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Abstract. Global Navigation Satellite System (GNSS) radio
occultation (RO) observations are highly accurate, long-term
stable data sets and are globally available as a continuous
record from 2001. Essential climate variables for the ther-
modynamic state of the free atmosphere – such as pressure,
temperature, and tropospheric water vapor profiles (involv-
ing background information) – can be derived from these
records, which therefore have the potential to serve as cli-
mate benchmark data. However, to exploit this potential, at-
mospheric profile retrievals need to be very accurate and
the remaining uncertainties quantified and traced through-
out the retrieval chain from raw observations to essential
climate variables. The new Reference Occultation Process-
ing System (rOPS) at the Wegener Center aims to deliver
such an accurate RO retrieval chain with integrated uncer-
tainty propagation. Here we introduce and demonstrate the
algorithms implemented in the rOPS for uncertainty propa-
gation from excess phase to atmospheric bending angle pro-
files, for estimated systematic and random uncertainties, in-
cluding vertical error correlations and resolution estimates.
We estimated systematic uncertainty profiles with the same
operators as used for the basic state profiles retrieval. The
random uncertainty is traced through covariance propaga-
tion and validated using Monte Carlo ensemble methods.
The algorithm performance is demonstrated using test day
ensembles of simulated data as well as real RO event data
from the satellite missions CHAllenging Minisatellite Pay-
load (CHAMP); Constellation Observing System for Mete-
orology, Ionosphere, and Climate (COSMIC); and Meteoro-
logical Operational Satellite A (MetOp). The results of the
Monte Carlo validation show that our covariance propagation
delivers correct uncertainty quantification from excess phase

to bending angle profiles. The results from the real RO event
ensembles demonstrate that the new uncertainty estimation
chain performs robustly. Together with the other parts of the
rOPS processing chain this part is thus ready to provide in-
tegrated uncertainty propagation through the whole RO re-
trieval chain for the benefit of climate monitoring and other
applications.

1 Introduction

Observation systems of the free atmosphere, focusing on the
range from the top of the atmospheric boundary layer up-
wards, were historically designed for weather research and
forecasting purposes. They have considerable shortcomings
from a climate monitoring perspective (Karl et al., 1995),
and so the related global climate monitoring infrastructure
remains fragile and incomplete even today (Bojinski et al.,
2014). The Global Climate Observing System (GCOS) aims
to improve the observational foundation for the climate sci-
ences (GCOS, 2015). For this purpose the establishment of
climate benchmark data records is essential. To qualify as
climate benchmark, records need to be (1) of global cover-
age, (2) of high accuracy, (3) long-term stable, (4) tested for
systematic errors on orbit, (5) and tied to irrefutable stan-
dards, and they need to (6) measure Essential Climate Vari-
ables (ECVs) (NRC, 2007; GCOS, 2015).

Based on the quality and abundance of Global Navigation
Satellite System (GNSS) signal sources, in particular from
the Global Positioning System (GPS) so far, the GNSS ra-
dio occultation (RO) observation record is globally available
(continuously since 2001), long-term stable (due to the so-
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called self-calibration and high signal stability during the
event), and highly accurate (accuracy traceable to the SI sec-
ond). Due to the self-calibrating property, the accuracy is also
ensured on orbit; i.e., there is no need for calibration or bias
correction in post-processing on ground (Leroy et al., 2006).
The basic RO excess phase data can therefore serve as a fun-
damental climate data record (FCDR) as defined by GCOS
(2010). From this FCDR with its unique properties, ECVs
– in particular the thermodynamic ECVs pressure, tempera-
ture, and humidity in the free atmosphere – can be derived
using an RO retrieval chain.

In order to reliably serve as climate benchmark data
record, however, the retrieved ECV profiles and their claimed
accuracy – expressed by the uncertainties provided – need to
be traceable back to the (small) uncertainties of the FCDR
and in turn to the raw data. This requires that (1) the RO re-
trieval is highly accurate and avoids any undue amplification
of uncertainties associated with the quantities in the FCDR
and that (2) the uncertainties are propagated through the en-
tire retrieval chain, from the raw data to the ECV profiles,
duly accounting for relevant side influences such as from
background information. Developed at the Wegener Center
of the University of Graz (WEGC), together with interna-
tional partners, the Reference Occultation Processing System
(rOPS) (Kirchengast et al., 2015) aims to establish such a
fully traceable RO processing for the first time (Kirchengast
et al., 2016a, b).

In Fig. 1 the basic steps of the RO retrieval chain in the
rOPS, i.e., the precise orbit determination (POD) and excess
phase processing (labeled “L1a” in Fig. 1), the subsequent
atmospheric bending angle retrieval (“L1b”), the refractiv-
ity and dry-air retrieval (“L2a”), and the moist-air retrieval
(“L2b”) are sketched.

Kursinski et al. (1997) – and more recently Hajj et al.
(2002), Anthes (2011), and Steiner et al. (2011) – provided
detailed introductions and reviews of the RO technique and
its applications in meteorology and climate. Ho et al. (2012)
and Steiner et al. (2013) included comparative current RO
retrieval chain descriptions of leading international RO pro-
cessing centers, none of which yet include uncertainty propa-
gation. Empirical error (uncertainty) estimates computed sta-
tistically from retrieved RO atmospheric profiles and clima-
tologies have been derived by Kuo et al. (2004), Steiner and
Kirchengast (2005), and Scherllin-Pirscher et al. (2011a, b,
2017), the last of which with a focus on climate uses also
providing simple analytical error models. These studies and
many others have described the RO retrieval chain in detail
and have shown the high accuracy and quality of RO data,
particularly in the upper-troposphere and lower-stratosphere
region.

The aim of the integrated uncertainty propagation in the
rOPS is to eventually propagate uncertainties along this en-
tire retrieval chain from the raw measurement data to the
ECVs (Kirchengast et al., 2016a, b), whereby the implemen-
tation of the rOPS uncertainty propagation occurs in the se-

(3) Atmospheric BA derivation

(I) Doppler shift retrieval

 (2) Bending angle retrieval

Moist-air retrieval

L1a

L1b

L2a

L2b

Excess phase/amplitude data on time grid

Pres./temp./humidity profiles on altitude grid

Dry pressure/temp. profiles on altitude grid

Bending angle profiles on impact altitude grid

Refractivity & dry-air retrieval

POD & excess phase processing

Figure 1. Schematic view of the main processors of the retrieval
chain in the rOPS (L1a, L1b highlighted, L2a, L2b) and the main
operators of the L1b processor (1, 2, 3), which are in the focus of
this study.

quential blocks illustrated in Fig. 1. The L2a processing and
uncertainty propagation from atmospheric bending angle to
dry-air profiles has already been introduced by Schwarz et al.
(2017, SKS2017 hereafter).

This study is a direct complement to the work in SKS2017.
Using the same propagation and validation methods as ap-
plied in SKS2017, it focuses on the uncertainty propagation
from excess phase to atmospheric bending angle profiles, i.e.,
the L1b processing. As in SKS2017, random uncertainties
are propagated using covariance propagation (CP) and vali-
dated using Monte Carlo (MC) ensemble methods. As in the
L2a processor, we also propagate (conservative bound) esti-
mates for systematic uncertainties along the retrieval chain
of the L1b processor. Additionally, correlation length pro-
files and resolution profiles are provided.

Uncertainty propagation as covariance propagation from
excess phase to bending angle profiles has been outlined and
demonstrated in a basic form, by Syndergaard (1999) and
Rieder and Kirchengast (2001), but not been implemented
yet in processing center retrieval chains or applied to real RO
data. As visible in Fig. 1, the L1b processor consists of three
major retrieval parts, which are expanded into detailed sub-
structure in Fig. 2. We propagate estimated random uncer-
tainties from excess phase profiles to Doppler shift profiles
(Sect. (1) in Fig. 2); further to geometric-optics (GO) bend-
ing angle profiles, merged with wave-optics (WO) bending
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Figure 2. Detailed workflow for state retrieval and uncertainty propagation of the main L1b operators from excess phase to atmospheric
bending angle profiles (1)–(3) and of the subroutines used in the MC testing framework (a)–(g). The mathematical notation, including all
symbols, is introduced in Tables 1 and 2.

angle profiles (2); and finally to atmospheric bending angle
profiles (3), using a full-CP approach. In combination with
the definitions of the main operators and variables in Table 1,
and of the vertical grid and coordinate variables in Table 2,

Fig. 2 provides a concise overview on the detailed workflow
of the L1b processor.

Uncertainty propagation for the WO bending angle re-
trieval has been implemented and demonstrated for simulated
events by Gorbunov and Kirchengast (2015); estimation of
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Table 1. Principal variables for the rOPS L1b uncertainty propagation.

Variable Unit Description

Xr U state profile of retrieved excess phase/filtered excess phase/retrieved Doppler shift/retrieved ge-
ometric optics bending angle/merged GO WO bending angle/filtered bending angle/retrieved
bending angle, with Xr ∈ {Lr,k(t), LF,k(t), Dr,k(t), αG,k(t), αG,k(za), αM,k(za), αF,k(za),
αr(za)}, k ∈ {1,2} (frequencies fT1, fT2), and unit U ∈ {m, m, m s−1, rad, rad, rad, rad, rad},
comprising elements Xr,i .

us
X

U estimated systematic uncertainty profile of X (with X and U as defined above), comprising
elements us

X,i
(including estimated basic and estimated apparent systematic uncertainties, ub

X,i
and ua

X,i
).

ur
X

U estimated random uncertainty profile of X (with X and U as defined above), comprising ele-
ments ur

X,i
.

RX 1 error correlation matrix of X (with X as defined above), comprising elements RX,ij .
CX U2 error covariance matrix of X (with X and U as defined above), comprising elements CX,ij =

ur
X,i
· ur
X,j
·RX,ij .

lX m correlation length profile of X (with X as defined above), comprising elements lX,i .
τX s resolution profile of X (with X as defined above) in time domain, comprising elements τX,i .
wX m resolution profile of X (with X as defined above) in altitude domain (along impact altitude),

comprising elements wX,i .

Xm U model excess phase/Doppler shift/bending angle profiles based on forward modeling of collo-
cated refractivity profiles from ECMWF short-range forecast fields, with Xm ∈ {Lm(t),Dm(t),
αm(za)}, and U ∈ {m, m s−1, rad}, comprising elements Xm,i .

xS U profiles of Cartesian position/velocity vectors of the receiving/transmitting satellite relative to
the center of refraction, with xS ∈ {rT(t), rR(t), vT(t), vR(t)}, and unit U ∈ {m, m, m s−1,
m s−1

}, comprising elements xS,i .
us
xS U estimated (systematic) uncertainty profiles of xS (with xS and U as defined above), comprising

elements us
xS,i .

ABWS 1 BWS filter matrix operator, comprising the Blackman windowed sinc (BWS) low-pass filter
weights (normalized filter functions) in the form of a band matrix.

AL2D s−1 Doppler differentiation matrix operator, transforming the filtered excess phase profile to the
Doppler shift profile.

random and systematic uncertainties for real events including
boundary layer bias correction is introduced by Gorbunov
and Kirchengast (2018).

Other ongoing rOPS retrieval advancements relevant to
this study are the inclusion of the high-altitude initializa-
tion algorithm, introduced by Li et al. (2013, 2015), in the
L2a processor and the reduction of remaining higher-order
ionospheric effects in the retrieved bending angle profiles of
the L1b processor (based on work by Syndergaard, 2000;
Liu et al., 2015; Healy and Culverwell, 2015; and Danzer
et al., 2013, 2015). Furthermore, the precise orbit determina-
tion (POD) of the RO receiver satellite and the excess phase
processing, also including the associated uncertainty propa-
gation, are part of ongoing work (Innerkofler et al., 2017).

Finally, related work and manuscript preparation on a
new moist-air retrieval algorithm (L2b) and corresponding
L2b uncertainty propagation are ongoing (Li et al., 2018;
Kirchengast et al., 2017a).

The paper is structured as follows. In Sect. 2 we intro-
duce the uncertainty estimation, propagation, and validation
methods and the data sources and preparation. In Sect. 3,

with the help of an example RO event, the uncertainty prop-
agation sequence is introduced. In Sect. 4 we present the
results from the MC validation of the CP uncertainty esti-
mates. In Sect. 5 the performance of the algorithm is then
evaluated using test day ensembles with real data from the
RO missions CHAllenging Minisatellite Payload (CHAMP)
(Wickert et al., 2001); FORMOSAT-3 Constellation Observ-
ing System for Meteorology, Ionosphere, and Climate (COS-
MIC) (Anthes et al., 2008); and Meteorological Operational
Satellite A (MetOp) (Luntama et al., 2008); as well as with
simulated data approximating characteristics of the Meteoro-
logical Operational Satellite A (Luntama et al., 2008; simMe-
tOp data hereafter). We close with conclusions and outlook
in Sect. 6. A detailed description of the implemented uncer-
tainty propagation algorithms can be found in Appendix A.

Atmos. Meas. Tech., 11, 2601–2631, 2018 www.atmos-meas-tech.net/11/2601/2018/
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Table 2. Vertical grids, coordinate variables, and specific settings for the rOPS L1b processing system.

