2009) with an uncertainty of 0.25 ppm, CH4 was mea-
sured by the Differential Absorption of CO Measurement
(DACOM) instrument, a mid-IR absorption sensor (Sachse
et al., 1987) with an accuracy of 1 % and a precision of
1 ppb. Both instruments were calibrated in-flight with stan-
dard gases traceable to the respective World Meteorological
scales. The aircraft static pressure and altitude were recorded
via a pressure transducer and radar altimeter, respectively,
recorded by the aircraft data system. As with the NIMS
profiles, the vertical profiles of CO2 and CH4 mixing ratio
were obtained during a downward flight centered on the An-
myeondo.

2.6.2 Aircraft CO2 and CH4 data

The NIMS vertical profiles of CO2 and CH4 mixing ratio
were obtained during a downward spiral flight centered over
the Anmyeondo FTS station, on 29 October and 12 Novem-

ber 2017. As an example, the flight trajectory is shown
in the left panel of Fig. 8 while the profiles of CO2 and
CH4 from flight during the ascent and descent on 29 Oc-
tober 2017 are depicted in the middle and right panels of
Fig. 8, respectively. All flights were performed under clear
sky conditions. The campaign was performed for 2 h on
both days. Specifically, the respective measurements were
taken from 11:00:37 to 12:03:25 KST (UTC+9) and from
13:58:58 to 15:19:40 KST on 29 October 2017 and simi-
larly from 11:12:20 to 12:13:00 KST and from 14:14:46 to
15:14:46 KST on 12 November 2017. The altitude range of
the aircraft measurements was limited to approximately 0.1
to a 9.1 km. We constructed the complete CO2 and CH4 pro-
files in a similar way as performed by Deutscher et al. (2010),
Miyamoto et al. (2013), and Ohyama et al. (2015).

For both CO2 and CH4 profiles, we have used in situ sur-
face data (AMY GAW station) to complement the aircraft
profiles close to surface level, and above the aircraft ceiling,
the mole fractions throughout the altitude range between the
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Figure 8. Typical flight path (a), CO2 (b), and CH4 (c) VMR profiles during ascent and descent of the aircraft over Anmyeondo on 29 Oc-
tober 2017 are shown.

Figure 9. The comparisons of XCO2 and XCH4 between the aircraft observation and g-b FTS data over Anmyeondo station are shown. The
blue square represents the aircraft campaign conducted by KORUS-AQ (May 2016), whereas the green square indicates the aircraft campaign
operated by NIMS (2017). Note that FTS values shown in the figure are after removing TCCON common scale factor.

uppermost aircraft and the tropopause is assumed to be the
same as at the highest aircraft measurement level because of
lack of data. This extrapolation produces the largest uncer-
tainty in the in situ column estimate. For this analysis, the
tropopause height was derived from NOAA National Cen-
ters for Environmental Prediction/National Center for Atmo-
spheric Research Reanalysis datasets which are provided in
6 h intervals (00:00, 06:00, 12:00, and 18:00 UTC) with a
horizontal resolution of 2.5 by 2.5◦. The measurements of
surface pressure were available at the FTS station, which
we have used for calculating XCO2 and XCH4. Above the
tropopause height, GFIT apriori profiles were utilized to ex-
trapolate the aircraft profile. Eventually, the completed air-
craft profiles based on those assumptions were transformed
into a total column XCO2 and XCH4 by pressure weight-
ing functions. For this comparison, we considered only the
FTS averaged XCO2 and XCH4 retrieval values for the cor-
responding aircraft measurement time. Details about the air-

craft XCO2 and XCH4 values during ascending and descend-
ing aircraft flight duration and the corresponding FTS av-
eraged XCO2 and XCH4 retrieval values are also provided
in Table 3. Note that the vertically resolved FTS column-
averaging kernels were taken into account for smoothing the
aircraft profiles. The XCO2 and XCH4 for the aircraft in situ
profile weighted by the column averaging kernel a (Rodgers
and Connor, 2003) is computed as follows:

Xin-situ
=Xa

+

∑
j

hjaj (tin-situ− ta)j ,

where Xa is the column-averaged dry air mole fraction for
the a priori profile ta (CO2 or CH4), tin-situ is the aircraft pro-
file and hj is the pressure weighting function.

We estimated the uncertainty of the XCO2 and XCH4
columns derived from the extended aircraft profiles by as-
signing uncertainties. Uncertainty at the surface was assumed
to be same as the uncertainty in the lowest measurements. For
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Figure 10. Time series of XCO2, XCO, and XCH4 from top to bottom panels (a–c), respectively in the period between February 2014 and
November 2017. Each marker indicates a single retrieval. Fitting curves (red solid lines) are also displayed.

