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Abstract. Satellite observations are used to obtain vertical
profiles of variance scaling of temperature (T ) and specific
humidity (q) in the atmosphere. A higher spatial resolu-
tion nadir retrieval at 13.5 km complements previous Atmo-
spheric Infrared Sounder (AIRS) investigations with 45 km
resolution retrievals and enables the derivation of power law
scaling exponents to length scales as small as 55 km. We in-
troduce a variable-sized circular-area Monte Carlo methodol-
ogy to compute exponents instantaneously within the swath
of AIRS that yields additional insight into scaling behavior.
While this method is approximate and some biases are likely
to exist within non-Gaussian portions of the satellite observa-
tional swaths of T and q, this method enables the estimation
of scale-dependent behavior within instantaneous swaths for
individual tropical and extratropical systems of interest. Scal-
ing exponents are shown to fluctuate between β =−1 and
−3 at scales ≥ 500 km, while at scales ≤ 500 km they are
typically near β ≈−2, with q slightly lower than T at the
smallest scales observed. In the extratropics, the large-scale
β is near −3. Within the tropics, however, the large-scale β
for T is closer to −1 as small-scale moist convective pro-
cesses dominate. In the tropics, q exhibits large-scale β be-
tween −2 and −3. The values of β are generally consistent
with previous works of either time-averaged spatial variance
estimates, or aircraft observations that require averaging over
numerous flight observational segments. The instantaneous
variance scaling methodology is relevant for cloud parame-
terization development and the assessment of time variability
of scaling exponents.

Copyright statement. The author’s copyright for this publication is
transferred to California Institute of Technology.

1 Introduction

In the atmosphere, energy that is present at larger scales
tends to cascade towards the smaller scales where kinetic en-
ergy is turned into heat by dissipation on the Kolmogorov
length scale (Hunt and Vassilicos, 1991; Kolmogorov, 1991).
In two-dimensional turbulence, or quasi-geostrophic turbu-
lence, energy that is injected at smaller scales can also be
transferred to larger scales (Lindborg, 1999; Charney, 1971;
Fjørtoft, 1953). Schertzer et al. (2012) give an alternative the-
ory of energy transfer using fractal dimension turbulence.
A review on upscale energy propagation is found in Tuck
(2010). Numerous processes affect the atmosphere at differ-
ent length scales (e.g., the large-scale planetary circulation,
synoptic-scale systems, organized and isolated deep convec-
tion, shallow convection, turbulence, and molecular diffu-
sion). As a result, the rate at which the variance of atmo-
spheric properties changes as a function of length scale, the
“variance scaling”, is not uniform over the entire range of
scales within Earth’s atmosphere.

Observations have been frequently used to demonstrate
that atmospheric variables satisfy specific scaling laws. Ju-
lian et al. (1970) showed that on larger scales (> 1500 km)
the kinetic energy spectra follow a k−3 law. At smaller scales
(< 500–700 km) the spectra are shallower and follow a k−5/3

law more closely. Transitions in between these regimes have
been clearly demonstrated with aircraft observations of wind
and temperature by Nastrom and Gage (1985). The Nas-
trom and Gage (1985) variance power spectra diagram (their
Fig. 3) is often cited and reproduced (e.g., Lindborg, 1999;
Tung and Orlando, 2003; Palmer, 2012). The precise vari-
ance scaling exponents of these atmospheric variables are,
however, more complicated and subtle. For instance, expo-
nents that transition from −5/3 to −2.4 between 100 and
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500 km were observed in aircraft wind measurements by
Pinel et al. (2012).

Kahn and Teixeira (2009) (KT09 hereafter) used satellite
observations of temperature (T ) and the specific humidity of
water vapor (q) to derive sensitivities of scaling exponents
to multiple factors such as the location on Earth (e.g., land,
ocean, latitude), the season, and the existence of clouds or
clear sky. The underlying causes of these variations and more
complex phenomena, such as scale breaks and reverse scale
breaks (demonstrated to exist by KT09), are not yet fully un-
derstood. One of the reasons may be the paucity of exten-
sive observational data sets that correspond to well-defined
atmospheric conditions over several orders of length scales.
Clear patterns of scaling exponents only appear after aver-
aging over a sufficient time period on the order of a season
(KT09).