Variable Unit Description

fT Hz transmitter signal carrier frequency, with elements fTk (for GPS transmitters k ∈ {1,2} denoting
the L-band frequencies fT1 = 1.57542 GHz and fT2 = 1.22760 GHz).

fs Hz measurement sampling frequency (also called sampling rate); 50 Hz is generally used for the
input excess phase profiles.

fc Hz Blackman windowed sinc (BWS) low-pass filter cutoff frequency; set to 2.5 Hz (but noise-
dependent for the fT(1)2 filtering for ionospheric correction, with fc(1)2 ∈ {2.5, 2, 10/7, 1, 5/7,
0.5 Hz}).

t s time grid of the measurements at sampling rate fs, with elements ti , i ∈ {1,2, . . .N}, where N
is the number of grid points of the RO profile.

at m impact parameter grid corresponding to time grid t .
za m common monotonic impact altitude grid, calculated from sorted impact parameters at,i of the

leading channel (fT1) bending angle, via za,i = at,i −hG−RC. Used as standard vertical grid
after interpolation of all dependent quantities to za.

zt m MSL altitude grid corresponding to time grid t , obtained as part of the forward modeling to-
wards αm, Dm, and Lm (cf. Table 1).

zaTop m impact altitude of the top of the RO profile; it can lie between 70 and 80 km.
zaBot m impact altitude of the bottom of the RO profile; it can lie between 25 km and the Earth’s surface.

Its value can be different for the different GNSS frequencies (i.e., zaBot,k , for k ∈ {1,2}).
zGW

a m impact altitude at the center of the sinusoidal transition range of half-width 1zGW
a between the

GO and WO bending angle profiles; zGW
a can lie within 9 and 14 km, depending on GO bending

angle data quality.
1zGW

a m impact altitude transition half-width of the half-sine-weighted transition between the GO and
WO bending angle profile. Set to 2 km.

zaGradr m impact altitude at the lower end of the excess phase uncertainty estimation range used in this
study, below which the estimated random uncertainties are extended by a linear gradient. Set to
30 km.

zaGrads m impact altitude at the lower end of the range with constant excess phase systematic uncertainty
used in this study, below which the estimated systematic uncertainties continue with a linear
gradient. Set to 8 km.

2 Methods and data

2.1 Methods

We follow the Guide to the Expression of Uncertainty in
Measurement (JCGM, 2008a, b, 2011; GUM hereafter) and
aim to follow terminology as provided by the International
Vocabulary of Metrology (JCGM, 2012), a terminology also
adopted by the GUM. SKS2017 provides a more thorough in-
troduction, including the motivation for using the respective
uncertainty estimation, propagation, and validation methods;
we refer the particularly interested reader to this compan-
ion (open-access) work and provide the essential methods
needed more in a summarized form below.

We categorize uncertainties into estimated random uncer-
tainties and estimated systematic uncertainties. Effects of un-
predictable or stochastic temporal and spatial variations in
repeated observations, like effects from fluctuations in the at-
mosphere or the thermal noise of the receiver system, could
in principle be estimated by ensemble statistics from multiple
RO events. However, since such effects are essentially sta-
tionary in a statistical sense, we can estimate their statistics

also from individual RO event data, given their high noise-
resolving sampling rate. These effects are included in the es-
timated random uncertainties.

Systematic effects (biases), which can not be quantified
using statistical data analysis based on just one individual
RO profile, are estimated and corrected for when known, as
recommended by the GUM. The remaining residual biases
are assumed to stay within a (conservative) bound estimate,
which we refer to as estimated systematic uncertainty and by
which we aim to provide at least 90 % likelihood coverage
(confidence) that residual biases stay within the plus/minus
envelope range of this uncertainty.

Depending on their nature, components of the systematic
uncertainty that we need to estimate can be fundamentally
systematic across different RO events, a subtype we term es-
timated basic systematic uncertainties, or appear systematic
just for individual RO events, a second subtype that we term
estimated apparent systematic uncertainties. It is important
to distinguish these two subtypes, since the apparent system-
atic uncertainties will essentially behave as random uncer-
tainties in ensemble averaging over many RO events, such
as when generating climatologies, while the basic systematic
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ones will not average out and therefore fundamentally limit
the (absolute) accuracy of ensemble averages such as clima-
tologies.

Since the noise-type effects giving rise to short-range-
correlated random uncertainties can be considered uncorre-
lated to the bias-type effects inducing long-range-correlated
apparent systematic uncertainties, and since both are uncor-
related to basic systematic uncertainties, it is insightful and
possible with due care to estimate and propagate each of
these uncertainties independently.

As for the L2a processor (SKS2017), the operators of the
L1b processor (i.e., the boldfaced items 1.2, 1.4, 2.1, 2.7, 2.9,
3.1, and 3.5 in Fig. 2) qualify as explicit, multivariate, and
linear measurement models, as defined in the GUM, with
correlated input quantities. They can therefore be formulated
as

Y = AXY ·X, (1)

where the input quantity X and output quantity Y are rank 1
vectors (profiles) of random variables, which we call state
profiles. According to the GUM, their random uncertainties
can be propagated using

CY = E
[
YY T

]
= E

[(
AXYX

)(
AXYX

)T ]
= AXYE[XXT ]

(
AXY

)T
= AXYCX

(
AXY

)T
(2)

when the uncertainties are normally distributed. This as-
sumption is reasonably justified, since the receiving sys-
tem noise (i.e., thermal noise and residual clock estimation
noise) and the ionospheric noise (from scintillations induced
by ionospheric irregularities) are essentially normally dis-
tributed overall (Kursinski et al., 1997; Syndergaard, 1999;
Gorbunov, 2002b; Sokolovskiy et al., 2009). These noise
sources are the main contribution to the random uncertainties
in the excess phase profiles feeding into the L1b processor.

CX and CY are the covariance matrices of the input and
output variables, respectively, and AXY is the linear (or lin-
earized) operator connecting X and Y . Equation (3) formu-
lates how the covariance matrix CX is calculated from ran-
dom uncertainty estimates urX and the correlation matrix RX:

CX,ij = u
r
X,i · u

r
X,j ·RX,ij . (3)

As a key variable characterizing RX, correlation length
profiles lX are estimated from the correlation functions as-
sembled in RX. The algorithm used estimates lX by search-
ing for the distances downward and upward of the correla-
tion functions’ main peak at which the correlation function
has dropped to a value of 1/e (≈ 0.378). The adopted cor-
relation length estimate is the arithmetic mean of these two
upward and downward estimates (as the peak may be some-
what asymmetric). Additionally the correlation length is con-
strained by the data domain; i.e., the correlation length can
never be larger than the profiles’ vertical range.

Since the covariance propagation of random uncertain-
ties requires extensive matrix multiplications for each mea-
surement model along the entire retrieval chain, we also
tested simpler variance propagation (VP), for which correla-
tions are ignored; Appendix B summarizes the relevant algo-
rithms. However, as shown in Sect. 4, variance propagation
unduly overestimates random uncertainties, so that covari-
ance propagation is required.

When the operator is linear, as is the case for the applica-
ble L1b operators, estimated systematic uncertainties can be
propagated by application of the state retrieval operator on
the estimated systematic input uncertainty:

usY = AXY ·
(
X+ usX

)
−Y = AXY ·X+AXY · usX −Y

= Y +AXY · usX −Y = AXY · usX, (4)

where usX and usY are the rank 1 systematic uncertainty pro-
files of the input and output variables.

In addition to random uncertainties, systematic uncertain-
ties, and the correlation length, we also estimate resolu-
tion profiles wX as context information along with the pro-
vided random uncertainty profiles (necessary, e.g., because
smoothing can decrease random uncertainties, while making
resolution coarser). This is enabled by careful selection and
formulation of low-pass filter operations, in particular ex-
plicit filter cutoff frequency specification as the main driver
of the resolution remaining after low-pass filtering.

We note that the (half-)Fresnel scale physical resolution
often ascribed to RO bending angle profiles retrieved by
geometric-optics methods (e.g., Kursinski et al., 1997; Gor-
bunov et al., 2004) will generally be somewhat coarser than
the filter-limited resolution estimated here. This is intentional
to maximize available information in the bending angle pro-
files provided by the L1b processor. In the rOPS, on input
to the L2a processor and before high-altitude initialization
by statistical optimization, the resolution of all profiles is
brought to a common altitude-dependent resolution, which
reflects the half-Fresnel scale (SKS2017).

2.2 Data sources and preparation

The input variables needed for the L1b uncertainty propa-
gation, visible in Fig. 2 and defined in Table 1, are the re-
trieved excess phase profiles Lr,k(t) and the associated sys-
tematic uncertainty profiles usLr,k

(t), random uncertainty pro-
files urLr,k

(t), and correlation matrices RLr,k , as well as the or-
bit positions and velocities of receiver and transmitter satel-
lite – rR(t), vR(t), rT(t), and vT(t) – and their (system-
atic) uncertainties, usrR(t), u

s
vR(t), u

s
rT(t), and usvT(t). For

due limitation of depth of workflow detail in Fig. 2 we do
not separately show the propagation of the basic and ap-
parent systematic uncertainties as they are both identically
propagated through the operator chain shown for usLr,k

(t).
All variables are provided on the time grid t with elements
ti , at fs = 50 Hz sampling rate, and for the two GPS carrier
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frequencies: fTk , with k ∈ {1,2}, fT1 = 1.57542 GHz, and
fT2 = 1.22760 GHz.

We used excess phase state profiles Lr,k(t) and the orbit
state profiles rR(t), vR(t), rT(t), and vT(t) from 15 July
2008 as a test day ensemble. For CHAMP, COSMIC, and
MetOp, orbit state and excess phase profiles were pro-
vided by the COSMIC Data Analysis and Archiving Cen-
ter (CDAAC) of the University Corporation for Atmo-
spheric Research (UCAR), Boulder, Colorado. The End-to-
End GNSS Occultation Performance Simulation and Pro-
cessing System (EGOPS) (Fritzer et al., 2009) was used for
generating the simulated MetOp orbit state and excess phase
profiles with realistic receiver noise (simMetOp). Figure 3
shows Lr,k(t) in panel (a), usLr,k

(t) in panel (b), urLr,k
(t) in

panel (c), and RLr,k in terms of representative correlation
functions in panels (d) and (e), for a typical COSMIC RO
event of the test day ensemble from 15 July 2008 (example
case).

Exploiting the linearity of the (linearized) retrieval oper-
ators, the so-called baseband approach (Kirchengast et al.,
2016a) is applied throughout the rOPS. Hereby a zero-order
model profile is subtracted from the input state profile, and
only the remaining delta profile is processed through the
operator. After application of the operator, the zero-order
model profile of the output state profile is added back to the
resulting delta profile. This approach effectively avoids bi-
ases from numerical operations on (near-)exponentially vary-
ing RO profiles, since the model profiles that we derive
from short-range (24 h) forecasts of the European Centre for
Medium-Range Weather Forecasts (ECMWF) skillfully sub-
tract the (near-)exponential variation. The remaining incre-
ment profiles that we need to treat numerically then appear
to be very linear and with low dynamical range, which leads
to very low residual numerical errors of operators such as
filters and derivatives.

The model profiles used as zero-order states in the retrieval
– i.e., Lm, Dm, and αm (cf. Table 1) – were created from
ECMWF short-range (24 h) forecast refractivity fields, accu-
rately forward-modeled to bending angle (αm), Doppler shift
(Dm), and excess phase (Lm) profiles, collocated to the lat-
itude, longitude, and time of the respective RO event pro-
cessed in the rOPS. The ECMWF fields used have a horizon-
tal resolution of about 300 km (triangular truncation T42) –
which corresponds to the approximate horizontal resolution
of RO profiles (e.g., Kursinski et al., 1997) – and are avail-
able at 91 vertical levels (L91).

ECMWF fields were chosen for their proven leading qual-
ity (Untch et al., 2006; Bauer et al., 2015) and thus high
suitability for serving as zero-order state profiles; any other
reasonable model profiles could be used as well since the
retrieval results negligibly depend on the exactly chosen
zero-order model profiles. For comparison we plotted Lm(t)

for the COSMIC example case into Fig. 3a, which demon-
strates that the ECMWF short-range forecast lies very close

to Lr1(t) and Lr2(t) and thus is well suited as the model pro-
file.

While in the future the excess phase random and system-
atic uncertainty profiles will be more rigorously estimated
by the rOPS L1a processor (Innerkofler et al., 2017) and pro-
vided as input to the L1b processor, they had to be estimated
for this study from existing excess phase profiles with re-
alistic noise and simplified modeling. To this end, each es-
timated random uncertainty profile urLr,k

(t) was estimated
based on the noise of the respective retrieved excess phase
profile Lr,k(t). The noise was determined following the es-
timation scheme for bending angle observation errors de-
scribed by Li et al. (2015, Sect. 2.2 therein), so we just briefly
summarize how we used it here.