Figure 11. (a) shows the time series of FTS XCO2 and in situ tower CO2 on monthly mean basis, whereas (b) depicts annual cycle (2014–
2016).

the stratosphere, we used the method suggested by Wunch
et al. (2010). This method shifts the stratospheric values up
and down by 1 km to calculate the difference in the total col-
umn, which is used as an estimate of the uncertainty in the
location of the tropopause and therefore for the stratospheric
contribution. We estimated the stratospheric errors in aircraft
integrated amount of XCO2 and XCH4 by shifting the apri-
ori profile by 1 km (Ohyama et al., 2015). For KORUS-AQ,
it was found to be 0.42 ppm for XCO2 and 13.26 ppb for
XCH4.

For NASA’s DC8 measurements, the in situ profiles cov-
ered the altitude range of approximately 0.17 to 9.0 km, in
situ surface data were utilized near the surface to comple-

ment the aircraft profiles and extended the aircraft ceiling
point of measurements to the tropopause which is estimated
by NCEP to be at 139.0 hPa. Figure 9 illustrates the results
of XCO2 and XCH4 comparisons between the aircraft obser-
vation and TCCON site data. In this plot, blue represents the
KORUS-AQ campaign, whereas green indicates the NIMS
campaign. KORUS-AQ data lie on the best line which is de-
rived using TCCON stations where aircraft profiles are avail-
able. This shows that TCCON Anmyeondo data is consistent
with other TCCON stations.
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Figure 12. Time series of daily averaged XCO2 retrieval from Anmyeondo FTS and Saga FTS in the period of February 2014 to Novem-
ber 2017 is depicted.

Figure 13. (a) The time series of XCO2 from the g-b FTS (blue squares) and OCO-2 (red squares) over the Anmyeondo station from
February 2014 to November 2017 are shown. (b) The linear regression curve between FTS and OCO-2 is shown. All results are given on a
daily median basis.

2.7 Comparison with OCO-2 measurements

The Orbiting Carbon Observatory-2 (OCO-2) is NASA’s first
Earth-orbiting satellite dedicated to greenhouse gas mea-
surement, it was successfully launched on 2 July 2014 into
low-Earth orbit. It is devoted to observing atmospheric car-
bon dioxide (CO2) to provide improved insight into the car-
bon cycle. The primary mission is to measure carbon diox-
ide with high precision and accuracy in order to character-
ize its sources and sinks at different spatial and temporal
scales (Boland et al., 2009; Crisp, 2008, 2015). The instru-
ment measures the near infrared spectra (NIR) of sunlight
reflected off the Earth’s surface. Atmospheric abundances of
carbon dioxide and related atmospheric parameters are re-
trieved from the spectra in nadir, sun glint, and target modes.
Detailed information about the instrument is available in, for
example, Connor et al., 2008; and O’Dell et al., 2012. In this
work, we used the OCO-2 version 7Br bias corrected data.
The comparisons are discussed in Sect. 3.3.

3 Results and discussion

3.1 Time series of g-b FTS XCO2, seasonal and annual
cycle

The time series of XCO2 along with retrievals of other trace
gases such as XCO and XCH4 from g-b FTS is presented
in Fig. 10a–c for the period from February 2014 to Novem-
ber 2017. In these time series plots, each marker represents
a single retrieval, and the fitting curves of the retrieved val-
ues are also depicted (red solid line). We show the seasonal
cycle of XCO2, XCO, and XCH4 in the time series using a
fitting procedure described by Thoning et al. (1989). Stan-
dard deviations of the differences between the retrieved val-
ues and the fitting curves are 1.64 ppm, 11.34 and 10.1 ppb
for XCO2, XCO, and XCH4, respectively. It is evident that all
species have a seasonal cycle feature. Year to year variability
of XCO2 is highest in spring and lowest during the growing
season in June to September. Moreover, the behavior of the
seasonal cycle of XCO2 at our site was compared with that
of XCO2 at Saga, Japan, which is discussed in a later sec-
tion. The atmospheric increase of XCO2 from 2015 to 2016
was 3.65 ppm, which is larger than the increase from 2014 to
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Table 4. Annual mean of XCO2, XCO, and XCH4 from Anmyeondo g-b FTS from February 2014 to November 2017.

Annual mean± standard deviation

Gases 2014 2015 2016 2017

XCO2 (ppm) 396.91± 2.55 399.32± 2.96 402.97± 2.74 406.04± 2.38
XCO (ppb) 99.42± 14.71 102.73± 14.91 105.39± 10.68 100.14± 10.3
XCH4 (ppm) 1.837± 0.014 1.844± 0.015 1.864± 0.015 1.859± 0.013

2015. For the case of XCH4, its increase from 2015 to 2016
was 0.02 ppm, which is higher than the increase from 2014
to 2015, whereas in XCO the rate of increment from year to
year was found to be slightly decreased (see Table 4).

