



# Supplement of

# How well can global chemistry models calculate the reactivity of shortlived greenhouse gases in the remote troposphere, knowing the chemical composition

Michael J. Prather et al.

Correspondence to: Michael J. Prather (mprather@uci.edu)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

#### Introduction

This work focuses on the reactivity of tropospheric air parcels, adopting a unique protocol to test the photochemical modules of the 3-D models, including regional-to-global chemistry-transport models, chemistry climate models, and Earth system models. The protocol was designed to enable 3-D models to ingest a stream of 1 s to 10 s (0.2 - 2 km) in situ detailed chemistry measurements from an aircraft campaign. The protocol embeds these parcels in a unique, appropriate grid cell of each model, turns off processes that mix adjacent grid cells, and integrates the 3-D model for 24 hours. The photochemical module is thus dependent only on the chemical mechanism and the diurnal cycle of photolysis rates, which are driven in turn by temperature, water vapor, solar zenith angle, clouds, possibly aerosols and overhead ozone, which are calculated as they would be in each model. This is based on the A-runs of the 3-D models demonstrated in Prather et al. (2017, hence P2017)

#### Reactivities

The definition of reactivity and the chemical rates used to evaluate them are based on the ACP paper that began this approach (P2017). Reactivity is defined here as the 24-hour average rate of important compounds, which here are production and loss of tropospheric ozone and methane.

Loss of CH<sub>4</sub> (L-CH4, ppb/day) is calculated from the OH reaction in the troposphere (Cl reactions are not included because the species needed to define them are not readily measured):

$$CH_4 + OH \rightarrow CH_3 + H_2O \tag{1}$$

Production of  $O_3$  (P-O3, ppb/day) is calculated from the peroxy radical reactions with NO as well as photolysis of  $O_2$  in the upper tropical troposphere (mostly above 12 km, so not relevant for DC-8 aircraft measurements):

| $HO_2 + NO \rightarrow NO_2 + OH$                                                                         | (2a) |
|-----------------------------------------------------------------------------------------------------------|------|
| $RO_2 + NO \rightarrow NO_2 + RO$                                                                         | (2b) |
| followed by NO <sub>2</sub> + $hv \rightarrow$ NO + O and O + O <sub>2</sub> $\rightarrow$ O <sub>3</sub> | (2c) |
| $O_2 + hv \rightarrow O + O$ (times 2)                                                                    | (2d) |

Loss of O<sub>3</sub> (L-O3, ppb/day) is based on three reactions with HOx radicals or water:

| $O_3 + OH \rightarrow O_2 + HO_2$                    | (3a) |
|------------------------------------------------------|------|
| $O_3 + HO_2 \rightarrow HO + O_2 + O_2$              | (3b) |
| $O(^{1}D) + H_{2}O \rightarrow OH + OH$              | (3c) |
| originating from $O_3 + hv \rightarrow O(^1D) + O_2$ | (3d) |

In highly polluted conditions there are additional reactions involving nitrate compounds or direct reaction with alkenes or isoprene that lead to  $O_3$  loss. These diagnostics were designed for the remote troposphere and are adequate for calculating the true P-O3 and L-O3. In tests with the A-runs (P2017), the diagnosed P-O3 minus L-O3 matched the 24-hour change in  $O_3$ .

#### Protocol

The data stream includes key species determining tropospheric chemistry that need to be initialized in the 3-D models: O<sub>3</sub>, NOx (=NO+NO<sub>2</sub>), HNO<sub>3</sub>, HNO<sub>4</sub>, PAN (peroxyacetyl nitrate), RNO<sub>3</sub> (CH<sub>3</sub>NO<sub>3</sub> and all alkyl nitrates), HOOH, ROOH (CH<sub>3</sub>OOH and smaller contribution from C<sub>2</sub>H<sub>5</sub>OOH), HCHO, CH<sub>3</sub>CHO (acetaldehyde), C<sub>3</sub>H<sub>6</sub>O (acetone), CO, CH<sub>4</sub>, C<sub>2</sub>H<sub>6</sub>, alkanes (all C<sub>3</sub>H<sub>8</sub> and higher), alkenes (all C<sub>2</sub>H<sub>4</sub> and higher), aromatics (benzene, toluene, xylene), C<sub>5</sub>H<sub>8</sub> (isoprene plus terpenes), plus temperature (T) and specific humidity (q). When a specified species includes a collective (e.g., NOx, aromatics) each model can partition that collective total mole fraction in similar proportions to those as calculated in the model. The algorithm for dealing with missing species or an over-specified class of species is truly model dependent. For example, the UCI model has a simple approximation and single class for all aromatics and consolidates emissions of benzene, toluene, and xylene into 'aromatics' that react as benzene. The NCAR model includes all three species explicitly, and thus they will take the mole fraction of 'aromatics' and partition it into benzene, toluene, and xylene, scaled to their values in the grid cell that is being overwritten with the UCI data stream.

This synthetic data stream is taken from an earlier UCI model version running at high resolution (~0.55 degrees horizontal, and ~0.5 km vertical). All the model grid cells from 0.5 to 12 km from 60S to 60N along 3 adjacent meridians at 180W were used (14,880 parcels). The choice of dropping points below 0.5 km was made earlier to avoid the highly polluted boundary layer over land sources, but when the experiment chose to focus on the middle Pacific, this exclusion was no longer necessary. The protocol was already in process and some model results completed, so the altitude cut off was left. It will clearly not be used with the ATom measurement data stream (ATom, 2017) in subsequent papers since there is extensive data from the marine boundary layer taken at 0.16 km altitude. No attempt was made to follow ATom-like profiling. The overall set of 14880 points from 60S to 60N in the data stream presents a dense climatology and tests the ability of the 3-D models to treat fine-resolution data.