First, for both, the retrieved profile Lr,k and for the model
profile Lm, the mean over all grid points between 60 and
70 km was determined. Then Lm was offset-corrected to-
wards Lr,k by subtracting the difference of these two means
from Lm, giving the offset-corrected model profile Lm̃. Next,
the delta profile δLrm̃,k = Lr,k −Lm̃ was calculated. After
smoothing δLrm̃,k with a 10 km moving-average boxcar (BC)
filter, the smoothed profile was subtracted from δLrm̃,k again,
to get δδLrm̃,k , the random noise profile component of Lr,k
isolated in this way. Finally, the estimated random uncer-
tainty was determined as

urLr,ik =

√√√√ i+M/2∑
j=i−M/2

δδL2
rm̃,jk, (5)

whereM is the number of grid points equivalent to a window
width of 10 km. To avoid boundary effects of the filter, urLr,k
was only determined up to zaTop− 5 km and down to zaGradr
at 30 km. It was constantly extended at the upper end and
extended by a linear gradient below zaGradr, using (in units
[m])

urLr,ik = u
r
Lr,k

(zaGradr)+
zaGradr− za,i

3× 106 , (6)

for all elements of urLr,k
(t) below zaGradr, roughly following

estimates of ESA/EUMETSAT (1998) and the overall behav-
ior of estimates from real excess phase profiles (the latter be-
came too vulnerable to biases and fluctuations to continue
using them below 30 km).

Since the noise components responsible for the random
uncertainty at excess phase level are essentially uncorrelated
at a sampling rate of 50 Hz (Syndergaard, 1999; Hajj et al.,
2002), the correlation matrix RLr is set to unity in the di-
agonal and to zero outside (i.e., a Kronecker-δ assignment)
for both channels (Fig. 3d–f). In case the future excess phase
data from the rOPS L1a processor exhibit non-negligible cor-
relations for some data from some of the RO missions, we
will account for these correlations in RLr, since our L1b al-
gorithm (Sect. 3) is prepared for full covariance propaga-
tion. The elements of the covariance matrix CLr are hence
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Figure 3. Input profiles of retrieved excess phase Lr (with model profile Lm for comparison) in panel (a), estimated systematic uncertainty
profiles us

Lr in panel (b), estimated random uncertainty profiles ur
Lr in panel (c), representative correlation functions RLr,i (at 10, 30, 50, and

70 km) in panels (d) and (e), and correlation length lLr (solid) and resolution profiles wLr (dotted) in panel (f), which are set zero for these
initial essentially uncorrelated input data. All profiles are shown for both GPS carrier frequencies: fT1 (blue) and fT2 (red).

(item 1.1 in Fig. 2)

CLr,ijk = u
r
Lr,ik · u

r
Lr,jk ·RLr,ijk = u

r
Lr,ik · u

r
Lr,jk · δij . (7)

For the MC validation of the CP, error profile realiza-
tions εrLr were superimposed onto simulated “true” excess
phase profiles LT

r,k(t). As a source for LT
r,k , we used an

EGOPS-simulated “error-free” CHAMP event from 8 Au-
gust 2008 (i.e., no receiver system errors superimposed). Us-
ing an “error-free” profile as the basis, with the particular
simulated profile just serving as a representative RO profile
to illustrate the MC validation, allows us to strictly ensure
the consistency of the random uncertainty of the input profile
with the ensemble of superimposed error profile realizations.

To create the error profiles, a representative ur,Std
Lr uncer-

tainty profile was selected from a COSMIC ensemble of un-
certainty profiles, created according to Eqs. (5) and (6). The
error profile realizations are random draws from a distri-
bution characterized by these uncertainties, again assuming
that RLr,ij = δij , i.e., that there are no correlations between
the individual grid levels (item (a) in Fig. 2; Fig. 3f). The
same standard profile ur,Std

Lr was used as input for the CP to
which the MC results are then compared. This MC valida-
tion method applied to test the rOPS L1b uncertainty propa-
gation steps is essentially the same as in SKS2017, and it is
described therein in more detail.

The estimated systematic uncertainty usLr,k was deter-
mined based on a simple model roughly following error es-
timates from ESA/EUMETSAT (1998), with constant uncer-
tainty from 80 km down to zaGrads at 8 km and a linear uncer-
tainty gradient in the troposphere; as noted above, this sim-
plified modeling will be replaced in the future by realistic
uncertainty estimates received as L1b retrieval input from the
L1a processor (Innerkofler et al., 2017).

The constant usLr,k above zaGrads is 0.1 mm for k = 1 and
0.2 mm for k = 2 for MetOp and simMetOp. This uncertainty
is interpreted as an estimated basic systematic uncertainty,
i.e., as a lower-bound estimate of available accuracy.

For CHAMP and COSMIC we set usLr,1 = 0.2 mm and
usLr,2 = 0.4 mm, to roughly reflect the fact that these RO re-
ceivers are lower-cost instruments with lower gain, and thus
somewhat lower tracking performance, than the RO receiver
on MetOp (e.g., Luntama et al., 2008; Angerer et al., 2017).
From zaGrads downwards, usLr,k (in units [m]) increases by

usLr,ik = u
s
Lr,k

(zaGrads)+
zaGrads− za,i

3× 107 . (8)

In order to avoid a sharp kink in the urLr,k
profiles at zaGradr,

and in the usLr,k
profiles at zaGrads, a 2 km width moving-

average boxcar filter was applied to smooth these simple un-
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certainty models around these transition altitudes (for the ex-
ample profile usLr is visible in Fig. 3b).

The orbit position and velocity uncertainties of the trans-
mitter and the receiver satellites show little variation within
the short duration of an individual RO event of about 45 s
to 2 min (Innerkofler et al., 2017) and can be assumed to
be constant biases. They are thus counted to the systematic
uncertainties, more precisely the apparent systematic uncer-
tainties, since the actual values of the orbit-borne biases will
generally change in a pseudo-random manner from event to
event.

We set the transmitter position and velocity uncertainties
to usrT = 3 cm and usvT = 0.01 mm s−1, consistent with accu-
racies for GPS orbits available from GNSS orbit providers
like the International GNSS Service (IGS). The receiver
position and velocity uncertainties, usrR = 5 cm and usvR =

0.05 mm s−1 for CHAMP and MetOp, are adopted 4 times
smaller than those for COSMIC with usrR = 20 cm and usvR =

0.2 mm s−1, as found by ongoing rOPS-related POD studies
(Innerkofler et al., 2017), consistent with previous literature
(e.g., Montenbruck et al., 2009; Schreiner et al., 2010).

3 Algorithm sequence and example results

In this section the L1b uncertainty propagation algorithm se-
quence is introduced. We illustrate the effects of the algo-
rithm on the main uncertainty variables by way of the COS-
MIC example case already used for Fig. 3.

For each L1b retrieval step – i.e., segments (1), (2), and (3)
in Fig. 2 – the results for the principal variables are shown in
Figs. 4 to 8. These variables are the state profiles Xr (with
Xr ∈ {LF,k(t), Dr,k(t), αG,k(t), αG,k(za), αM,k(za), αF,k(za),
and αr(za)}), the estimated systematic uncertainty profiles
usXr, the estimated random uncertainty profiles urXr, repre-
sentative correlation functions RXr,i (with i such that za,i ∈

{10,30,50,70km}), and the correlation length profiles lXr
and resolution profiles wXr. Along with the dual-frequency
state profiles, we also show the collocated forward-modeled
short-range forecast profiles, i.e., model profiles Xm with
Xm ∈ {Lm,Dm,αm} for comparison.

A concise definition of the variables involved is provided
in Table 1, as introduced above. The summary description
in this section is complemented by a complete step-by-step
description of the algorithm along the entire L1b retrieval
chain in Appendix A, which is organized for convenience
into the same sequence of subsections.

To simplify the notation in the description, we suppress
index k whenever steps are applied in an identical way to
the data of both GNSS L-band channels with frequencies fT1
and fT2. Only if the two channels are treated differently, such
as in Sect. 3.3, is the index considered again. For concise-
ness we also do not illustrate both the estimated basic and
estimated apparent systematic uncertainty but rather the total
estimated systematic uncertainty as the overall result.

3.1 Doppler shift retrieval

3.1.1 Basic low-pass filtering

A Blackman windowed sinc (BWS) low-pass filter with a
filter cutoff frequency fc = 2.5 Hz (boxcar-equivalent fil-
ter width of 0.2 s) (item 1.2 in Fig. 2) is applied onto the
excess phase profile Lr(t), before the Doppler differentia-
tion (item 1.4 in Fig. 2), to avoid an amplification of high-
frequency noise in the phase profile by the derivative oper-
ation. This filter suppresses the noise; consequentially the
filtered excess phase profile LF(t), shown in Fig. 4a, is ex-
pected to have random uncertainties urLF of smaller mag-
nitude, but correlated over the length of the filter window.
The uncertainties obtained through the implemented algo-
rithm confirm these expectations, i.e., random uncertainty
profiles in Fig. 4c are less than a third in magnitude of those
in Fig. 3c, and Fig. 4d–e show how the correlation functions
widened and the correlation length and vertical resolution
reached∼ 0.5 and∼ 0.6 km, respectively, above about 30 km
impact altitude (Fig. 4f).

The random uncertainty propagation algorithm, i.e., the
covariance propagation from CLr to CLF, is described by
Eq. (A6) and item 1.3 in Fig. 2 and is justified by Eq. (2).
To obtain urLF and RLF, we use Eqs. (A7) and (A8).

To propagate the estimated systematic uncertainty usLr,
which characterizes long-range-correlated offsets or biases,
we use the same BWS filter as for the state profile, i.e., mak-
ing use of Eq. (4). Because the input uncertainty profile usLr
is chosen to be constant down to zaGrads, the filter has little
effect, and usLF, shown in Fig. 4b, is essentially equal to usLr,
shown in Fig. 3b.

The resolution profilewLr is determined by the filter width
according to Eqs. (A11) and (A13). After the BWS filtering,
the resolution is roughly equal to the correlation length lLF,
amounting to ∼ 0.6 km above about 30 km impact altitude
and becoming finer downwards due to the increasing refrac-
tion (Fig. 4f).

3.1.2 Doppler shift derivation

The next step is a five-point differentiation operation
(item 1.4 in Fig. 2) used to calculate the Doppler shift profile
Dr(t) from the filtered excess phase profileLF(t). The result-
ing dual-frequency Doppler shift profiles are plotted along
with the model profileDm(t) in Fig. 5a for the example case.

As for the filtered excess phase, we apply CP (Eq. A18,
item 1.5 in Fig. 2) to first calculate the covariance matrix CDr
and then extract urDr (shown in Fig. 5c) and RDr (Fig. 5d
and 5e) from it. The choice of the x-axis range shows the
random uncertainties increased, but the differentiation actu-
ally does increase relative random uncertainties (relative to
the state profile). It also causes anti-correlation with neigh-
boring elements, as visualized by the negative side peaks of
the correlation functions in Fig. 5d and 5e. The correlation
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Figure 4. Results for filtered excess phase profiles LF (with model profile Lm for comparison) in panel (a), estimated systematic uncertainty
profiles us

LF in panel (b), estimated random uncertainty profiles ur
LF in panel (c), representative correlation functions RLF,i (at 10, 30, 50,

and 70 km) in panels (d) and (e), and correlation length lLF (solid) and resolution profiles wLF (dotted) in panel (f). All profiles are shown
for both GPS carrier frequencies: fT1 (blue) and fT2 (red).

length lDr (of the main correlation function peak) decreases
accordingly (now smaller than 0.3 km throughout), because
the correlation functions fall off more steeply on both sides
of the main peak (Fig. 5f).

For calculating the estimated systematic uncertainty, we
use the state operator; i.e., we just differentiate usLF and get
usDr (shown in Fig. 5b). With the current illustrative choice of
input uncertainties the systematic uncertainty of the Doppler
shift profile is zero above the transition to the troposphere,
where the estimated systematic uncertainty of the excess
phase is assumed constant; in the troposphere a Doppler shift
offset of ∼ 0.02 mm s−1 occurs.

The resolution profile wDr shows that the vertical resolu-
tion stays unaffected by this operator (cf. Figs. 5f and 4f),
because the BWS filter width of the preceding low-pass fil-
tering (intentionally) stretched beyond the five neighboring
points involved in the differentiation.

3.2 Bending angle retrieval

3.2.1 GO bending angle retrieval

The next operator is the GO bending angle retrieval in which
retrieved GO bending angle profiles αG(t) are calculated
from Doppler shift profiles Dr(t) and the orbit position and

velocity vectors rT(t), rR(t), vT(t), and vR(t) (item 2.1 in
Fig. 2) and then interpolated to the (common monotonic) im-
pact altitude grid za (item 2.6 in Fig. 2).

Figure 6a shows retrieved αG profiles together with the
model profile αm. The mildly nonlinear implicit-type bend-
ing angle retrieval operator needs to be solved iteratively, and
it requires linearization for both random and systematic un-
certainty propagation, as described in detail in Appendix A
(Sect. A2). Because this retrieval step is performed level by
level, keeping levels independent, the GO bending angle re-
trieval leaves correlation functions and resolution unchanged
(cf. Figs. 6d–f and 5d–f).

The estimated random uncertainties urαG, as shown in
Fig. 6c, now increase more strongly in the lower stratosphere
and troposphere (to about 40 to 50 µrad near 10 km), because
they are dependent on the vertical gradient of the impact pa-
rameter at , which is increasingly larger towards lower alti-
tudes from the increasing refraction.