The seasonal and annual cycles of XCO2 derived from the
g-b FTS were compared with in situ tower observations of
CO2 over the Anmyeondo station, which are presented in
Fig. 11. Regarding in situ data, samples were collected us-
ing flasks and analyzed using non-dispersive infrared (NDIR)
spectroscopy at the altitude of 77 m above sea level (details
about in situ data are available at http://ds.data.jma.go.jp/
jmd/wdcgg/). Nearly 97 % of in situ data in Fig. 11 were
taken during day time between 04:00–08:40 UTC (13:00–
17:40 Korean Standard Time, KST) so that the early morning
and night time enhancements of CO2 were mostly excluded.
In situ CO2 monthly means are generated by first averag-
ing all valid event measurements with a unique sample date
and time. The values are then extracted at weekly intervals
from a smooth curve (Thoning et al., 1989) fitted to the aver-
aged data and then these weekly values are averaged for each
month. As can be seen in Fig. 10, the overall patterns of sea-
sonal and annual cycle of FTS XCO2 tend to be similar with
those of in situ tower CO2.

3.2 Comparison of Anmyeondo XCO2 with nearby
TCCON station

In Fig. 12, we present the comparison of our FTS XCO2 data
with a similar ground-based high-resolution TCCON FTS
observation at Saga station (33.26◦ N, 130.29◦ E) in Japan,
which is the closest TCCON station to our site. Among
nearby TCCON stations, Rikubetsu, Tsukuba, and Saga are
located in Japan (Morino et al., 2011; Ohyama et al., 2009,
2015) and Hefei is located in China (Wang et al., 2017). To
demonstrate the comparison between them, we have shown
the daily averaged XCO2 of two stations during the period of
2014 to 2017 in Fig. 12. As can be seen, variations of XCO2
at the Saga station agreed well with Anmyeondo station. The
daily averaged XCO2 revealed the same seasonal cycle as
that of our station. The lowest XCO2 appeared in late sum-
mer (August and September), and the highest value was in
spring (April).

Ohyama et al. (2015) studied the time series of XCO2
at Saga, Japan during the period from July 2011 to De-
cember 2014. They showed seasonal and interannual vari-

ations. The peak-to-peak seasonal amplitude of XCO2 was
6.9 ppm over Saga during July 2011 and December 2014,
with a seasonal maximum and minimum in the average sea-
sonal cycle during May and September, respectively. In re-
cent findings of Wang et al. (2017), the g-b FTS temporal
distributions of XCO2 at Hefei, China were reported. The
FTS observations in 2014 to 2016 had a clear and similar
seasonal cycle, i.e., XCO2 reaches a minimum in late sum-
mer, and then slowly increases to the highest value in spring.
The daily average of XCO2 ranges from 392.33± 0.86 to
411.62± 0.90 ppm, and the monthly average value shows
a seasonal amplitude of 8.31 and 13.56 ppm from 2014 to
2015 and from 2015 to 2016, respectively. The seasonal cycle
was mainly driven by large scale (hemispheric) biosphere–
atmosphere exchange. Butz et al. (2011) reported that the
observations from GOSAT and the co-located ground-based
measurements agreed well in capturing the seasonal cycle of
XCO2 with the late summer minimum and the spring max-
imum for four TCCON stations (Bialystok, Orleans, Park
Falls, and Lamont) in the Northern Hemisphere. We infer
that the variation of XCO2 over Anmyeondo station is in
harmony with the variation pattern in mid-latitude Northern
Hemisphere.

3.3 Comparison of XCO2 between the g-b FTS and
OCO-2

In this section, we present a comparison of XCO2 between
the g-b FTS and OCO-2 version 7Br data (bias corrected
data) over Anmyeondo station during the period between
2014 and 2017. For making a direct comparison of the g-
b FTS measurements against OCO-2, we applied the spa-
tial coincidence criteria for the OCO-2 data within 3◦ lati-
tude/longitude of the FTS station, as well as setting up a time
window of 3 h (maximum 3 h mismatch between satellite and
g-b FTS observations). Based on the coincidence criteria, we
obtained 13 coincident measurements, which were not suffi-
cient to infer a robust conclusion, but do provide a prelimi-
nary result. The comparison of the time series of XCO2 con-
centrations derived from the g-b FTS and OCO-2 on daily
median basis is demonstrated during the measurement pe-
riod between 2014 and 2017, depicted in Fig. 13. As can
be seen in the plot, the g-b FTS measurement exhibits some
gaps which occurred due to bad weather conditions, instru-
ment failures, and absences of an instrument operator. In the
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Table 5. Summary of the statistics of XCO2 comparisons between
OCO-2 and the g-b FTS from 2014 to 2017. N – coincident num-
ber of data, R – Pearson correlation coefficient, RMS – root mean
squares differences.