Each data stream record includes latitude, longitude, and pressure, which are used to assign the closest model grid cell to each simulated air parcel. The model's restart file for one of the 5 days in August (8/01, 8/06, 8/11, 8/16, 8/21) is overwritten with the simulated chemical species at the appropriate grid cell. When two parcels fall within the same grid cell, an algorithm shifts the longitude of the second parcel to a nearby cell. Each model runs this restart file for 1 day using the A-run protocol, which keeps all air parcels isolated with little influence from neighboring grid cells. (These neighbor cells may be either from the simulated data or the original restart file.) The use of such modified restart files allows for ready calculation of the reactivities in global models as per the A-runs of P2017.

In the analysis here, each of the data stream parcels is weighted equally to simplify this analysis; but for an observed data stream, each parcel must be weighted separately to ensure uniform sampling of tropospheric mass, particularly the profiles.

#### Less useful diagnostics and problems with the protocol

The slope of parcel reactivities relative to the reference case indicates bias that changes from low to high reactivity and may be useful in diagnosing the chemical models. Most of the slopes in Table S3 lie within  $1\pm0.08$  (bold text), and these combinations have mostly been identified earlier. The slope does identify a disagreement across the reference-case models: for J-NO2, GSFC 's slope is 0.91 while UCI's is 1.13; these biases are symmetric because both have averaged with GC (slope = 0.97) to get the reference case.

Correlation coefficients of parcels for model pairs are also calculated (not shown); but these are all large, usually 0.9 or greater; and do not provide any insight on model differences. There are large differences in reactivities associated with latitude (sun angle and length of day) and with pressure, and the models reproduce these first-order effects.

The GFDL and NCAR CCMs could not maintain the fixed, data-stream T&q values over the 24hour integration, which leads to larger rms differences because reactivities depend on both T and especially q. This explains in part why the GFDL and NCAR models in Figure 2 have larger scatter for reactivities than the other non-GISS models, but similar scatter in J values. This effect may also contribute to the larger day-to-day rms, for NCAR at least, and is examined more extensively with the UCI CTM running with the T&q's from both models (Section 3.5).

### Tables

| Table S1a.         Participating models |           |                       |                                   |                    |  |  |  |
|-----------------------------------------|-----------|-----------------------|-----------------------------------|--------------------|--|--|--|
|                                         | model     | year & days simulated | updates, references               | email              |  |  |  |
| GFDL                                    | AM3       | 2013 Aug 1-6-11-16-21 | Horowitz et al., 2003; Li et al., | amfiore            |  |  |  |
|                                         |           |                       | 2017.                             | @ldeo.columbia.edu |  |  |  |
| GISS                                    | GISS-E2.1 | 2013 Aug 1-6-11-16-21 | Updated code base to E2.1 and     | lee.murray         |  |  |  |
|                                         |           |                       | switched to nudging to MERRA      | @rochester.edu     |  |  |  |
|                                         |           |                       | [Rienecker et al., 2011]          |                    |  |  |  |
| GSFC                                    | GMI-CTM   | 2016 Aug 1-6-11-16-21 | Strahan et al., 2013; Duncan et   | Sarah.A.Strode     |  |  |  |
|                                         |           |                       | al., 2007.                        | @nasa.gov          |  |  |  |
| GC                                      | GEOS-Chem | 2013 Aug 1-6-11-16-21 | v11_01 (using MERRA-2             | lee.murray         |  |  |  |
|                                         |           |                       | reanalysis [Gelaro et al., 2017]  | @rochester.edu     |  |  |  |
| NCAR                                    | CAM4-Chem | 2008 Aug 2-6-11-16-21 | Tilmes et al., 2016               | lamar@ucar.edu     |  |  |  |
| UCI                                     | UCI-CTM   | 2016 Aug 1-6-11-16-21 | Holmes et al, 2013; Prather       | mprather@uci.edu   |  |  |  |
|                                         |           | _                     | 2015; plus aerosol impacts on J   |                    |  |  |  |
|                                         |           |                       | and k (v72d), run with observed   |                    |  |  |  |
|                                         |           |                       | O <sub>3</sub> climatology        |                    |  |  |  |

| Table S1b.         Model heritage for tropospheric photochemistry |                                              |                                                 |  |  |  |  |  |  |
|-------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------|--|--|--|--|--|--|
|                                                                   | Chemical Mechanism                           | Photolysis rates                                |  |  |  |  |  |  |
| GFDL                                                              | MOZART-2                                     | Fast-J                                          |  |  |  |  |  |  |
| GISS                                                              | CBM-4/RACM (Houweling et al., 1998; Shindell | Fast-J2                                         |  |  |  |  |  |  |
|                                                                   | <i>et al.</i> , 2013). No aromatics.         |                                                 |  |  |  |  |  |  |
| GSFC                                                              | Combo Strat-Trop; Trop from GEOS-Chem        | Fast-JX                                         |  |  |  |  |  |  |
| GC                                                                | GEOS-Chem (http://www.geos-chem.org) v11_01  | Fast-JX v7.0                                    |  |  |  |  |  |  |
|                                                                   | "standard" mechanism. No MeONO2.             |                                                 |  |  |  |  |  |  |
| NCAR                                                              | MOZART v4                                    | TUV lookup tables (Madronich, 1987)             |  |  |  |  |  |  |
| UCI                                                               | Prather & Hsu, 2010, 24 species + Linoz v3   | Cloud-J v7.5, full cloud treatment, Fast-J core |  |  |  |  |  |  |