A myriad of investigations using atmospheric variability
generated by numerical models have been performed. Jonker
et al. (1999) used a large-eddy simulation (LES) model to
show that passive scalars in a turbulent field exhibit differ-
ent power spectra than the thermodynamic variables them-
selves. Cusack et al. (1999) used the horizontal variance of
moisture with global weather model analysis data and con-
structed a cloud parameterization from it. Hamilton et al.
(2008) showed a transition from a steep k−3 law to a shal-
lower k−5/3 law in the kinetic energy spectrum of a general
circulation model (GCM).

As with observations, numerical simulations have their
own limitations considering the range of scales that are rep-
resented. Due to computational restrictions, LES models are
not able to accurately simulate synoptic systems. GCMs and
cloud resolving models (CRMs) are not able to accurately re-
solve smaller-scale processes (e.g., turbulence, shallow con-
vection) that affect variance scaling exponents at all scales.
Parameterizations of unresolved processes are based on as-
sumptions about variance scaling exponents derived from
larger scales (Bogenschutz and Krueger, 2013; Tompkins,
2002; Teixeira and Hogan, 2002; Larson et al., 2002), and
therefore, cannot be used to infer independent estimates of
variance scaling exponents near the subgrid-scales. In short,
there remains a need for numerical and observational inves-
tigations that report the statistics of scaling exponents over
a larger range of length scales, in particular near the GCM
subgrid-scale (Kahn et al., 2011). A review of scaling prop-
erties in numerical models is found in Lovejoy and Schertzer
(2013).

In a follow-up to the methodology described by KT09, this
work presents a new variance scaling method that is applied
to vertically resolved, satellite derived T and q with higher
horizontal resolution than previously reported. The new vari-
ance scaling method enables the calculation of instantaneous
variance scaling exponents along the swath of Earth observ-
ing satellites. For a particular horizontal two-dimensional at-
mospheric field (e.g., T or q) at a particular pressure level
or altitude in the atmosphere, the standard deviations are cal-

culated over spatial areas for a range of length scales from
which variance scaling exponents are derived. Areas are cho-
sen to be of circular shape and are placed along the track of
a satellite. Variance spectra are estimated by varying the di-
ameter of the circular areas. Then exponents are derived by
fitting power law exponents to the data. To obtain robust es-
timates, a Monte Carlo method is employed that randomly
places smaller circles within the largest diameter circle.

The paper is organized as follows. Section 2 describes
the temperature and specific humidity datasets, which is
followed by the introduction of the new variance scaling
method (Sect. 3). The variance scaling results are presented
in Sect. 4. Lastly, Sect. 5 discusses the implications and con-
clusions of the main findings, and suggests future research
that is enabled with this novel approach.

2 Data

The T and q profiles are derived from high-spectral-
resolution infrared (IR) observations made by the Atmo-
spheric Infrared Sounder (AIRS) (Aumann et al., 2003;
Chahine et al., 2006) onboard the Aqua spacecraft (Parkin-
son, 2003). The Aqua satellite is one of the Earth Observing
System (EOS) satellites and shares its near-polar (98◦ incli-
nation) orbit with other satellites that form the afternoon A-
Train constellation (Stephens et al., 2008). Aqua orbits the
Earth at ∼ 705 km altitude in a sun-synchronous orbit with
an equatorial crossing of 13:30 (01:30) local time for as-
cending (descending) orbital segments. With a swath width
of 1650 km, the AIRS instrument is able to provide a near-
global daily coverage.

2.1 Three types of AIRS standard retrievals

The AIRS instrument is a cross-track scanning spectrome-
ter with 90 AIRS–IR ground footprints per swath and results
in a horizontal resolution of 13.5 km at nadir view. The self-
calibrating instrument enables the estimation of vertical pro-
files of several atmospheric variables (e.g., temperature, hu-
midity) and minor gases (e.g., ozone, carbon dioxide) from
the surface up to an altitude of 40 km with a quality ap-
proaching conventional radiosonde soundings and a vertical
resolution of one kilometer (Chahine et al., 2006). The T and
q bias and root-mean-square estimates based on radiosonde
matchups generally affirm pre-launch requirements of AIRS
soundings (Divakarla et al., 2006; Wong et al., 2015).