The main contributions to the estimated systematic un-
certainty usαG are induced by systematic uncertainties in or-
bit velocity and position of the transmitter and the receiver
satellite (details in Sect. A2), which in total amount to about
0.05 µrad (Fig. 6b). Compared to this magnitude, the system-
atic uncertainty contributed by the Doppler shift uncertainty
is very small.
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Figure 5. Results for retrieved Doppler shift profiles Dr (with model profile Dm for comparison) in panel (a), estimated systematic uncer-
tainty profiles us

Dr in panel (b), estimated random uncertainty profiles ur
Dr in panel (c), representative correlation functions RDr,i (at 10,

30, 50, and 70 km) in panels (d) and (e), and correlation length lDr (solid) and resolution profiles wDr (dotted, estimated for main peak) in
panel (f). All profiles are shown for both GPS carrier frequencies: fT1 (blue) and fT2 (red).

3.2.2 WO bending angle retrieval

Due to strong refractivity gradients and multipath effects, the
GO bending angle retrieval can be inadequate in the tropo-
sphere, and therefore WO algorithms are applied to recon-
struct the geometric optical ray structure of the wave field
(e.g., Gorbunov, 2002a; Gorbunov and Lauritsen, 2004).

In the rOPS, along with the WO bending angle profile
αW(za), the systematic uncertainty profile usαW, the random
uncertainty profile urαW, the correlation matrix RαW, and the
resolution profile wαW are retrieved (item 2.7 in Fig. 2).

The WO bending angle retrieval algorithm used is a canon-
ical transform (CT2) algorithm (Gorbunov et al., 2004), and
the associated uncertainty propagation algorithm is not de-
scribed here, but separately by Gorbunov and Kirchengast
(2015, 2018). The WO retrieval and uncertainty propagation
results are supplied up to 20 km impact altitude by the WO
algorithms.

3.2.3 Merging of GO and WO bending angle profiles

In the rOPS bending angle retrieval the results from the
WO retrieval, αW, are merged with GO retrieval results,
αG, at around a transition altitude zGW

a in a transition range
zGW

a ±1zGW
a , to get merged profiles αM (item 2.9 in Fig. 2).

The determination of the transition altitude and the merging
algorithm are described in Appendix A2.3. We use a special-
ized covariance propagation to propagate the GO and WO
uncertainties, expressed by the covariance matrices CαG and
CαW, to properly obtain the covariance matrix of the merged
bending angle CαM (Eqs. A37 and A38, item 2.10 in Fig. 2).

Because the rOPS implementation of the WO uncertainty
propagation (Gorbunov and Kirchengast, 2018) was still in
test phase and not yet available for integration into the sim-
ulations here, all examples in this study are GO-only; i.e.,
only the GO retrieval is performed. Results for αM are thus
unchanged from those shown in Fig. 6 and not separately il-
lustrated.

In order to nevertheless test and validate the uncertainty
propagation of the merging algorithm, WO retrieval results
were artificially substituted by the GO results for the MC val-
idation (Sect. 4); i.e., GO was used as a proxy for WO since
reasonably capturing expected WO variability as indicated
by tests of Gorbunov and Kirchengast (2018).
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Figure 6. Results for geometric optics bending angle profiles αG (with model profile αm for comparison) in panel (a), estimated systematic
uncertainty profiles us

αG in panel (b), estimated random uncertainty profiles ur
αG in panel (c), representative correlation functions RαG,i (at

10, 30, 50, and 70 km) in panels (d) and (e), and correlation length lαG (solid) and resolution profilewαG (dotted, estimated for main peak) in
panel (f). All profiles are shown for both GPS carrier frequencies: fT1 (blue) and fT2 (red); in panels (b) and (f) both profiles are essentially
identical (so that blue shadows the red color).

3.3 Atmospheric bending angle derivation

3.3.1 Adaptive low-pass filtering and minor-channel
extrapolation

To prepare the merged bending angle profiles αM,k for the
ionospheric correction, they are first filtered by another BWS
filter operation (item 3.1 in Fig. 2) in order to ensure ad-
equately smoothed bending angle profiles αF,k , with k ∈

{1,2}.
The chosen filter cutoff frequency for k = 1 is fc1 =

2.5 Hz, same as the basic filtering (Sect. 3.1.1), just to ensure
clearness of any higher-frequency effects from operators af-
ter the initial excess phase filtering (e.g., from Doppler shift
derivation that induces short-range anti-correlation effects).
For k = 2, the cutoff frequency fc2 is set noise-dependent,
between 2.5 and 0.5 Hz (boxcar-equivalent width of 0.2 to
1.0 s). In events in which the αF2 profile does not reach down
as far as αF1, it is extrapolated down to the bottom of αF1,
zaBot. The results for the filtered bending angle state profiles
αF,k are displayed in Fig. 7a, together with the associated
model bending angle profile αm. The filter has considerably
reduced the noise of the profile, particularly for αF2, where

the algorithm selected a cutoff frequency fc2 = 10/7 Hz in
this example case.

The relevant covariance-propagated random uncertainties
urαF,k are shown in Fig. 7c (blue and red), illustrating the
reduced noise, especially for αF2. In return, the peaks of the
correlation functions broaden (cf. Figs. 7d–e and 6d–e), with
correlation lengths lαF,k at near 0.4 km for αF1 and above
0.5 km for αF2 (Fig. 7f).

The estimated systematic uncertainty remains largely un-
changed (Fig. 7b) due to its smooth character.

The resolution of the filtered bending angle profiles (ac-
cording to Eqs. A11 and A13) is determined by the cutoff
frequencies fc,k of the BWS filters. In the example case it
is therefore essentially unchanged for αF1, while it is signif-
icantly decreased for αF2 (cf. Figs. 7f and 6f) since fc2 =

10/7 Hz. That is, the resolution wαF2 in the upper strato-
sphere for example, where the vertical scanning velocity of
this RO event is about 3.2 km s−1, is near 1.1 km (Fig. 7f).

3.3.2 Ionospheric correction

The final step of the L1b processor is the ionospheric correc-
tion (item 3.5 in Fig. 2). The atmospheric bending angle αr
is obtained by applying a linear dual-frequency combination
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Figure 7. Results for filtered bending angle profiles αF (with model profile αm for comparison) in panel (a), systematic uncertainty profiles
usαF in panel (b), random uncertainty profiles urαF in panel (c), representative correlation functions RαF,i (at 10, 30, 50, and 70 km) in
panels (d) and (e), and correlation length lαF (solid) and resolution profiles wαF (dotted, estimated for main peak) in panel (f). All profiles
are shown for both GPS carrier frequencies: fT1 (blue) and fT2 (red).

of αF1 and αF2, such that ionospheric effects are largely re-
moved (details are described in Sect. A3). The final retrieved
atmospheric bending angle αr of the example case is shown
in Fig. 8a. The propagation results for the estimated random
uncertainty are shown in Fig. 8c. The linear combination of
the ionospheric correction amplifies noise and urαr is there-
fore considerably larger than urαF1, and urαF2 (cf. Figs. 8c and
7c).

Figure 8d shows how the correlation functions – as ob-
tained through covariance propagation – combine the char-
acteristics of the correlation functions from the two matrices
RαF1 and RαF2, while essentially inheriting the αF1 behav-
ior, since the αF2 influence on the ionospheric correction is
comparatively minor (see Sect. A3).

The residual higher-order ionospheric effects are ac-
counted for by a “conservative best-guess” value (0.05 µrad,
reflecting results of Liu et al., 2015, and Danzer et al., 2013,
2015) and added (in root-mean-square form) to the sys-
tematic uncertainty profile usαr, leading to a total estimated
systematic uncertainty in this example case of ∼ 0.07 µrad
(Fig. 8b). Within this uncertainty, the one dominating com-
ponent from orbit uncertainties (∼ 0.05 µrad; cf. Fig. 6b) can
be considered an apparent systematic uncertainty that will es-
sentially average out in ensemble averaging (e.g., climatolo-
gies), while the other dominating component from residual

higher-order ionospheric biases (also estimated ∼ 0.05 µrad
as noted above) can be considered a basic systematic uncer-
tainty. For the latter it is therefore useful and prepared for in
the rOPS – in line with GUM recommendations and as dis-
cussed in the introductory Sect. 1 – to correct for the quantifi-
able part of it in the future so that the total basic systematic
uncertainty may be mitigated down to the ∼ 0.01 µrad level.

The resolution profile wαr of the retrieved bending an-
gle (Fig. 8f) is dominated by the contribution of αF1 that
strongly dominates (intentionally by construction) the iono-
spheric correction results in terms of the small-scale bending
angle variability. Similar to the correlation length profile lαr,
it is therefore very close to wαF1 and only slightly larger.

4 Algorithm validation

The GUM advises to use a MC method for uncertainty prop-
agation if the retrieval operators do not fulfill the criteria for a
GUM-type CP. In our case the MC method is put to another
beneficial use, to validate the results of the CP, as recom-
mended by JCGM (2011).

For the validation of the covariance propagation by the MC
method, we sampled the input excess phase profile random
error distribution, statistically described by
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Figure 8. Results for atmospheric bending angle profile αr (with model profile αm for comparison) in panel (a), systematic uncertainty
profile usαr in panel (b), random uncertainty profile urαr in panel (c), representative correlation functions Rαr,i (at 10, 30, 50, and 70 km) in
panel (d), and correlation length lαr (solid) and resolution profile wαr (dotted, estimated for main peak) in panel (f).

CMC
Lr,ij = u

r,Std
Lr,i · u

r,Std
Lr,j · δij , (9)

by a large number M of draws LT
r + ε

r
Lr,j (with j ∈

{1, . . .,M} and M = 1000). For each of these M profile
realizations, the state retrieval is run through the L1b re-
trieval chain, to giveM realizations of the output variableXj
(with Xj ∈ {LF,kj (t),Dr,kj (t),αG,kj (za),αF,kj (za),αr,j (za)}

and k ∈ {1,2}). From these individual realizations the mean
profiles XMC and the covariance matrices CMC

X ,

CMC
X =

1
M − 1

[(
X1−X

MC
)(
X1−X

MC
)T
+ . . .

+

(
XM −X

MC
)(
XM −X

MC
)T ]

, (10)

are calculated (items b–g in Fig. 2). Using the same input
profile and uncertainty information as used to specify the MC
runs (described in Sect. 2.2), the retrieval is then also run with
covariance-based uncertainty propagation, and the resulting
CP-propagated covariance matrices CCP

X are compared to the
MC-derived matrices CMC

X . In order to be able to attribute
potential changes between CP and MC covariance matrices
better, we decompose CX into urX and RX (Eqs. A7 and A8),
and compare them separately.

Figure 9 shows the different steps along the retrieval chain
from LF,k(t) to Dr,k(t), αG,k(za), αF,k(za), and αr(za) in the
rows, for k = 1 (GPS fT1 frequency) in the left column and
for k = 2 (GPS fT2 frequency) in the middle column. The
right column shows multiple representative correlation func-
tions, from near 10 to near 70 km. Due to the limited number
of MC draws, the MC results (black lines) show some jitter
both in the estimated random uncertainty and in the correla-
tion functions. Since the purpose of the MC results is only to
demonstrate the correctness of the CP result, we can disre-
gard this behavior.

Figure 9a (light blue) and b (orange) show the random un-
certainties urLr,1 and urLr,2, respectively, which characterize
the input distribution and from which the random error pro-
files εrLr,j are drawn. They also show the CP results for the
random uncertainty urLF1 (dark blue in Fig. 9a) and urLF2 (red
in Fig. 9b), compared to the MC propagated random uncer-
tainties (black).

The CP and MC lines match very well and show that the
implemented CP algorithm delivers correct results for the ba-
sic filtering step. For fT2, the MC uncertainties do not reach
down as far as the CP uncertainties, because the shortest of
all draws of the large ensemble of size M determines how
far down the recombined MC covariance matrix (Eq. 10)
reaches. Figure 9c compares CP correlation functions RLF,i1
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Figure 9. Results from the validation of CP covariance matrices CCP
Lr (“CP”) by MC covariance matrices CMC

Lr (“MC”) (first four rows): the
consecutive retrieval steps are shown for LF (a–c; in panels a–b also for Lr) and Dr (d–f) relative to setting time t , and for αG (g–i) and
αF (j–l) relative to impact altitude za. The left column shows estimated random uncertainties for fT1 (CP in blue, MC in black, in panel a
ur
Lr1 in light blue); the middle column for fT2 (CP in red, MC in black, in panel b ur

Lr2 in orange); the right column representative correlation
functions at 60, 36, and 12 km for fT1 (CP in blue, MC in black) and 72, 48, and 24 km for fT2 (CP in red, MC in black). The last row (m–o)
shows CP (blue) and MC (black) results for estimated αr random uncertainties (m) and representative correlation functions at 72, 60, 48, 36,
24, and 13 km (o), as well as variance propagation (“VP”) results (light blue) for αr in panel (n).
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(blue) and RLF,i2 (red) to the corresponding MC correlation
functions (black dashed).