N Mean absolute Mean relative R RMS
diff. (ppm) diff (%) (ppm)

13 0.18± 1.19 0.04± 0.29 0.94 1.16

Table 6. Seasonal mean and standard deviations of XCO2 from the
g-b FTS and OCO-2 in the period between 2014 and 2016 are given
below.

Season g-b FTS XCO2 OCO-2 XCO2
mean±SD (ppm) mean±SD (ppm)

Winter 401.52± 0.85 402.67± 2.67
Spring 402.72± 2.79 403.96± 2.77
Summer 396.92± 3.28 399.68± 3.77
Autumn 398.01± 2.83 398.48± 2.41

present analysis, the XCO2 concentrations from FTS were
considered only when retrieval error was below 1.50 ppm
(not shown), which is the sum of all error components such
as laser sampling error, zero level offsets, ILS error, smooth-
ing error, atmospheric a-priori temperature, atmospheric a-
priori pressure, surface pressure, and random noise. Wunch
et al. (2016) reported that the comparison of XCO2 derived
from the OCO-2 version 7Br data against co-located ground-
based TCCON data that indicates the median differences be-
tween the OCO-2 and TCCON data were less than 0.50 ppm,
and corresponding RMS differences of less than 1.50 ppm.
The overall results of our comparisons were comparable with
the report of Wunch et al. (2016). The OCO-2 product of
XCO2 was biased (satellite minus g-b FTS) with respect to
the g-b FTS, which was slightly higher by 0.18 ppm with a
standard deviation of 1.19 ppm, a corresponding RMS dif-
ference of 1.16 ppm. This bias could be attributed to the in-
strument uncertainty. In addition to that, we also obtained a
strong correlation between the two datasets, which was quan-
tified as a correlation coefficient of 0.94 (see Table 5 and
Fig. 13).

Both measurements capture the seasonal variability of
XCO2. As can be seen clearly from the temporal distribu-
tion of FTS XCO2, the maximum and minimum values are
discernible in spring and late summer seasons, respectively.
The mean values in spring and summer were 402.72 and
396.92 ppm, respectively (see Table 6). This is because the
seasonal variation of XCO2 is most likely to be controlled by
the imbalance of the terrestrial ecosystem exchange, and this
could explain the larger XCO2 values in the northern hemi-
sphere in late April (Schneising et al., 2008, and references
therein). The minimum value of XCO2 occurs in August,
which is most likely due to uptake of carbon into the bio-

sphere associated with the period of plant growth. Further-
more, both instruments showed high standard deviations dur-
ing summer, about 3.28 ppm in FTS and 3.77 ppm in OCO-2,
and this suggests that the variability reflects strong sources
and sink signals.

4 Conclusions

Monitoring of greenhouse gases is an essential issue in
the context of global climate change. Accurate and precise
continuous long-term measurements of greenhouse gases
(GHGs) are substantial for investigating their sources and
sinks. Today, several remote sensing instruments operated on
different platforms are dedicated for measuring GHGs. Total
column measurements of greenhouse gases such as XCO2,
XCH4, XH2O, XN2O have been made using the g-b FTS at
the Anmyeondo station since 2013. In this work, we focused
on the measurements taken during the period of February
2014 to November 2017. The instrument has been operated
in a semi-automated mode since then. The FTS instrument
has been stable during the whole measurement period. Regu-
lar instrument alignment checks using the HCl cell measure-
ments are performed. The TCCON standard GGG2014 re-
trieval software was used to retrieve XCO2, XCO, and others
GHG gases from the g-b FTS spectra.

In this work, the g-b FTS retrieval of XCO2 and XCH4
were compared with aircraft measurements that were con-
ducted over Anmyeondo station on 22 May 2016, 29 Oc-
tober and 12 November 2017. The mean absolute differ-
ence between FTS and aircraft XCO2 were found to be
−1.109± 0.802 ppm, corresponding to a mean relative dif-
ference of −0.273± 0.198 % for XCO2, while the mean ab-
solute difference for XCH4 is 0.007± 0.0096 ppm, corre-
sponding to a mean relative difference of 0.377± 0.518 %.
These differences appeared in both species and were consis-
tent with the combined instrument errors. The preliminary
comparison results of XCO2 between FTS and OCO-2 were
also presented over the Anmyeondo station. The mean ab-
solute difference of XCO2 between FTS and OCO-2 was
calculated on daily median basis and it was estimated to be
0.18 ppm with a standard deviation of 0.19 with respect to the
g-b FTS. This bias could be attributed to instrument uncer-
tainty. Based on the seasonal cycle comparison, both the g-b
FTS and OCO-2 showed a consistent pattern in capturing the
seasonal variability of XCO2, with maximum in spring and
minimum in summer.
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