AIRS is accompanied by two synchronized and aligned
microwave instruments. The Advanced Microwave Sound-
ing Unit (AMSU) is a two-unit microwave radiometer with
15 channels that observe frequencies between 23 and 89 GHz
including the 60 GHz oxygen band, and a horizontal resolu-
tion of 45 km at nadir view. The Humidity Sounder for Brazil
(HSB) is a four channel radiometer that observes frequencies
between 150 and 190 GHz, centering on the 183 GHz water
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Figure 1. (a) Example of an AIRS–AMSU–HSBv6 temperature field at 500 hPa in a granule above the North Pacific Ocean – derived from
soundings made during an ascending part of Aqua’s orbit, (b) the temperature field using AIRS–OE retrievals, and (c, d) the corresponding
moisture fields (the water vapor mass mixing ratio). Gray shading indicates that there was no acceptable retrieval.

vapor line, and has a horizontal resolution of 13.5 km at nadir
(Lambrigtsen and Calheiros, 2003).

The microwave instruments are used together with IR
spectra by applying a process called cloud clearing (Susskind
et al., 2003). During the process, the horizontal resolution is
coarsened from 13.5 to 45 km because all of the variability in
the AMSU footprint that contains nine co-aligned AIRS foot-
prints is assumed to arise from cloud variations. The cloud-
cleared spectra are then used to retrieve T and q profiles
for three different instrument combinations: AIRS–AMSU–
HSB, AIRS–AMSU, and AIRS–IR (also termed AIRS-only),
the last of which does not use microwave channels but is still
obtained at the same spatial resolution as AIRS–AMSU and
AIRS–AMSU–HSB (Chahine et al., 2006).

The three-instrument AIRS suite enables the estimation of
three-dimensional (3-D) atmospheric profiles along the or-
bit of Aqua, since 30 August 2002 until present (except un-

til 5 February 2003 for HSB). Swath measurements are or-
ganized in files that contain six minutes of data (Level 2)
and are termed a “granule”. Each day 240 granules are pro-
duced, each consisting of 30× 45 vertical profiles of T and
q. Figure 1a displays an AIRS–AMSU–HSB Version 6 (v6)
temperature field at 500 hPa in the very first granule that is
available at NASA Goddard Earth Sciences (GES) Data and
Information Services Center (DISC). Further detail about the
AIRSv6 datasets are found in Susskind et al. (2014).

2.2 AIRS infrared-only optimal estimation (AIRS–OE)

Other alternative methods are undergoing development that
treat clouds during the retrieval process through a more so-
phisticated approach without reducing the horizontal reso-
lution of the T and q fields that are described in Chahine
et al. (2006). The optimal estimation (OE) retrieval system
for AIRS (AIRS–OE) is described by Irion et al. (2018) and
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Figure 2. (a) Illustration of a water vapor mass mixing ratio field at
500 hPa using AIRS–OE retrievals that are inside a 15.4◦-diameter
circle and (b) inside two 6◦-diameter circles. A dark gray shaded
pixel inside a circle indicates that there was no acceptable water
vapor content estimate. The granule, which is in an ascending part
of Aqua’s track above the South Pacific Ocean, has a relatively large
yield (83 %). However, it is apparent that atmospheric clouds are
inhibiting retrievals around (156◦W–13◦ S).

is used in addition to the three coarser-resolution AIRS data
products described previously. The methodology is based on
the works of Bowman et al. (2006) and Rodgers (2000).
Cloud detection and cloud property estimation is enhanced
with coincident high spatial resolution imaging data from the
Moderate Resolution Imaging Spectroradiometer (MODIS)
instrument with a horizontal resolution of 0.25–1.0 km at
nadir and a swath width of 2330 km and also resides on EOS
Aqua with AIRS (King et al., 2003; Parkinson, 2003; Plat-
nick et al., 2003).

3 Methodology

Our approach is to calculate standard deviations as a func-
tion of length scale, then scaling exponents are calculated
that correspond to a particular range in length scales (as in
KT09). The scaling exponents obtained using standard devi-
ations are referred to as “variance scaling” exponents.