The CP and MC correlation functions also agree well.
Both capture the narrow peak, broadened by the BWS filter.
Again the MC correlation functions fluctuate around zero left
and right of the peak, from the finite ensemble size, but it is
obvious that the CP delivers the correct off-peak results (i.e.,
zero; the off-peak elements outside the BWS filter window
must nominally be zero). The MC validation (black) of urDr1
(Fig. 9d), urDr2 (Fig. 9e), and RDr,i (Fig. 9f, blue and red)
demonstrates that the CP through the Doppler shift deriva-
tion performs correctly as well.

The next row, Fig. 9g to i, shows the results for the GO
bending angle αG(za), i.e., after the interpolation of all quan-
tities to the (common monotonic) impact altitude grid za. For
comparison, in Fig. 9a to f, all quantities have been computed
on the common time grid (“setting time” relative to time zero
at 80 km altitude) with 50 Hz sampling rate; the correspond-
ing impact altitude of the “true” profile LT

r is shown for ad-
ditional convenience on the right-hand-side (RHS) axis. In
Fig. 9g to o, these bending angle quantities have been com-
puted on the impact altitude grid; in these cases therefore the
corresponding setting time of the “true” profile is shown for
additional convenience on the RHS axis.

The results for the filtered bending angle αF follow in
Fig. 9j to l. Also here the MC results match the CP result
well. Due to the lower BWS cutoff frequency for αF2, now
urαF2 is smaller than urαF1, even though urαG2 was larger than
urαG1. Correspondingly the peak of the correlation functions
RαF,i2 widened more than those of RαF,i1 (cf. Fig. 9l and i).

Finally, Fig. 9m to o show the CP results for retrieved at-
mospheric bending angle αr, where Fig. 9n is included as a
special cross-comparison in the case of only variance prop-
agation being used instead of CP. Figure 9m and o confirm
that CP results are also correct for this final L1b variable, in
terms both of random uncertainty and correlation functions.

In order to demonstrate that a full CP is necessary to prop-
agate random uncertainties correctly, we also calculated ran-
dom uncertainties urαr based on mere VP from αG to αr for
comparison. A description of this VP algorithm (i.e., only
diagonal elements of the covariance matrices are considered)
is provided in Appendix B. Figure 9n clearly shows that VP
would overestimate random uncertainties in αr considerably,
pointing to the importance of the complete CP implementa-
tion in the L1b retrieval chain, even though the correlation
lengths involved in the processing steps are rather small.

5 Performance demonstration

To statistically evaluate the performance of the new L1b un-
certainty propagation algorithm, we also processed a com-
plete test day of real (CHAMP, COSMIC, MetOp) and sim-
ulated (simMetOp) data from GNSS RO satellite missions.
Figure 10 shows the results for estimated systematic and ran-

dom uncertainty profiles, as well as correlation length and
resolution profiles for filtered excess phase profilesLF,1. Fig-
ure 11 subsequently illustrates the ensemble mean of the
same variables for LF1, Dr1, αG1, and αr for the test day en-
semble. In Fig. 10 we also co-illustrate the number of events
processed for each of the RO missions (middle column).

About 5 % of the total number of processed profiles for
each mission have been discarded, because they were de-
tected as outliers based on the magnitude of their random
uncertainty profiles (these outliers are not included in the
number of profiles shown). All profiles are shown as func-
tion of impact altitude, because each of the profiles in the
ensembles needed to be interpolated to the same (standard)
impact altitude grid, to orderly calculate their mean profiles.

Figure 10a shows urLF1 and usLF1 for all ∼ 100 CHAMP
events. It is visible (also in Fig. 10d and g) that the random
uncertainty is estimated based on excess phase noise between
30 and 75 km and synthetically extended above and below, as
described in Sect. 2.2. For the large majority of events, urLF1
lies between about 0.5 and 3 mm in the range between 30 and
75 km. Note that these results show the random uncertain-
ties after the application of the basic BWS filter (Sect. 3.1.1),
but the input uncertainties urLr1 are of similar shape (though
larger in magnitude).

Figure 10b shows that the correlation length profiles of the
CHAMP ensemble (gray) and its ensemble mean (yellow)
are of relatively constant magnitude from 35 to 80 km but
then get smaller downward, because the RO event’s scan ve-
locity decreases (see Eq. A13). Since the BWS filter deter-
mines the vertical resolution and the correlation length at the
same time, the resolution profiles wLF1 (Fig. 10c) are quite
similar to the correlation length profiles lLF1 (Fig. 10b).

The number-of-events profile shows that most CHAMP
events end between 5 and 12 km (Fig. 10b, black). This is be-
cause the GO profiles illustrated here are cut off right at the
lower end of the GO–WO transition range at zGW

a −1zGW
a

(cf. Table 2).
Compared to CHAMP, the mean random uncertainty urLF1

(Fig. 10d) for the ∼ 1500 events of the COSMIC ensemble
is smaller, particularly above 30 km, indicating the improved
data quality of this later mission. The mean of the correla-
tion length profiles lLF1 (Fig. 10e) is higher than for CHAMP
(Fig. 10b), and correspondingly the resolution of the COS-
MIC profiles is also somewhat coarser (Fig. 10f and c). The
cutoff frequency and sampling rate – and thus the resolution
in time – are set to be the same in the rOPS, irrespective of
the missions; these differences hence are due to the differ-
ent vertical scan velocities of the missions induced by the
differences in orbit altitudes (CHAMP ∼ 400 km, COSMIC
∼ 700 km).

For the real MetOp data (available here as a data set
from UCAR/CDAAC, as for CHAMP and COSMIC), urLF1
appears similar to COSMIC (cf. Fig. 10d, g), while for
simMetOp (with best possible simulated MetOp-type re-
ceiver noise) it is clearly smaller than for COSMIC. From 35
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Figure 10. Uncertainty propagation results for real-data ensembles from 15 July 2008, for the filtered excess phase profile LF1 of the leading
channel (fT1, GPS L1 frequency). Left column: estimated random ur

LF1 (heavy) and systematic us
LF1 (light) uncertainty profiles of each

ensemble member (gray), and the ensemble mean (color) for CHAMP (a), COSMIC (d), MetOp (g), and simMetOp (j). Middle column:
correlation length profiles lLF1 of each ensemble member (gray), the ensemble mean (color), and the ensemble size profile (black, scale at
upper axis) for CHAMP (b), COSMIC (e), MetOp (h), and simMetOp (k). Right column: estimated resolution profilewLF1 of each ensemble
member (gray) and the ensemble mean (color) for CHAMP (c), COSMIC (f), MetOp (i), and simMetOp (l).
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Figure 11. Uncertainty propagation results for real-data ensembles from 15 July 2008 for output profiles of the leading channel (fT1, GPS
L1 frequency). The first row shows results for LF1 (a–c), the second for Dr1 (d–f), the third for αG1 (g–i), and the fourth for αr (j–l). The
different ensemble mean profiles are shown in colors (CHAMP, yellow; COSMIC, orange; MetOp, red; and simMetOp, violet). Left column:
mean random uncertainty ur

Xr (heavy) and mean systematic uncertainty us
Xr (light) profiles (a, d, g, j); the latter is shown as 10× us

LF1 (in
a) and 100× us

Xr (d, g, j) for enabling visibility of these small quantities. Middle column: correlation length profiles lXr (b, e, h, k). Right
column: vertical resolution profiles wXr (c, f, i, l).

to 80 km the mean random uncertainty profile for simMetOp
stays below 1 mm (Fig. 10j). Three individual profiles exhibit
comparatively high uncertainties of larger than 2 mm within
about 40 to 55 km, however, reflecting that the simMetOp er-
ror simulations are capable of partly generating higher-noise

profiles of the type more frequently seen in the real MetOp
data (Fig. 10g).

On the other hand, the average correlation
length/resolution profile of the ∼ 500 real MetOp and
∼ 700 simMetOp ensemble members is very similar, driven
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by the orbit being essentially the same for the real data and
the simulations (Fig. 10h, i, k, l). Compared to COSMIC
(Fig. 10e, f), the correlation length and resolution are again
somewhat larger/coarser, due to an even somewhat higher
scan velocity of the MetOp satellite (∼ 820 km orbit alti-
tude). The systematic uncertainty usLF1 – just co-illustrated
for completeness in Fig. 10a, d, g, and j – is almost left
unchanged by the BWS filter and is essentially equal to the
preset input uncertainty for all three missions (Sect. 2.2).

Figure 11 shows how the usLF1, urLF1, lLF1, and wLF1 pro-
files are on average affected by the uncertainty propagation.
The color code for the different satellite missions is the same
as in Fig. 10. The propagation effects visible are similar to
those already seen in Figs. 3 to 8. The Doppler shift deriva-
tion increases the relative uncertainties and reduces correla-
tion length (of the main peak), while the resolution stays the
same (Fig. 11d–f). The GO bending angle retrieval leaves
correlation length and resolution unchanged, while random
uncertainties increase strongly in the lower stratosphere and
troposphere due to the increasing refractive effects (Fig. 11g–
i).

Finally, the BWS filtering before the ionospheric correc-
tion decreases random uncertainties and increases correlation
length, and resolution somewhat. However, the linear combi-
nation of the two bending angle profiles αF1 and αF2 then
increases the random uncertainty again (cf. Fig. 11j and g).
The adaptive minor-channel cutoff frequency fc2 for the rel-
atively noisy CHAMP profiles is generally lower than for the
other two missions, and the filter effect is therefore stronger
for CHAMP (indicated by the larger lαr in Fig. 11k)

The estimated systematic uncertainty of the atmospheric
bending angle usαr, indicated for completeness in Fig. 11 (left
column, inflated by a factor of 10 in panel a and 100 in pan-
els d, g, and j for somewhat better visibility), stays below
0.1 µrad for all three missions.

6 Conclusions

In order to deliver climate benchmark data sets, it is essen-
tial to integrate uncertainty propagation in RO retrievals. In
this study we presented the uncertainty propagation algo-
rithm chain from excess phase profiles to atmospheric bend-
ing angle profiles (L1b processing), as newly implemented

in the rOPS at the WEGC. Along with the basic profile re-
trieval, we provide estimates for systematic and random un-
certainties, error correlation matrices, and vertical resolution
profiles, which is unique amongst all existing RO processing
systems so far (Ho et al., 2012; Steiner et al., 2013).

We validated the implemented algorithm via comparison
to Monte Carlo sample propagation results and demonstrated
the performance of the algorithm using real-data ensembles.
We find close agreement between the implemented covari-
ance propagation of random uncertainties and the Monte
Carlo validation runs, verifying the correctness of the imple-
mented algorithm. The test day ensembles for three different
missions (CHAMP, COSMIC, MetOp) show reliable, robust,
and consistent results that provide valuable insight and un-
derstanding of retrieval chain details.

Together with the integration of the uncertainty propaga-
tion algorithm from atmospheric bending angle profiles to
dry-air profiles (L2a processing) presented by Schwarz et al.
(2017), the rOPS can now provide estimates of systematic
and random uncertainty profiles, of error correlation matrices
and resolution, and of observation-to-background weighting
ratio profiles from excess phase to dry-air profiles.

The next step towards the final atmospheric profiles, cur-
rently ongoing, is the introduction of integrated uncertainty
propagation for the moist-air retrieval (L2b processing). Im-
plementation of uncertainty propagation for the wave-optics
bending angle retrieval and for the orbit determination and
excess phase processing (L1a processing) is ongoing as well.

Once completed, the full rOPS retrieval chain will run with
integrated uncertainty estimation, a major step towards cli-
mate benchmark data provision, and beneficial for the wide
diversity of uses in atmospheric and climate science and ap-
plications.

Data availability. The RO excess phase and orbit data used
in the study are available from UCAR/CDAAC Boulder, CO,
USA, at http://cdaac-www.cosmic.ucar.edu/ (last access: 26 March
2018). The ECMWF analysis and forecast data are accessible
from ECMWF Reading, UK, at http://www.ecmwf.int/en/forecasts/
datasets (last access: 26 March 2018). To access the relevant result
files of the uncertainty propagation please contact the correspond-
ing author. The developed algorithm is provided in the Appendix.
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Appendix A: Algorithm description

In this appendix the rOPS L1b uncertainty propagation algo-
rithm is introduced, following the L1b retrieval chain (Fig. 2;
Sect. 3) step by step, starting with excess phase profile Lr as
input and proceeding to LF, Dr, αG, αM, αF and finally αr.
The relevant variable definitions and symbol explanations are
summarized in Tables 1 and 2. A fully detailed algorithmic
description is provided by Kirchengast et al. (2017b).

If not stated otherwise, elements of the vector-type ver-
tical profiles are addressed using subscript i (with i ∈

{1,2, . . .,N}), and optionally j (with j ∈ {1,2, . . .,N}), run-
ning from top downward towards the bottom of the profile,
where N is the number of vertical grid levels. Until the inter-
polation of all quantities to the common monotonic impact
altitude grid za, all quantities are provided on an equidistant
50 Hz time grid t with grid points ti .

All steps in Sects. A1 and A2 are applied to each of the
GNSS transmitter channels’ carrier frequencies fTk , as also
indicated by the index k in Fig. 2. In the notation of these sec-
tions we therefore suppress the index k for the convenience
of simplified readability. Also for conciseness we write the
estimated systematic uncertainty equations only for the total
systematic uncertainties us and briefly address the type of the
relevant components (whether basic systematic uncertainty
ub or apparent systematic uncertainty ua) in the surrounding
text.