 Table S2. Slope of each model vs. ref model (5d means)

| model        | P-O3                                                                                      | L-03 | L-CH4 | J-NO2 | J-01D |  |  |  |  |
|--------------|-------------------------------------------------------------------------------------------|------|-------|-------|-------|--|--|--|--|
| GFDL         | 0.91                                                                                      | 0.61 | 0.81  | 0.93  | 0.93  |  |  |  |  |
| GISS         | 1.48                                                                                      | 1.47 | 0.32  | 1.06  | 1.43  |  |  |  |  |
| GSFC         | 0.99                                                                                      | 0.99 | 0.98  | 0.91  | 1.00  |  |  |  |  |
| GC           | 0.99                                                                                      | 0.99 | 1.00  | 0.96  | 0.97  |  |  |  |  |
| NCAR         | 0.98                                                                                      | 0.90 | 0.92  | 0.95  | 1.10  |  |  |  |  |
| UCI          | 1.02                                                                                      | 1.01 | 1.01  | 1.13  | 1.03  |  |  |  |  |
| U2015        | 1.02                                                                                      | 1.02 | 1.02  | 1.12  | 1.03  |  |  |  |  |
| U1997        | 1.02                                                                                      | 1.03 | 1.02  | 1.15  | 1.04  |  |  |  |  |
| Slopes outsi | Slopes outside of 1±0.2 are <b>boldened</b> . Alternate UCI years are in <i>italics</i> . |      |       |       |       |  |  |  |  |

| Table S3. Slopes for each day vs. 5-day mean for individual models |        |        |        |        |        |  |  |  |
|--------------------------------------------------------------------|--------|--------|--------|--------|--------|--|--|--|
| all models P-O3 L-O3 L-CH4 J-NO2 J-O1D                             |        |        |        |        |        |  |  |  |
| mean $\pm$ sd                                                      | 1±0.03 | 1±0.04 | 1±0.04 | 1±0.09 | 1±0.02 |  |  |  |
| begin: 1 Aug                                                       | 1.01   | 1.01   | 1.01   | 1.12   | 1.02   |  |  |  |
| end: 21 Aug                                                        | 0.97   | 0.96   | 0.96   | 0.87   | 0.97   |  |  |  |

| <b>Table S4</b> . Percent of total integrated reactivity in topX% of parcels |                   |     |     |     |  |  |  |  |  |  |
|------------------------------------------------------------------------------|-------------------|-----|-----|-----|--|--|--|--|--|--|
| P-O3                                                                         | 5%                | 10% | 25% | 50% |  |  |  |  |  |  |
| GFDL                                                                         | 14                | 26  | 52  | 81  |  |  |  |  |  |  |
| GISS                                                                         | 14                | 25  | 51  | 80  |  |  |  |  |  |  |
| GSFC                                                                         | 13                | 24  | 50  | 79  |  |  |  |  |  |  |
| GC                                                                           | 15                | 26  | 53  | 82  |  |  |  |  |  |  |
| NCAR                                                                         | 14                | 25  | 52  | 81  |  |  |  |  |  |  |
| UCI                                                                          | 15                | 26  | 53  | 82  |  |  |  |  |  |  |
| U2015                                                                        | 15                | 26  | 53  | 82  |  |  |  |  |  |  |
| U1997                                                                        | 15                | 26  | 53  | 82  |  |  |  |  |  |  |
| L-03                                                                         | 5%                | 10% | 25% | 50% |  |  |  |  |  |  |
| GFDL                                                                         | 18                | 32  | 63  | 90  |  |  |  |  |  |  |
| GISS                                                                         | 14                | 26  | 53  | 82  |  |  |  |  |  |  |
| GSFC                                                                         | 14                | 26  | 54  | 84  |  |  |  |  |  |  |
| GC                                                                           | 14                | 26  | 53  | 83  |  |  |  |  |  |  |
| NCAR                                                                         | 14                | 26  | 53  | 82  |  |  |  |  |  |  |
| UCI                                                                          | 15                | 26  | 54  | 83  |  |  |  |  |  |  |
| U2015                                                                        | 15                | 27  | 54  | 84  |  |  |  |  |  |  |
| U1997                                                                        | 15                | 27  | 54  | 84  |  |  |  |  |  |  |
| L-CH4                                                                        | 5%                | 10% | 25% | 50% |  |  |  |  |  |  |
| GFDL                                                                         | 14                | 26  | 54  | 83  |  |  |  |  |  |  |
| GISS                                                                         | 11                | 20  | 43  | 72  |  |  |  |  |  |  |
| GSFC                                                                         | 14                | 26  | 55  | 84  |  |  |  |  |  |  |
| GC                                                                           | 14                | 26  | 54  | 84  |  |  |  |  |  |  |
| NCAR                                                                         | 13                | 25  | 53  | 84  |  |  |  |  |  |  |
| UCI                                                                          | 14                | 26  | 54  | 84  |  |  |  |  |  |  |
| U2015                                                                        | 14                | 26  | 54  | 84  |  |  |  |  |  |  |
| U1997                                                                        | U1997 14 26 55 84 |     |     |     |  |  |  |  |  |  |

