Slant columns

Fitting interval 1

Fitting interval 2
Absorption cross sections
$\mathrm{O}_{2}-\mathrm{O}_{2}$, Thalman et al. (2013), 293 K Ring effect

Non-linear O_{3} absorption effect

Slit function

Polynomial

Intensity offset correction
Iterative spike removal
Reference spectrum I_{0}
$328.5-359 \mathrm{~nm}$
$328.5-346 \mathrm{~nm}$ ($N_{\mathrm{s}, \text { BrO }}$ fixed by fit in interval 1)
HCHO, Meller and Moortgat (2000), 298 K
NO_{2}, Vandaele et al. (1998), 220 K
Ozone, Serdyuchenko et al. (2014), $223+243 \mathrm{~K}$
BrO, Fleischmann et al. (2004), 223 K
Ring cross section based on the technique outlined by
Chance and Spurr (1997), defined as $I_{\text {rrs }} / I_{\text {elas }}$,
where $I_{\text {rrs }}$ and $I_{\text {elas }}$ are the intensities for inelastic
(rotational Raman scattering) and elastic scattering processes.
Two pseudo-cross sections from the Taylor expansion of the ozone slant column into wavelength and the O_{3} vertical optical depth
(Puķīte et al., 2010).
One slit function per binned spectrum as a
function of wavelength (Pre Flight Model,
TROPOMI ISRF Calibration Key Data v1.0.0)
Fifth order
Linear offset ($1 / \mathrm{I}_{0}$)
Not activated
Daily solar irradiance

Fit of a prescribed function shape to determine the ISRF during wavelength calibration plus online convolution of cross sections.

Activated. Tolerance factor 5 (see Sect. 2.2.1)
Daily average of radiances, per row, selected in a remote region.

Air mass factors

Altitude-dependent AMFs

Treatment of partly cloudy scenes
Aerosols
A priori profile shapes
Correction of surface pressure
Surface albedo
Digital elevation map
Cloud product

VLIDORT, $340 \mathrm{~nm}, 6$-D AMF look-up table
IPA, no correction for $f_{\text {eff }}<10 \%$
No explicit correction
TM5-MP $1^{\circ} \times 1^{\circ}$, daily forecast (NRT) or reprocessed (offline)
Yes (Eq. 10)
OMI-based monthly minimum LER (update of Kleipool et al., 2008)
GMTED2010 (Danielson et al., 2011)
S5P operational cloud product, treating clouds as Lambertian reflectors
(OCRA/ROCINN-CRB; Loyola et al., 2018)

OMI operational cloud algorithm, treating clouds as Lambertian reflectors
($\mathrm{O}_{2}-\mathrm{O}_{2}$; Veefkind et al., 2016)

Background correction
Correction equation
$N_{\mathrm{v}, 0}=N_{\mathrm{v}, 0, \mathrm{CTM}}$
$N_{\mathrm{v}, 0}=\frac{M_{0}}{M} N_{\mathrm{v}, 0, \mathrm{CTM}}$ (see Sect. 2.2.3)