A1 Doppler shift retrieval

A1.1 Basic low-pass filtering

The Doppler differentiation (item 1.4 in Fig. 2) would po-
tentially amplify high-frequency noise in the excess phase
profiles. To avoid this amplification, a BWS low-pass filter
(e.g., Smith, 1999) is applied onto the excess phase profiles
first (item 1.2 in Fig. 2).

For this basic filtering the relative cutoff frequency fc/fs
is set to 0.05, equivalent to fc = 2.5 Hz, 21 grid points, or
a cutoff period τc = 1/fc = 0.4 s, for the standard sampling
rate fs of 50 Hz used for all RO profiles in the L1b pro-
cessor of the rOPS. The corresponding sample width of the
Blackman window M̃ (with samplesm ∈ {0, . . .,M}) is set to
M̃ = 2·fs/fc, yielding 41 grid points. This ensures a reliable
filter performance, also allowing the vertical resolution of the
filtered data to be robustly quantified.

With such a design, the BWS low-pass filter combines effi-
cient removal of high-frequency noise with a narrow smooth-
ing window. The BWS filter thus achieves a better smoothing
effect, while keeping a wLF of higher resolution than a sim-
ple moving-average BC filter. Based on a time segment of
a few seconds of the excess phase delta profile of the COS-
MIC example event (also used for Figs. 3 to 8), Fig. A1 il-
lustrates how the BWS filter compares to boxcar filters of
11 and 21 grid points. The corresponding filter functions are

Figure A1. Comparison of the Blackman windowed sinc (BWS)
low-pass filter and boxcar (BC) filters based on a representative
segment (between 30.3 and 32.7 s) of the excess phase profile Lr1
of the COSMIC example event. (a) Filter functions for the BWS
filter with fc = 2.5 Hz and M = 41 points (“BWS”, red) and box-
car filters with M = 21 points (“BC21”, green) and with M = 11
points (“BC11”, blue), around the central value of the segment
(31.5 s). (b) Filter effects on the excess phase profile Lr1 from
running the filters over the segment. Shown are the unfiltered ex-
cess phase delta profile (“δLrm”, light gray), the BWS filtered pro-
file with fc = 2.5 Hz and M = 41 points (“δLBWS

Fm ”, red), and the
boxcar filtered profiles with M = 21 points (“δLBC21

Fm ”, green) and
M = 11 points (“δLBC11

Fm ”, blue).

displayed in Fig. A1a, while Fig. A1b compares the filter re-
sults.

It is clearly seen that the smoothing window width of
the BWS filter best corresponds to an 11-point boxcar fil-
ter (confirmed numerically by minimization of the sum of
squared differences between boxcar and BWS filter result),
while giving considerably better filtering results (as for ex-
ample visible between 31.5 and 32.0 s, where the 11-point
boxcar filter zigzags around the BWS result). The effective
filter width of the BWS filter, which we also term “boxcar-
equivalent width”, is therefore its full width at half maximum
(see Fig. A1a), corresponding to M̃/4+ 1 samples with our
design.
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The actually used sample width M of the BWS filter is
equal to M̃ , except that it decreases at the top and bottom of
the profile such that it does not reach beyond the first/last
element of the vector to be filtered. At the ith grid point
(with i ∈ {1,2, . . .,N}, and N being the profile length in grid
points), the filter width M is thus

M =


M̃ for M̃/2< i < N − M̃/2

2i− 1 for 1≤ i ≤ M̃/2
2(N − i)+ 1 for N − M̃/2< i < N

. (A1)

The state profile of the filtered phase LF is obtained us-
ing the “baseband approach” (Kirchengast et al., 2016a), i.e.,
by first subtracting a zero-order model profile Lm and apply-
ing the filter only to the delta profile δLrm = Lr−Lm (with
the model profile being adequately smooth over the scale of
the filter window width). This approach efficiently mitigates
residual numerical biases. After the application of the BWS
filter, the model profile is added back again. We express the
BWS filter as a linear matrix operator ABWS and get (item 1.2
in Fig. 2)

LFi = Lmi +

N∑
j=0

ABWS
ij · δLrmj (A2)

for the filtered excess phase, where j ∈ {1,2, . . .,N}. The
band matrix operator ABWS has elements

ABWS
ij =


0 for j < i−M/2 and

for j > i+M/2
wj−i+M/2 for i−M/2< j < i+M/2

. (A3)

The central filter weightw0+M/2 at j = i is the (M/2)th filter
element (according to the definition of the BWS weights be-
low); therefore its index isM/2. Withm= j− i+M/2 (and
therefore 0≤m≤M), each single BWS weight is calculated
using

wm =
wraw,m∑M
m=0wraw,m

(A4)

and

wraw,m =



sin(2πfc/fs(m−M/2))
m−M/2

[
0.42− 0.5cos(

2π m
M

)
+ 0.08cos

(
4π m

M

)]
for m 6=M/2

2πfc/fs

for m=M/2

. (A5)

The estimated random uncertainty is then propagated by
covariance propagation (item 1.3 in Fig. 2),

CLF = ABWS
·CLr ·

(
ABWS

)T
. (A6)

The random uncertainty profile urLF and the error correlation
matrix RLF are not needed for the subsequent random un-
certainty propagation but are calculated from CLF for being
available for the L1b output, using

urLF,i =
√
CLF,ii (A7)

and

RLF,ij =
CLF,ij

urLF,iu
r
LF,j

. (A8)

The correlation length profile lLr has elements

lLr,i =
dz
dt

∣∣∣∣
i

· |ti − t (RLF,ij = 1/e)| (A9)

computed upward and downward from the main peak of the
correlation function and then averaged. Here dz/dt is the
scan velocity profile, obtained from using the MSL altitude
grid zt calculated as part of the forward modeling towards
Lm at the corresponding time grid t (cf. Table 2).

We note that after the L2a refractivity retrieval also the
MSL altitude grid consistent with the retrieved refractivity
profile could be used (as described by SKS2017, Appendix A
therein), from a repeated forward modeling. The difference
for the scan velocity estimate is found to be very small, how-
ever, since the forward-modeled zt based on collocated re-
fractivity profiles from ECMWF short-range forecast fields
is already sufficiently reliable, and this also keeps the L1b
processor as a decoupled predecessor of the L2a processor.

For the estimated systematic uncertainty, interpreted as a
basic systematic uncertainty (Sect. 2.2), we apply the same
low-pass filter as used for the state profile (item 1.2 in Fig. 2),
but with no zero-order profile subtracted, i.e.,

usLFi =

N∑
j=0

ABWS
ij · usLrj . (A10)

The resolution in time of LF and its uncertainties, τBW, is
the boxcar-equivalent width (cf. Fig. A1a) determined by the
cutoff frequency fc of the BWS filter,

τLF ≈
1

fc+1fc/2
≈

1
2fc

, (A11)

with our design choice M̃ = 2(fs/fc) and with the BWS
filter stopband-to-passband transition width being (Smith,
1999)

1fc ≈
4fs

M̃
. (A12)

Given fc = 2.5 Hz, this results in an effective resolution
τLF = 0.2 s and corresponds to the resolution obtained when
applying a 11-point boxcar filter as explained at the begin-
ning of this section above. The filter window intercompari-
son in Fig. A1a also illustrates this, because the full width at
half maximum of the 2.5 Hz 41-point BWS filter is 11 points.
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This resolution in time can finally be converted to the ver-
tical (MSL altitude) resolution in space:

wLF,i =
dz
dt

∣∣∣∣
i

· τLF, (A13)

where, as for the correlation length estimation (Eq. A9), the
scan velocity profile is employed to convert from the time
domain to MSL altitude domain.

A1.2 Doppler shift derivation

After the application of the BWS filter to the excess phase
profiles Lr (for both carrier frequencies of the given GNSS
system), the state profile of the Doppler is derived from the
filtered phase profiles LF (item 1.4 in Fig. 2). To minimize
systematic errors from the numerical differentiation to neg-
ligible magnitude, the model profile Lm is again subtracted
from the filtered phase profile,

δLFm = LF−Lm, (A14)

and the resulting delta profile δLFm is then differentiated. Af-
ter the derivative, the zero-order Doppler shift model pro-
file Dm is added (the latter also available from the forward
modeling, in a form strictly consistent with the excess phase
model profile Lm).

Based on careful tests of different formulations, we use a
five-point derivative scheme. The discretization of this five-
point derivative δDrm,i is given by

δDrm,i =
dδLFm(t)

dt

∣∣∣∣
i

(A15)

=
−δLFm,i−2+ 8δLFm,i−1− 8δLFm,i+1+ δLFm,i+2

−ti−2+ 8ti−1− 8ti+1+ ti+2

for each of the frequencies (e.g., Syndergaard, 1999). This
can be expressed in matrix form as

Dr,i =Dm,i + δDrm,i =Dm,i +

N∑
j=1

AL2D
ij · δLFm,j , (A16)

using matrix operator AL2D with

AL2D
= (A17)

1
121t



−18 24 −6 0 0 0 0 0

−6 0 −6 0 0 0
. . . 0 0

−1 8 0 −8 1 0 0 0

0 −1 8 0 −8 1
. . . 0 0

. . .
. . .

. . .
. . .

0 0 0 0 0 0
. . . −8 1

0 0 0 0 0 0 0 −6
0 0 0 0 0 0 24 −18


,

where 1t = ti+1− ti , being 0.02 s in our case of fs = 50 Hz.

The estimated random uncertainty can then be propagated
(item 1.5 in Fig. 2) using

CD = AL2D
·CLF ·

(
AL2D

)T
. (A18)

The covariance matrix is again (cf. Eqs. A7 and A8) de-
composed into estimated random uncertainties and error cor-
relation matrix (item 2.2 in Fig. 2) using

urDr,i =
√
CDr,ii (A19)

and

RDr,ij =
CDr,ij

urDr,iu
r
Dr,j

. (A20)

For the estimated systematic uncertainty, further on inter-
preted as basic systematic uncertainty (cf. Eq.A10), we apply
the derivative operator (item 1.4 in Fig. 2) to the systematic
uncertainties, with no zero-order profile subtracted, i.e.,

usDr,i =

N∑
j=1

AL2D
ij · u

s
LF,j . (A21)

The resolution remains unaffected by the Doppler shift
derivation, since the five-point sample width of the deriva-
tive operator is fully within the 11-point effective filter width
(stopband) of the BWS filter applied before, so that τDr =

τLF and wDr = wLF.

A2 Bending angle retrieval

A2.1 GO bending angle retrieval

From the Doppler shift state profile Dr (again for both fre-
quencies of the given GNSS system) we can derive the im-
pact parameter profile at and GO bending angle profile αG
(item 2.1 in Fig. 2) using first the geometric relation

Dr,i =
[
vR,i cos(φR,i)− vT,i cos(φT,i)

]
− ṙRT,i, (A22)

where

φR,i = ηR,i − arcsin
(
at,i

rR,i

)
(A23)

and

φT,i =
(
π − ηT,i

)
− arcsin

(
at,i

rT,i

)
(A24)

for each individual level of the time grid ti , in order to deter-
mine at from sequential application to all levels (Kursinski
et al., 1997; Syndergaard, 1999). Here vR,i = |vR,i | is the re-
ceiver velocity; rR,i = |rR,i | the receiver radial position; ηR,i
the angle between the receiver velocity and position vectors;
φR,i then the angle between the receiver velocity and ray
path vectors (and all these equivalently for the transmitter);
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and ṙRT,i =

∣∣∣ d(rT−rR)
dt

∣∣∣
i

is the time derivative of the distance
between the transmitter and the receiver at time ti , i.e., the
“kinematic straight-line Doppler shift” to be subtracted in
Eq. (A22) to match the (excess) Doppler shift Dr,i induced
by the atmosphere (and ionosphere).

Based on at , the elements of the GO bending angle profile
αG are subsequently calculated using another geometrical re-
lation:

αG,i = θRT,i − arccos
(
at,i

rR,i

)
− arccos

(
at,i

rT,i

)
, (A25)

where θRT,i is the opening angle between the transmitter
and receiver position vectors. Syndergaard (1999, Fig. 1.5
therein) provides an illustration of the relevant geometry.

All the variables in Eqs. (A22)–(A25) are defined in the
occultation plane spanned by the receiver and transmitter
position vectors after oblateness correction (Syndergaard,
1998), i.e., after they have been transformed to originate in
the Earth ellipsoid’s center of local curvature in the occulta-
tion plane at the mean tangent point (MTP) location of the
RO event.

The MTP location is defined as the geodetic (geographic)
location on the WGS84 ellipsoid, where the straight-line path
between transmitter and receiver touches this ellipsoid, i.e.,
where the straight-line tangent height is zero. This can be
computed with very high accuracy at the sub-meter level (see
Scherllin-Pirscher et al., 2017, for more details on the geolo-
cation accuracy of RO). Using the MTP location’s center of
local curvature rather than the Earth’s center of mass as the
origin is essential to ensure that the assumption of spherical
symmetry, implicit in Eqs. (A22) to (A25), is accurately valid
geometrically.