| Table S5. % of total reactivity in top X% of parcels in |    |     |     |     |  |  |  |  |
|---------------------------------------------------------|----|-----|-----|-----|--|--|--|--|
| UCI                                                     |    |     |     |     |  |  |  |  |
| P-O3                                                    | 5% | 10% | 25% | 50% |  |  |  |  |
| 1-Aug                                                   | 15 | 27  | 54  | 83  |  |  |  |  |
| 6-Aug                                                   | 15 | 27  | 54  | 83  |  |  |  |  |
| 11-Aug                                                  | 15 | 27  | 54  | 82  |  |  |  |  |
| 16-Aug                                                  | 14 | 26  | 52  | 81  |  |  |  |  |
| 21-Aug                                                  | 14 | 26  | 52  | 80  |  |  |  |  |
| L-03                                                    | 5% | 10% | 25% | 50% |  |  |  |  |
| 1-Aug                                                   | 15 | 27  | 55  | 85  |  |  |  |  |
| 6-Aug                                                   | 15 | 27  | 55  | 85  |  |  |  |  |
| 11-Aug                                                  | 15 | 27  | 54  | 83  |  |  |  |  |
| 16-Aug                                                  | 15 | 26  | 54  | 83  |  |  |  |  |
| 21-Aug                                                  | 14 | 26  | 52  | 82  |  |  |  |  |
| L-CH4                                                   | 5% | 10% | 25% | 50% |  |  |  |  |
| 1-Aug                                                   | 15 | 27  | 56  | 85  |  |  |  |  |
| 6-Aug                                                   | 15 | 27  | 56  | 85  |  |  |  |  |
| 11-Aug                                                  | 14 | 26  | 55  | 84  |  |  |  |  |
| 16-Aug                                                  | 14 | 26  | 54  | 83  |  |  |  |  |
| 21-Aug                                                  | 14 | 25  | 53  | 83  |  |  |  |  |

| Table S6. Ov                                    | Table S6. Overlap (%) of the top X% of |      |       |  |  |  |  |  |  |
|-------------------------------------------------|----------------------------------------|------|-------|--|--|--|--|--|--|
| reactivities vs reference case, all 5-day means |                                        |      |       |  |  |  |  |  |  |
| 5%                                              | P-O3                                   | L-03 | L-CH4 |  |  |  |  |  |  |
| GFDL                                            | 74                                     | 33   | 44    |  |  |  |  |  |  |
| GISS                                            | 61                                     | 75   | 30    |  |  |  |  |  |  |
| GSFC                                            | 92                                     | 88   | 86    |  |  |  |  |  |  |
| GC                                              | 92                                     | 87   | 88    |  |  |  |  |  |  |
| NCAR                                            | 78                                     | 40   | 41    |  |  |  |  |  |  |
| UCI                                             | 93                                     | 85   | 84    |  |  |  |  |  |  |
| U2015                                           | 90                                     | 82   | 84    |  |  |  |  |  |  |
| U1997                                           | 89                                     | 82   | 82    |  |  |  |  |  |  |
| 10%                                             |                                        |      |       |  |  |  |  |  |  |
| GFDL                                            | 82                                     | 58   | 64    |  |  |  |  |  |  |
| GISS                                            | 72                                     | 84   | 34    |  |  |  |  |  |  |
| GSFC                                            | 94                                     | 92   | 92    |  |  |  |  |  |  |
| GC                                              | 94                                     | 92   | 91    |  |  |  |  |  |  |
| NCAR                                            | 81                                     | 54   | 55    |  |  |  |  |  |  |
| UCI                                             | 95                                     | 88   | 88    |  |  |  |  |  |  |
| U2015                                           | 92                                     | 87   | 85    |  |  |  |  |  |  |
| U1997                                           | 91                                     | 86   | 86    |  |  |  |  |  |  |
| 25%                                             |                                        |      |       |  |  |  |  |  |  |
| GFDL                                            | 90                                     | 75   | 80    |  |  |  |  |  |  |
| GISS                                            | 83                                     | 88   | 54    |  |  |  |  |  |  |
| GSFC                                            | 97                                     | 95   | 96    |  |  |  |  |  |  |
| GC                                              | 97                                     | 94   | 95    |  |  |  |  |  |  |
| NCAR                                            | 89                                     | 74   | 77    |  |  |  |  |  |  |
| UCI                                             | 97                                     | 95   | 95    |  |  |  |  |  |  |
| U2015                                           | 96                                     | 92   | 93    |  |  |  |  |  |  |
| U1997                                           | 96                                     | 93   | 93    |  |  |  |  |  |  |
| 50%                                             |                                        |      |       |  |  |  |  |  |  |

| GFDL          | 96 | 90 | 93 |
|---------------|----|----|----|
| GISS          | 88 | 97 | 83 |
| GSFC          | 98 | 99 | 99 |
| GC            | 98 | 98 | 99 |
| NCAR          | 95 | 89 | 92 |
| UCI           | 98 | 99 | 99 |
| U2015         | 98 | 99 | 99 |
| <i>U199</i> 7 | 98 | 98 | 98 |