The impact parameter retrieval is solved iteratively, be-
cause it is impossible to rearrange Eqs. (A22) to (A24) into
an explicit expression for the retrieval of the impact parame-
ter, but it is mildly nonlinear and converges fast, in particular
if the initial guess for at,i is estimated from the previous level
(starting at the top level with the straight-line impact param-
eter).

After the GO bending angle retrieval, the bending angles
of all GNSS frequencies are interpolated to a common mono-
tonic impact altitude grid za (item 2.6 in Fig. 2), based on the
monotonically sorted impact parameter grid of the leading
channel, at1 (i.e., k = 1).

For each element of za we get (item 2.3 in Fig. 2)

za,i = at,j1−hG−RC, (A26)

where j is the index of the elements of the sorted impact
parameter grid at1. hG is the geoid undulation (see Scherllin-
Pirscher et al., 2017, for a detailed discussion of its use in RO
analysis), and RC is the local radius of curvature of the RO
event.

Because the impact parameter is only implicitly expressed
in Eqs. (A22)–(A24), but GUM-type uncertainty propaga-
tion along Eqs. (2) and (4) requires an explicit measurement

model, we make use of a linearization of the bending angle
retrieval. We use the approach described by Melbourne et al.
(1994), and applied to uncertainty propagation by Synder-
gaard (1999), for the propagation of the estimated random
uncertainty from Doppler shift Dr to GO bending angle αG
(item 2.5 in Fig. 2).

This linearization establishes a direct relation between ran-
dom uncertainties of the Doppler shift urDr and the uncertain-
ties of the bending angle urαG, using

urαG(t),i ≈ −

(
daSL

dt

)−1
∣∣∣∣∣
i

urDr(t),i, (A27)

where aSL is the straight-line impact parameter. These bend-
ing angle uncertainties urαG are relative to the time grid as
independent coordinate. To get the desired uncertainties with
respect to the impact altitude grid za (introduced in Eq. A26),
the uncertainties of the impact altitude za need to be trans-
ferred to the bending angle, so that the za grid can sub-
sequently be considered free of error. Syndergaard (1999)
showed that this can be done by replacing Eq. (A27) with

urαG(za),i
≈ −

(
daTt
dt

)−1
∣∣∣∣∣
i

urDr(t),i, (A28)

where aTt is the “true” impact parameter. We use the forward-
modeled impact parameter atm instead (i.e., adopt atm = aTt )
and accept the additional error thus incurred, assuming it is
smaller than the 2 % relative error due to the linearization
estimated by Melbourne et al. (1994). This is a reasonable
assumption given the high quality of our forward-modeled
profiles derived from ECMWF short-range forecast refrac-
tivity fields.

As a consequence we have to accept that the overall inac-
curacy of our random uncertainty estimate cannot be brought
below 2 %. Therefore, to ensure that our simplified estimate
does not underestimate the real uncertainty, we account for
the linearization error by multiplying a factor fuαlin = 1.02
to the uncertainty of the retrieved GO bending angle

urαG,i = fuαlin · u
r
αG(za),i

. (A29)

In this way we acknowledge that although the calculation of
the state of the bending angle does not make use of the lin-
earization, and therefore the linearization does not increase
the uncertainty of the state profile, it may increase the error
in the uncertainty estimate itself.

Finally, the urαG profile is also interpolated to the common
monotonic impact altitude grid za.

In the GO approximation, the bending angle values at each
grid point only depend on the Doppler shift values of the
same grid points; i.e., the existing correlations between the
errors at different levels are left unchanged: i.e., RαG = RDr.
The covariance matrix can hence be calculated by recombin-
ing the Doppler shift correlation matrix with the propagated
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uncertainties (item 2.8 in Fig. 2),

CαG,ij = u
r
αG,i · u

r
αG,j ·RDr,ij . (A30)

For the propagation of the estimated systematic uncer-
tainty (item 2.4 in Fig. 2) three types of potential systematic
errors adding to the impact parameter uncertainty usat , and
consequentially the bending angle uncertainty usαG, are taken
into account: systematic errors in the Doppler shift, i.e., usDr;
systematic errors in the velocities of the satellites, i.e., usvR
and usvT ; and systematic errors in the positions of the satel-
lites, i.e., usrR and usrT . The latter two orbit-borne types are
interpreted as apparent systematic uncertainties (Sect. 2.2),
while the excess phase-borne uncertainty usDr is a basic sys-
tematic uncertainty.

For the propagation of these estimated systematic un-
certainties to usαG, Eqs. (A22)–(A24) are linearized around
the retrieved state quantities (serving as zero-order state),
and no terms higher than first-order are kept. Then φR
and φT in Eq. (A22) are substituted by the linearized ver-
sions of Eqs. (A23) and (A24), and the resulting equation
is solved (level by level) for the impact parameter at,i =
f (Dr,i, rR,i, rT,i,vR,i,vT,i), with i = 1,2, . . .,N . Adopting
the first-order deviations to represent the estimated system-
atic uncertainties, we obtain

usat,i =
1
kat,i

(A31)
√(
usDr,i

)2
+

(
kvR,i · u

s
vR,i

)2
+

(
krR,i · u

s
rR,i

)2
+

(
kvT,i · u

s
vT,i

)2
+

(
krT,i · u

s
rT,i

)2
,

where

kat,i =
∂Dr

∂φR

∣∣∣∣
i

·
∂φR

∂at

∣∣∣∣
i

+
∂Dr

∂φT

∣∣∣∣
i

·
∂φT

∂at

∣∣∣∣
i

=−vR,i

· sinφRi ·
1√

r2
R,i − a

2
t,i

− vT,i · sinφTi
1√

r2
T,i − a

2
t,i

,

kvR,i = −
∂Dr

∂vR

∣∣∣∣
i

=−cosφRi,

kvT,i = −
∂Dr

∂vT

∣∣∣∣
i

=−cosφTi,

krR,i =
∂Dr

∂φR

∣∣∣∣
i

·
∂φR

∂rR

∣∣∣∣
i

=
vR,i · sinφRi · at,i

rR,i

√
r2

R,i − a
2
t,i

,

krT,i =
∂Dr

∂φT

∣∣∣∣
i

·
∂φT

∂rT

∣∣∣∣
i

=
vT,i · sinφTi · at,i

rT,i

√
r2

T,i − a
2
t,i

. (A32)

A number of simplifications have been made to arrive at this
result. First, the last term in Eq. A22 is disregarded since er-
rors in the positions are assumed to be constant with respect
to the short time duration of an RO event; remaining errors
1ṙRT after taking the derivative are therefore of higher or-
der. Next, orbit position and velocity uncertainties are both
assumed to be constant within the short duration of an event,

and the velocity uncertainties obtained are interpreted as un-
certainties along the direction of the velocity vector. Conse-
quentially, the uncertainty is also projected along with the
vector into the ray path direction. A more conservative es-
timation (which we consider overly conservative in context)
would interpret the uncertainties as ellipsoids at the velocity
vectors’ heads and would hence take the full magnitude of
the uncertainties along the ray path direction (without pro-
jection).

Furthermore, since all error sources (the processing of the
occultation tracking data and the POD for transmitter and re-
ceiver) are essentially independent from each other, the dif-
ferent input uncertainties are assumed to be uncorrelated. Fi-
nally, we reasonably assumed the errors of the angle between
the position and velocity vectors (η) to be negligible (usη ≈ 0)
for the purpose here, for both the transmitter and receiver.

In order to finally derive the systematic uncertainty of the
bending angle from the impact parameter’s uncertainty, we
continue with a linearization of Eq. (A25) and arrive at

usαG,i = (A33)√(
usθRT,i

)2
+

(
kat,i · u

s
at,i

)2
+

(
krR,i · u

s
rR,i

)2
+

(
krT,i · u

s
rT,i

)2
,

where

kat,i =
∂α

∂at

∣∣∣∣
i

=
1√

r2
R,i + a

2
t,i

+
1√

r2
T,i + a

2
t,i

, (A34)

krR,i =
∂α

∂rR

∣∣∣∣
i

=−
at,i

rR,i

√
r2

R,i − a
2
t,i

,

krT,i =
∂α

∂rT

∣∣∣∣
i

=−
at,i

rT,i

√
r2

T,i − a
2
t,i

.

In practice we separately calculate the basic and apparent
systematic uncertainty estimates (ub

αG from the first RHS
terms in Eqs. A31 and A33, ua

αG from the orbit-borne terms)
and afterwards obtain usαG as a combined result, in order to
enable separate propagation in subsequent processing steps.

The resolution profile remains unaffected by the bending
angle retrieval, since the level-by-level approach of the al-
gorithm does not create extra correlation and further vertical
smoothing, so that ταG = τDr and wαG = wDr.

A2.2 WO bending angle retrieval

After the GO bending angle, the WO bending angle state pro-
file αW(za) is retrieved (item 2.7 in Fig. 2) from excess phase
profile Lr(t) (and its uncertainties) and the amplitude profile
Ar(t) (and uncertainties) in a WO retrieval following Gor-
bunov and Kirchengast (2015, 2018). Along with the state
profile, the systematic uncertainty profile usαW, the covari-
ance matrix CαW, and the resolution profilewαW are derived.

The covariance matrix CαW is then decomposed to ran-
dom uncertainty profile urαW and correlation matrix RαW in
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the same form as done above for CDr (Eqs. A19 and A20)
and CLF (Eqs. A7 and A8). The estimated systematic un-
certainty usαW is composed of a basic systematic uncertainty
ub
αW, propagated through the wave-optical retrieval from the

excess phase uncertainty usLr, and an apparent systematic un-
certainty ua

αW, estimated in the lower troposphere as residual
bias uncertainty of a regression-based boundary layer bias
correction (Gorbunov and Kirchengast, 2018).

The WO bending angle retrieval algorithm and the associ-
ated uncertainty propagation algorithm are not explicitly de-
scribed here; the reader is referred to Gorbunov and Kirchen-
gast (2015) and Gorbunov and Kirchengast (2018). However,
we have prepared the merging with the WO bending angle
variables (they will be actually merged in when the WO tests
within the rOPS are complete), which is described next.

A2.3 Merging of GO and WO bending angle profiles

The αW profile, prepared on the common grid za, and the
αG profile are merged over an upper-tropospheric transition
range (item 2.9 in Fig. 2). The gradual transition, weighted
by a symmetric half-sine function, has a defined impact alti-
tude transition of half-width1zGW

a = 2 km around transition
altitude zGW

a , allowed within 9 km to 14 km, estimated from
αG data quality. The resulting merged bending angle profile
αM is

αM,i = γi ·αG,i + (1− γi) ·αW,i, (A35)

where the weighting profile γ is formulated as

γi =


1 for za,i ≥ z

GW
a +1zGW

a

0.5 ·
[
sin
(
π
2 ·

za,i−z
GW
a

1zGW
a

)
+ 1

]
for |za,i − z

GW
a |<1z

GW
a

0 for za,i ≤ z
GW
a −1zGW

a .

(A36)

To determine the random uncertainties for the merged
GO–WO input bending angle, we need to merge the covari-
ance matrices of both bending angles.

We can assume both incoming covariance matrices CαG
and CαW are provided on the common monotonic target grid
za (i.e., also the WO uncertainties and correlations are inter-
polated to this common grid before the merger). We further
can reasonably assume that there are no cross-correlations
between GO and WO errors, given the very different retrieval
schemes. Based on this we can compose the covariance ma-
trix of the merged bending angle profile, CαM (item 2.10 in
Fig. 2) as follows. Outside the merging zone (i.e., outside of
zGW

a ±1zGW
a ) we can assign

CαM,ij =



CαG,ij for zaTop > za,i > z
GW
a +1zGW

a

and zaTop > za,j > z
GW
a +1zGW

a

CαW,ij for zGW
a −1zGW

a > za,i > zaBot

and zGW
a −1zGW

a > za,j > zaBot

0 for zaTop > za,i > z
GW
a +1zGW

a

and zGW
a −1zGW

a > za,j > zaBot

0 for zGW
a −1zGW

a > za,i > zaBot

and zaTop > za,j > z
GW
a +1zGW

a

, (A37)

while within the merging zone we can assign

CαM,ij = γiγjCαG,ij + (1− γi)(1− γj )CαW,ij , (A38)

wherein i is understood such that zGW
a +1zGW

a > za,i >

zGW
a −1zGW

a and j such that zaTop > za,j > zaBot.
Because of the symmetry of the covariance matrix, the

covariance elements in the merging zone orthogonal to the
one above, i.e., for zGW

a +1zGW
a > za,j > z

GW
a −1zGW

a and
zaTop > za,i > zaBot, are calculated according to the same for-
mula.

Due to the linear relation between αM, αG, and αW, ex-
pressed by Eq. (A35), a bias usαG in the GO bending angle
and a bias usαW in the WO bending angle can be combined
linearily as well, and we can compute the estimated system-
atic uncertainty of the merged bending angle usαM according
to (item 2.9 in Fig. 2)

usαM,i = γi · u
s
αG,i + (1− γi) · u

s
αW,i . (A39)

In practice this formulation is again applied separately for
the basic and apparent systematic uncertainty estimates, af-
terwards obtaining the usαM profile as a combined result, in
order to allow separate propagation in subsequent processing
steps.

The resolution profile of the bending angle, wαM, is equal
to the GO resolution wαG above zGW

a +1zGW
a , equal to the

WO resolution wαW below zGW
a −1zGW

a and has a transition
with transition weight γi in between, again following the lin-
ear formulation such as in Eqs. (A35) and (A39).

Because the integration and testing of the uncertainty
propagation through the rOPS WO bending angle retrieval
are currently still ongoing, as noted in Sect. A2.2 above,
the examples shown in this study are all GO-only; i.e., only
the GO retrieval is performed. The merging algorithm as de-
scribed is ready to include the WO bending angles, however.

A3 Atmospheric bending angle derivation

In order to retrieve the atmospheric bending angle profile
αr, ionospheric effects need to be corrected for, using the
retrieved bending angles from each transmitter frequency
channel. Since the only GNSS constellation currently used
for RO is the GPS – except for recent initial data from
the Chinese GNOS instrument using BeiDou signals (Liao
et al., 2016; Bai et al., 2018) – the data characteristics of the
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GPS case (with k ∈ {1,2}, fT1 = 1.57542 GHz, and fT2 =

1.22760 GHz) are in the prime focus of this section.
This concerns in particular special provisions for the mi-

nor (L2) channel noise filtering and its tropospheric extrap-
olation. In general the algorithms are applicable for any of
the available GNSS systems, however; if the minor channel
(fT2) delivers similar data quality to the major one (fT1), the
special provisions for the former will practically have no ef-
fect.

A3.1 Adaptive low-pass filtering and minor-channel
extrapolation

Before applying the dual-frequency ionospheric correction,
the merged bending angle state profiles αM,k(za) at the com-
mon za grid are filtered with further BWS low-pass filter op-
erations, and the minor channel is extrapolated.

For αM1 the filter is set to the same cutoff frequency as
the basic BWS filter preceding the Doppler derivation (i.e.,
fc1 = 2.5 Hz), ensuring a reliable reference resolution and
basic smoothness of the whole merged profile. For filtering
of αM2 a (GPS L2) noise-minimization algorithm is used, fol-
lowing the approach of Sokolovskiy et al. (2009) for optimal
filtering for ionospheric correction. We search for minimized
noise employing a flexible cutoff frequency fc2 ∈ {2.5, 2,
10/7, 1, 5/7, 0.5 Hz}, corresponding to using cutoff periods
τc2 from 0.4 to 2 s and sample widths ofM = 40 toM = 200
(for BWS filter design details see Sect. A1.1).

We adopt the cutoff frequency fc2 for αM2 filtering that
minimizes the noise fluctuations of the ionosphere-corrected
atmospheric bending angle delta profile δα

f c2
rm (za)=

α
f c2
r (za)−αm(za) when evaluated over the mesospheric al-

titude range between 50 and 70 km (similar to the functional
minimization of Sokolovskiy et al., 2009; Eq. 4 therein). At
these high altitudes the residual atmospheric mean signal af-
ter subtraction of the forward-modeled signal αm(za) is very
small (< 0.03–0.3 µrad), and therefore the noise level repre-
sentative for the given RO event is well quantifiable.

The weight matrix of the BWS filter, ABWS
k , is determined

for both frequencies analogously to Eqs. (A3) to (A5). When
using the baseband approach with model profile αm to create
the delta profile δαMm with elements

δαMmi,k = αMi,k −αmi, (A40)

the filtered bending angle is then (item 3.1 in Fig. 2)

αFi,k = αmi +

N∑
j=0

ABWS
ij,k · δαMmj,k, (A41)

where i,j ∈ {1,2, . . .,N} and k ∈ {1,2}.
Due to the stronger power of the L1 signal for (most of)

the GPS satellites, the GPS signals of both frequencies are
not of the same quality, and the L2 data (for those satellites
where encrypted and hence power-degraded L2 signals are

transmitted) do not reach down as far as the L1 data (i.e.,
zaBot2 > zaBot1). If due to this reason αF2 does not reach down
as far as αF1 and zaBot2 ≤ zaBot2Max (with zaBot2Max currently
set to 15 km), a tropospheric bending angle extrapolation
(TBAE) is applied in order to artificially extend αM2 to also
reach down to zaBot1 (item 3.3 in Fig. 2).

Briefly summarized, this TBAE is currently implemented
as follows. A linear gradient profile for the difference profile
between the two bending angles, αF12 = (αF1−αF2), is es-
timated by a least squares fit over a sufficiently wide impact
altitude range from zaBot2 upward (as wide as the extrapola-
tion range, at least 10 km). This gradient profile is then lin-
early extended down to zaBot1 and subtracted from αF1, to
obtain the extrapolated part of αF2 from zaBot2 to zaBot1. If
zaBot2 > zaBot2Max, then no TBAE is performed since the ex-
trapolation range is considered too large. Details are provided
by Kirchengast et al. (2017b), where the most recent version
of the atmospheric bending angle derivation is described that
includes this αF12 extrapolation in a further advanced form.

For the propagation of the estimated random uncertainty
we get (item 3.2 in Fig. 2)

CαF,k = ABWS
k ·CαM,k ·

(
ABWS
k

)T
(A42)

for the bending angle error covariance matrices of the leading
(k = 1) and minor (k = 2) channel.

If a TBAE is applied to αF2, the random uncertainty of
αF2 below zaBot2 is equal to that of αF1, because the noise
is “copied” from αF1 since the linear gradient profile from
fitting αF12 is noise-free. As a consequence, in these cases,
we set the matrix elements of CαF2 to (item 3.4 in Fig. 2)

CαF2,ij =



CαF2,ij for zaTop > za,i > zaBot2

and zaTop > za,j > zaBot2

CαF1,ij for zaBot2 > za,i > zaBot1

and zaBot2 > za,j > zaBot1

0 for zaBot2 > za,i > zaBot1

and zaTop > za,j > zaBot2

0 and zaTop > za,i > zaBot2

for zaBot2 > za,j > zaBot1

. (A43)

CαF1 and CαF2 can then be decomposed as needed into
urαF1, RαF1, and urαF2, RαF2, respectively. Kirchengast et al.
(2017b) describe the most recent version consistent with a
further advanced form of the TBAE, where the separate as-
signments according to Eq. (A43) are no longer needed.

The estimated systematic uncertainties usαM,k (in practice
the basic and apparent systematic uncertainty estimates sepa-
rately) are filtered with the same filter settings as for the state
profiles (item 3.1 in Fig. 2) and are thus obtained in the form

usαFi,k =

N∑
j=0

ABWS
ij,k · u

s
αMj,k. (A44)
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Since these are smooth profiles, they are marginally changed
by this low-pass filtering. The systematic uncertainty com-
ponent contributed by the TBAE to the estimated systematic
uncertainty is added after the ionospheric correction (see next
subsection).

As for the basic low-pass filtering of excess phases
(Sect. A1.1), the resolution profiles of the filtered bending
angles wαF1 and wαF2 are determined by the cutoff frequen-
cies fc1 and fc2 of the BWS filters, following Eqs. (A11)
and (A13).

A3.2 Ionospheric correction

Based on the filtered and sometimes extrapolated state pro-
files αF1 and αF2, the ionospheric refractive effects are cor-
rected for by the standard dual-frequency correction of bend-
ing angles (Vorob’ev and Krasil’nikova, 1994) used in the
fT1–fT2 difference profile form (Sokolovskiy et al., 2009)
(item 3.5 in Fig. 2). For the elements of the retrieved atmo-
spheric bending angle profile αr we thus get

αr,i = αF1,i + γfT12 · δαF12,i, (A45)

where

δαF12,i = αF1,i −αF2,i (A46)

and

γfT12 =
f 2

T2

f 2
T1− f

2
T2
. (A47)

Propagated through the operator of the ionospheric correc-
tion (Eq. A45, currently used here in the classical form with
fT1 and fT2 terms), the estimated random uncertainty of the
resulting atmospheric bending angle, expressed by the error
covariance matrix Cαr (item 3.6 in Fig. 2), is obtained as

Cαr =
(
1+ γfT12

)2 CαF1+ γ
2
fT12 CαF2. (A48)

Cαr can then also be decomposed into urαr and Rαr with the
usual equations (cf., e.g., Eqs. A19 and A20).

Equation (A45) is as well applied to propagate the esti-
mated systematic uncertainty (in practice the basic and ap-
parent systematic uncertainty estimates separately) through
the ionospheric correction using (item 3.5 in Fig. 2)

usαr,i = u
s
αF1,i + γfT12 ·

(
usαF1,i − u

s
αF2,i

)
, (A49)

where it is assumed that the systematic errors in αF1 and αF2
are positively correlated, i.e., have the same sign, and the as-
sociated uncertainty estimates are hence subtracted from one
another (as the bending angles are in Eq. A46). This assump-
tion is reasonable, since the same sources of non-ionospheric
systematic effects apply to both frequency channels (Doppler
shift, orbit velocity, and orbit position uncertainties).

In the case of TBAE, Eq. (A49) needs to be supplemented
below zaBot2, since additional uncertainties usα2TE arise from

the errors made in the fitting parameters and in the extrapo-
lation model (linear extrapolation) of the TBAE. Hence, for
the range zaBot2 > za,i ≥ zaBot1,

usαr,i = u
s
αr(zaBot2)+ u

s
α2TE,i, (A50)

with usα2TE being the conservative estimate for additional
(apparent) systematic uncertainty within the extrapolated im-
pact altitude range. We set usα2TE to zero at zaBot2 and linearly
increase it from there downwards with a gradient of 1 µrad
per 10 km (an experience-based best guess; cf. Scherllin-
Pirscher et al., 2011b, a, who also address aspects of such tro-
pospheric extrapolation in their discussions of error sources).
It is interpreted as an apparent systematic uncertainty esti-
mate, since due to the linear fit-based TBAE construction
its event-to-event bias character will be essentially random
(Scherllin-Pirscher et al., 2011b).

Also, the ionospheric correction currently applied in the
rOPS is just a first-order correction, which will leave higher-
order residual ionospheric errors in αr (e.g., Syndergaard,
2000; Danzer et al., 2013; Liu et al., 2013, 2015; Healy and
Culverwell, 2015). The uncertainty from higher-order resid-
ual ionospheric biases (RIBs), usRIB, is therefore added to
the propagated (basic) systematic uncertainty. usRIB is inter-
preted as basic systematic uncertainty, since the higher-order
ionospheric residuals may not vanish in ensemble-of-events
averaging. The other non-ionospheric sources of systematic
errors and the RIBs can be reasonably assumed to be un-
correlated. The total estimated systematic uncertainty of the
retrieved atmospheric bending angle αr hence is

usαr,i =

√(
usαr,i

)2
+
(
usRIB

)2
. (A51)

Based on previous studies (e.g., Liu et al., 2013, 2015;
Danzer et al., 2013, 2015), usRIB is taken to be constant along
the entire profile and is estimated to amount to 0.05 µrad.
These last two components, usα2TE and usRIB, are indicated
as item 3.7 in Fig. 2. It is clear that this initial systematic
uncertainty estimation can be significantly improved by fu-
ture dedicated work on better quantifying and (if suitable)
correcting for the systematic uncertainty components.

The resolution of the retrieved bending angle, wαr, essen-
tially corresponds to the higher resolution of the two bend-
ing angle profiles αF1 and αF2, and thus generally closely
matches wαF1 in most cases. As a simple but robust and suit-
able estimate, assuming that the resolutions of αr and αF1
scale in the same way as the correlation lengths lαr and lαF1
(derived from Rαr and RαF1 as described for RLF in Eq. A9),
we compute wαr as

wαr,i =
lαr,i

lαF1,i
·wαF1,i . (A52)

In concluding, we note that the atmospheric bending an-
gle derivation algorithms used in this study – i.e., the adap-
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tive filtering, TBAE, and ionospheric correction parts as de-
scribed in this section – have recently received further ad-
vancement towards a form fully based on the combination of
αF1 and the difference profile αF12 (rather than of αF1 and
αF2), more aligned with the concept of Sokolovskiy et al.
(2009). A detailed description of this most recent version is
found in Kirchengast et al. (2017b).

Appendix B: Variance propagation for comparison

The full covariance propagation applied to propagate random
uncertainties requires numerically “expensive” matrix oper-
ations, and therefore considerable efforts were made to seize
opportunities for reducing the number of numerical opera-
tions (e.g., by only calculating with those elements of the
band matrix ABWS which lie within the width of the filter
window).

However, as demonstrated in Sect. 4, simplification to a
mere variance propagation (i.e., only considering the diag-

onal elements of the covariance matrices) is not reasonably
possible because it leads to an unacceptable overestimation
of random uncertainties. This overestimation occurs since the
influence of the covariance elements – and thus for example
the partially compensating impact of the negative side peaks
in the correlation functions – is disregarded.

Here we state the two equations used to obtain the
variances-only propagation results shown for comparison
purposes in Fig. 9: the estimated random uncertainty was
propagated through the BWS filter using

(
urαFi,k

)2
=

N∑
j=0

(
ABWS
ij,k

)2
·

(
urαMj,k

)2
, (B1)

and subsequently through the ionospheric correction using(
urαr,i

)2
=
(
1+ γfT12

)2
·
(
urαF1,i

)2
+ γ 2

fT12 ·
(
urαF2,i

)2
. (B2)
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