| Table S7. | <b>Fable S7.</b> Overlap (%) of the top X% of reactivities: 5 days vs 5-day mean for each model |      |       |      |      |       |      |      |       |      |      |       |
|-----------|-------------------------------------------------------------------------------------------------|------|-------|------|------|-------|------|------|-------|------|------|-------|
|           |                                                                                                 | GSFC |       | UCI  |      |       |      | GC   |       | NCAR |      |       |
|           | P-O3                                                                                            | L-03 | L-CH4 | P-O3 | L-03 | L-CH4 | P-O3 | L-03 | L-CH4 | P-O3 | L-03 | L-CH4 |
|           |                                                                                                 |      |       |      |      | 5     | %    |      |       |      |      |       |
| 08/01     | 84                                                                                              | 76   | 76    | 90   | 84   | 83    | 88   | 83   | 86    | 79   | 50   | 47    |
| 08/06     | 83                                                                                              | 85   | 84    | 90   | 84   | 82    | 88   | 83   | 87    | 76   | 47   | 50    |
| 08/11     | 87                                                                                              | 76   | 66    | 90   | 83   | 72    | 91   | 88   | 89    | 81   | 64   | 53    |
| 08/16     | 85                                                                                              | 85   | 84    | 92   | 85   | 83    | 89   | 82   | 87    | 84   | 68   | 54    |
| 08/21     | 84                                                                                              | 78   | 73    | 91   | 80   | 75    | 88   | 75   | 76    | 75   | 55   | 49    |
|           |                                                                                                 |      |       |      |      | 10    | %    |      |       |      |      |       |
| 08/01     | 88                                                                                              | 84   | 83    | 91   | 88   | 88    | 90   | 89   | 88    | 82   | 62   | 60    |
| 08/06     | 85                                                                                              | 90   | 87    | 91   | 88   | 88    | 90   | 87   | 89    | 83   | 58   | 60    |
| 08/11     | 89                                                                                              | 82   | 80    | 92   | 85   | 83    | 91   | 91   | 91    | 84   | 66   | 63    |
| 08/16     | 88                                                                                              | 86   | 86    | 92   | 89   | 87    | 92   | 91   | 91    | 85   | 72   | 67    |
| 08/21     | 88                                                                                              | 85   | 83    | 91   | 85   | 83    | 89   | 84   | 83    | 81   | 62   | 64    |
|           |                                                                                                 |      |       |      |      | 25    | %    |      |       |      |      |       |
| 08/01     | 92                                                                                              | 90   | 92    | 94   | 92   | 92    | 95   | 89   | 89    | 90   | 83   | 84    |
| 08/06     | 93                                                                                              | 94   | 94    | 96   | 93   | 93    | 95   | 93   | 93    | 90   | 76   | 80    |
| 08/11     | 93                                                                                              | 93   | 94    | 94   | 92   | 92    | 95   | 92   | 94    | 90   | 81   | 84    |
| 08/16     | 95                                                                                              | 95   | 95    | 97   | 94   | 94    | 95   | 93   | 94    | 91   | 83   | 85    |
| 08/21     | 93                                                                                              | 94   | 95    | 93   | 92   | 91    | 94   | 90   | 89    | 87   | 75   | 79    |
|           |                                                                                                 |      |       |      |      | 50    | %    |      |       |      |      |       |
| 08/01     | 97                                                                                              | 99   | 98    | 97   | 98   | 98    | 97   | 97   | 97    | 95   | 93   | 95    |
| 08/06     | 97                                                                                              | 99   | 98    | 98   | 97   | 97    | 98   | 98   | 98    | 94   | 92   | 93    |
| 08/11     | 96                                                                                              | 99   | 98    | 98   | 99   | 99    | 97   | 98   | 98    | 96   | 93   | 94    |
| 08/16     | 96                                                                                              | 98   | 98    | 98   | 99   | 99    | 97   | 98   | 98    | 96   | 92   | 93    |
| 08/21     | 96                                                                                              | 98   | 98    | 97   | 98   | 98    | 97   | 98   | 98    | 94   | 90   | 92    |

**Table S8**. Average and RMS parcel differences for several UCI sensitivity studies. for some case the reference is a 5-day simulation and for others it is a single day (8/16).

|                     |       | average difference |        |        |        |       | rms difference |       |        |        |
|---------------------|-------|--------------------|--------|--------|--------|-------|----------------|-------|--------|--------|
|                     | P-O3  | L-O3               | L-CH4  | J-NO2  | J-01D  | P-O3  | L-O3           | L-CH4 | J-NO2  | J-01D  |
| model               | ppb/d | ppb/d              | ppb/d  | e-3 /s | e-5 /s | ppb/d | ppb/d          | ppb/d | e-3 /s | e-5 /s |
| UCI 2016 5 days     | 0.827 | 1.467              | 0.648  | 4.705  | 1.224  |       |                |       |        |        |
| UCI 2015            | 0.006 | 0.007              | 0.003  | 0.020  | 0.003  | 0.056 | 0.123          | 0.058 | 0.329  | 0.077  |
| UCI 1997            | 0.006 | 0.004              | 0.001  | 0.019  | 0.007  | 0.057 | 0.121          | 0.057 | 0.334  | 0.082  |
| fixed solar declin. | 0.000 | 0.000              | 0.001  | 0.002  | 0.000  | 0.003 | 0.007          | 0.003 | 0.014  | 0.005  |
| different restart   | 0.000 | 0.000              | 0.000  | 0.000  | 0.000  | 0.006 | 0.002          | 0.002 | 0.000  | 0.000  |
|                     |       |                    |        |        |        |       |                |       |        |        |
| UCI 2016 16 Aug     | 0.835 | 1.492              | 0.660  | 4.800  | 1.239  |       |                |       |        |        |
| initialize at 1200H | 0.010 | 0.015              | 0.003  | 0      | 0      | 0.030 | 0.017          | 0.006 | 0.003  | 0.001  |
| + GFDL T            | 0.005 | -0.001             | -0.001 | -0.001 | 0.000  | 0.070 | 0.050          | 0.049 | 0.015  | 0.018  |

| + GFDL T&q | 0.013 | -0.011 | -0.009 | -0.001 | 0.000 | 0.126 | 0.845 | 0.297 | 0.015 | 0.018 |
|------------|-------|--------|--------|--------|-------|-------|-------|-------|-------|-------|
| + NCAR T   | 0.032 | 0.015  | 0.014  | 0.002  | 0.004 | 0.138 | 0.076 | 0.074 | 0.019 | 0.022 |
| + NCAR T&q | 0.048 | 0.165  | 0.061  | 0.002  | 0.004 | 0.198 | 0.989 | 0.364 | 0.019 | 0.022 |

| <b>Table S9.</b> Differences between modeled and specified T&g over the 5 days |       |       |  |  |  |  |
|--------------------------------------------------------------------------------|-------|-------|--|--|--|--|
| model                                                                          | GFDL  | NCAR  |  |  |  |  |
| mean T (K)                                                                     | -0.11 | +0.17 |  |  |  |  |
| rms T (K)                                                                      | 3.46  | 3.69  |  |  |  |  |
| mean $\log_{10}[q (g/kq)]$                                                     | -0.02 | +0.01 |  |  |  |  |
| rms $\log_{10}[q (g/kq)]$                                                      | 0.39  | 0.41  |  |  |  |  |
| The other 4 models used the data stream T&q                                    |       |       |  |  |  |  |

## Figures



Figure S1. Latitude by pressure plots of 6 key species from the data stream used in this study. The data stream was take from an older version of the UCI CTM running at a grid resolution 640x320 with about 30 layers in the troposphere. Sampling was only for 0.5 to 12 km (960 to 200 hPa).











Figure S6. Modeled Reactivity and J-values of the top-10% parcels for 5 separate days for UCI, sorted by and plotted against the 5-day mean (black line). See figure S8.





zenith angle.



different days from Aug 1 to Aug 21.





#### References

- ATom: Measurements and modeling results from the NASA Atmospheric Tomography Mission, https://espoarchive.nasa.gov/archive/browse/atom, doi:
  - 10.5067/Aircraft/ATom/TraceGas\_Aerosol\_Global\_Distribution, 2017.
- Batchelor, G. K.: The Effect of Homogeneous Turbulence on Material Lines and Surfaces, Proc. R. Soc. Lond. A 1952 213 349-366; DOI: 10.1098/rspa.1952.0130, 1952.
- Brasseur, G. P., D. A. Hauglustaine, S. Walters, P. J. Rasch, J.-F. Müller, C. Granier, and X. X. Tie: MOZART, a global chemical transport model for ozone and related chemical tracers: 1. Model description, J. Geophys. Res., 103(D21), 28265–28289, doi:10.1029/98JD02397, 1998.
- Collins, W. J., Lamarque, J. F., Schulz, M., Boucher, O., Eyring, V., Hegglin, M. I., Maycock, A., Myhre, G., Prather, M., Shindell, D., and Smith, S. J.: AerChemMIP: quantifying the effects of chemistry and aerosols in CMIP6, Geosci Model Dev, 10, 585-607, 10.5194/gmd-10-585-2017, 2017.
- Duncan, B.N., S.E. Strahan, Y. Yoshida, S.D. Steenrod, and N. Livesey: Model study of crosstropopause transport of biomass burning pollution, Atmos. Chem. Phys., 7, 3713-3736, 2007.
- Eyring, V., N. Butchart, D. W. Waugh, H. Akiyoshi, J. Austin, S. Bekki, G. E. Bodeker, B. A. Boville, C. Brühl, M. P. Chipperfield, E. Cordero, M. Dameris, M. Deushi, V. E. Fioletov, S. M. Frith, R. R. Garcia, A. Gettelman, M. A. Giorgetta, V. Grewe, L. Jourdain, D. E. Kinnison, E. Mancini, E. Manzini, M. Marchand, D. R. Marsh, T. Nagashima, P. A. Newman, J. E. Nielsen, S. Pawson, G. Pitari, D. A. Plummer, E. Rozanov, M. Schraner, T. G. Shepherd, K. Shibata, R. S. Stolarski, H. Struthers, W. Tian, M. Yoshiki: Assessment of temperature, trace species, and ozone in chemistry-climate model simulations of the recent past, J Geophys Res-Atmos, 111, -, Artn D22308 Doi 10.1029/2006jd007327, 2006.
- Gelaro, Ronald, Will McCarty, Max J. Suárez, Ricardo Todling, Andrea Molod, Lawrence Takacs, Cynthia A. Randles, Anton Darmenov, Michael G. Bosilovich, Rolf Reichle, Krzysztof Wargan, Lawrence Coy, Richard Cullather, Clara Draper, Santha Akella, Virginie Buchard, Austin Conaty, Arlindo M. da Silva, Wei Gu, Gi-Kong Kim, Randal Koster, Robert Lucchesi, Dagmar Merkova, Jon Eric Nielsen, Gary Partyka, Steven Pawson, William Putman, Michele Rienecker, Siegfried D. Schubert, Meta Sienkiewicz, and Bin Zhao: The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2), J Climate, 30(14), 5419–5454, doi:10.1175/JCLI-D-16-0758.1, 2017
- Holmes, C.D., M. J. Prather, A.O. Søvde, G. Myhre: Future methane, hydroxyl, and their uncertainties: key climate and emission parameters for future predictions, Atmos. Chem. Phys., 13, 285–302, doi:10.5194/acp-13-285-2013, 2013.
- Horowitz, L. W., Stacy Walters, Denise L. Mauzerall, Louisa K. Emmons, Philip J. Rasch, Claire Granier, XueXi Tie, Jean-François Lamarque, Martin G. Schultz, Geoffrey S. Tyndall, John J. Orlando, Guy P. Brasseur: A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2, J. Geophys. Res., 108(D24), 4784, doi:10.1029/2002JD002853, 2003.
- Houweling, S., Dentener, F., and Lelieveld, J.: The impact of non- methane hydrocarbon compounds on tropospheric photochemistry, J. Geophys. Res., 103, 10673–10696, 1998.

- Lauritzen, P. H., Ullrich, P. A., Jablonowski, C., Bosler, P. A., Calhoun, D., Conley, A. J., Enomoto, T., Dong, L., Dubey, S., Guba, O., Hansen, A. B., Kaas, E., Kent, J., Lamarque, J. F., Prather, M. J., Reinert, D., Shashkin, V. V., Skamarock, W. C., Sorensen, B., Taylor, M. A., and Tolstykh, M. A.: A standard test case suite for twodimensional linear transport on the sphere: results from a collection of state-of-the-art schemes, Geosci Model Dev, 7, 105-145, 10.5194/gmd-7-105-2014, 2014.
- Li, J., Mao, J., Fiore, A. M., Cohen, R. C., Crounse, J. D., Teng, A. P., Wennberg, P. O., Lee, B. H., Lopez-Hilfiker, F. D., Thornton, J. A., Peischl, J., Pollack, I. B., Ryerson, T. B., Veres, P., Roberts, J. M., Neuman, J. A., Nowak, J. B., Wolfe, G. M., Hanisco, T. F., Fried, A., Singh, H. B., Dibb, J., Paulot, F., and Horowitz, L. W.: Decadal change of summertime reactive nitrogen species and surface ozone over the Southeast United States, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-606, 2017.
- Madronich, S.: Photodissociation in the atmosphere: 1. Actinic flux and the effect of ground reflections and clouds, J. Geophys. Res., 92, 9740 9752, 1987.
- Morgenstern, O., Hegglin, M. I., Rozanov, E., O'Connor, F. M., Abraham, N. L., Akiyoshi, H., Archibald, A. T., Bekki, S., Butchart, N., Chipperfield, M. P., Deushi, M., Dhomse, S. S., Garcia, R. R., Hardiman, S. C., Horowitz, L. W., Jockel, P., Josse, B., Kinnison, D., Lin, M. Y., Mancini, E., Manyin, M. E., Marchand, M., Marecal, V., Michou, M., Oman, L. D., Pitari, G., Plummer, D. A., Revell, L. E., Saint-Martin, D., Schofield, R., Stenke, A., Stone, K., Sudo, K., Tanaka, T. Y., Tilmes, S., Yamashita, Y., Yoshida, K., and Zeng, G.: Review of the global models used within phase 1 of the Chemistry-Climate Model Initiative (CCMI), Geosci Model Dev, 10, 639-671, 10.5194/gmd-10-639-2017, 2017.
- Myhre, G., Aas, W., Cherian, R., Collins, W., Faluvegi, G., Flanner, M., Forster, P., Hodnebrog, O., Klimont, Z., Lund, M. T., Mulmenstadt, J., Myhre, C. L., Olivie, D., Prather, M., Quaas, J., Samset, B. H., Schnell, J. L., Schulz, M., Shindell, D., Skeie, R. B., Takemura, T., and Tsyro, S.: Multi-model simulations of aerosol and ozone radiative forcing due to anthropogenic emission changes during the period 1990-2015, Atmos Chem Phys, 17, 2709-2720, 10.5194/acp-17-2709-2017, 2017.
- NAP, Causes and Effects of Changes in Stratospheric Ozone: Update 1983, ISBN 0-309-03443-4, National Academy Press, Washington DC, 1984.
- NASA, Report of the 1992 Stratospheric Models and Measurements Workshop, (Prather, M.J. and E.E. Remsberg, eds.), Satellite Beach, FL, February 1992, NASA Ref. Publ. 1292, 144+268+352 pp., 1993.
- Nault, B. A., Garland, C., Wooldridge, P. J., Brune, W. H., Campuzano-Jost, P., Crounse, J. D., Day, D. A., Dibb, J., Hall, S. R., Huey, L. G., Jimenez, J. L., Liu, X. X., Mao, J. Q., Mikoviny, T., Peischl, J., Pollack, I. B., Ren, X. R., Ryerson, T. B., Scheuer, E., Ullmann, K., Wennberg, P. O., Wisthaler, A., Zhang, L., and Cohen, R. C.: Observational Constraints on the Oxidation of NOx in the Upper Troposphere, J Phys Chem A, 120, 1468-1478, 10.1021/acs.jpca.5b07824, 2016.
- Olson, J. R., Crawford, J. H., Brune, W., Mao, J., Ren, X., Fried, A., Anderson, B., Apel, E., Beaver, M., Blake, D., Chen, G., Crounse, J., Dibb, J., Diskin, G., Hall, S. R., Huey, L. G., Knapp, D., Richter, D., Riemer, D., Clair, J. S., Ullmann, K., Walega, J., Weibring, P., Weinheimer, A., Wennberg, P., and Wisthaler, A.: An analysis of fast photochemistry over high northern latitudes during spring and summer using in-situ observations from ARCTAS and TOPSE, Atmos Chem Phys, 12, 6799-6825, 10.5194/acp-12-6799-2012, 2012.

- Olson, J., Prather, M., Berntsen, T., Carmichael, G., Chatfield, R., Connell, P., Derwent, R., Horowitz, L., Jin, S. X., Kanakidou, M., Kasibhatla, P., Kotamarthi, R., Kuhn, M., Law, K., Penner, J., Perliski, L., Sillman, S., Stordal, F., Thompson, A., and Wild, O.: Results from the Intergovernmental Panel on Climatic Change Photochemical Model Intercomparison (PhotoComp), J Geophys Res-Atmos, 102, 5979-5991, 1997.
- Orbe, C., Waugh, D. W., Newman, P. A., and Steenrod, S.: The Transit-Time Distribution from the Northern Hemisphere Midlatitude Surface, J Atmos Sci, 73, 3785-3802, 10.1175/Jas-D-15-0289.1, 2016.
- PhotoComp: Chapter 6 Stratospheric Chemistry SPARC Report No. 5 on the Evaluation of Chemistry-Climate Models, World Meteorological Organization, Geneva, Switzerland, 194-202, 2010.
- Prather, M. J., Zhu, X., Flynn, C. M., Strode, S. A., Rodriguez, J. M., Steenrod, S. D., Liu, J. H., Lamarque, J. F., Fiore, A. M., Horowitz, L. W., Mao, J. Q., Murray, L. T., Shindell, D. T., and Wofsy, S. C.: Global atmospheric chemistry - which air matters, Atmos Chem Phys, 17, 9081-9102, 10.5194/acp-17-9081-2017, 2017.
- Prather, M., C. Flynn, A. Fiore, G. Correa, S.A. Strode, S. Steenrod, L. Murray, and J-F. Lamarque:. ATom: Simulated Data Stream for Modeling ATom-like Measurements. ORNL DAAC, Oak Ridge, Tennessee, USA. <u>https://doi.org/10.3334/ORNLDAAC/1597</u>, 2018.
- Prather, M. J., Zhu, X., Strahan, S. E., Steenrod, S. D., and Rodriguez, J. M.: Quantifying errors in trace species transport modeling, P Natl Acad Sci USA, 105, 19617-19621, DOI 10.1073/pnas.0806541106, 2008.
- Prather, M. J.: Photolysis rates in correlated overlapping cloud fields: Cloud-J 7.3c, Geosci Model Dev, 8, 2587-2595, 10.5194/gmd-8-2587-2015, 2015.
- Prather, M., and Jaffe, A. H.: Global Impact of the Antarctic Ozone Hole Chemical Propagation, J Geophys Res-Atmos, 95, 3473-3492, 1990.
- Prather, M.J., J. Hsu (2010), Coupling of nitrous oxide and methane by global atmospheric chemistry, Science, 330: 952-954.
- Rienecker, M. M., Max J. Suarez, Ronald Gelaro, Ricardo Todling, Julio Bacmeister, Emily Liu, Michael G. Bosilovich, Siegfried D. Schubert, Lawrence Takacs, Gi-Kong Kim, Stephen Bloom, Junye Chen, Douglas Collins, Austin Conaty, Arlindo da Silva, Wei Gu, Joanna Joiner, Randal D. Koster, Robert Lucchesi, Andrea Molod, Tommy Owens, Steven Pawson, Philip Pegion, Christopher R. Redder, Rolf Reichle, Franklin R. Robertson, Albert G. Ruddick, Meta Sienkiewicz, and Jack Woollen: MERRA: NASA's Modern-Era Retrospective Analysis for Research and Applications, J Climate, 24(14), 3624–3648, doi:10.1175/JCLI-D-11-00015.1, 2011.
- Shindell, D. T. et al.:Interactive ozone and methane chemistry in GISS-E2 historical and future climate simulations, Atmos Chem Phys, 13(5), 2653–2689, doi:10.5194/acp-13-2653-2013, 2013.
- Shindell, D., Kuylenstierna, J. C. I., Vignati, E., van Dingenen, R., Amann, M., Klimont, Z.,
  Anenberg, S. C., Muller, N., Janssens-Maenhout, G., Raes, F., Schwartz, J., Faluvegi, G.,
  Pozzoli, L., Kupiainen, K., Hoglund-Isaksson, L., Emberson, L., Streets, D., Ramanathan,
  V., Hicks, K., Oanh, N. T. K., Milly, G., Williams, M., Demkine, V., and Fowler, D.:
  Simultaneously Mitigating Near-Term Climate Change and Improving Human Health
  and Food Security, Science, 335, 183-189, DOI 10.1126/science.1210026, 2012.

- Strahan, S.E., A.R. Douglass, and P.A. Newman: The contributions of chemistry and transport to low Arctic ozone in March 2011 derived from Aura MLS Observations, J. Geophys. Res., 118, 1563-1576, doi:10.1002/jgrd.50181, 2013.
- Tilmes, S., Lamarque, J.-F., Emmons, L. K., Kinnison, D. E., Marsh, D., Garcia, R. R., Smith, A. K., Neely, R. R., Conley, A., Vitt, F., Val Martin, M., Tanimoto, H., Simpson, I., Blake, D. R., and Blake, N.: Representation of the Community Earth System Model (CESM1) CAM4-chem within the Chemistry-Climate Model Initiative (CCMI), Geosci. Model Dev., 9, 1853-1890, https://doi.org/10.5194/gmd-9-1853-2016, 2016.
- Wild, O., Zhu, X., and Prather, M. J.: Fast-J: Accurate simulation of in- and below-cloud photolysis in tropospheric chemical models, J Atmos Chem, 37, 245-282, 2000.