If a power-law relation exists between the standard devia-
tion and the length scale, then given two length scales l1 < l2
with standard deviations σ1 and σ2, the scaling exponent α is
as follows:

α =
ln(σ2)− ln(σ1)

ln(l2)− ln(l1)
. (1)

When plotting the standard deviation as a function of
length scale, while using logarithmically scaled horizontal
and vertical axes, the scaling exponent α determines the
slope of the line from (l1,σ1) and (l2,σ2). This line is straight
if a power-law relation exists and is half as steep as for vari-
ances, which can equivalently be used instead of standard
deviations to calculate the variance scaling exponents (Vo-
gelzang et al., 2015).

Following KT09, αL is defined as the “large-scale” expo-
nent for scales between 6 and 12◦, and αS is defined as the
“small-scale” exponent for scales between 1.5 and 4◦. In ad-
dition, we added a third exponent αT that is defined as the
“tiny-scale” exponent for scales between 0.5 and 1.5◦. The
length scale is expressed in degrees over great circles. To
relate the computed α values to the more commonly used
power spectral exponents β, α values are interchanged with
β values by using the following equation (KT09, Davis et al.,
1996; Yu et al., 2017):

β =−(2α+ 1). (2)

The well-known β =−5/3 and β =−3 correspond to
α = 1/3 and α = 1, respectively. Below we describe the esti-
mation of standard deviations within the AIRS swath follow-
ing the ground track of Aqua.

3.1 Circular geometry

Standard deviations are computed within circular areas of di-
ameter l. The maximum length scale is determined by the
fixed swath width of AIRS,L= 15.4◦. In that limiting case, a
circle with radius 7.7◦ is positioned with its center on Aqua’s
ground track (at nadir), after which the standard deviation
of valid T and q values are calculated within the circle. A
depiction of the 500 hPa q using AIRS–OE retrievals that
are inside a 15.4◦ diameter circle is found in Fig. 2a. The
smallest length scale is the other limiting case and is deter-
mined by the horizontal resolution of the observations. Here,
we require that the minimum number of valid retrievals that
are necessary to calculate a standard deviation from a circle
with a given diameter is five, as assumed in KT09. Taking
this requirement into consideration for AIRS–OE retrievals,
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Figure 3. The standard deviation of the temperature at 500 hPa as a function of length scale l using AIRS–IR (magenta open circles), AIRS–
AMSU (blue open circles), AIRS–AMSU–HSB (green open circles) and AIRS–OE (red open circles) on double logarithmic axes with the
β =−5/3 slope (black solid line) and the β =−3 slope (black dotted line) in a circular area with a diameter of 15.4◦ located over (a) the
North Pacific Ocean (b) Russia (c) Ethiopia and (d) the South Atlantic Ocean.

the smallest length scale and hence the smallest diameter of
the circles is chosen to be l = 0.5◦. For the three coarser-
resolution AIRSv6 data products (AIRS–IR, AIRS–AMSU,
AIRS–AMSU–HSB) the smallest length scale is chosen to
be l = 1.5◦.

3.2 Monte Carlo calculations

To obtain standard deviations corresponding to length scales
smaller than L= 15.4◦ (i.e., 0.5◦ ≤ l < 15.4◦), smaller cir-
cles are randomly placed inside the largest circle. Given that
a smaller circle with diameter l < 15.4◦ is randomly placed
within the largest circle, we further require that the smallest
circle is entirely within the larger circle. Then, the standard
deviation of T and q values located within the smaller circle
are computed.

To obtain a more robust estimate, a Monte Carlo estima-
tion procedure is employed. The random placement is re-
peated 10 000 times for each of the smaller circle diame-
ters. The average standard deviation over all 10 000 values

is used as the estimate of the standard deviation correspond-
ing to l. The random placement should be done such that the
10 000 smaller circles cover the largest circle as uniformly
as possible. This procedure is repeated for all length scales
0.5◦ ≤ l < 15.4◦ for AIRS–OE and down to 1.5◦ for AIRSv6
products. Two out of the 10 000 smaller circles at l = 6◦ are
displayed in Fig. 2b.

3.3 Along-track instantaneous variance scaling
estimates

The intent of this method is to move the 15.4◦ diameter cir-
cle along with the orbit of the Aqua satellite to estimate stan-
dard deviations and therefore variance scaling exponents at
each successive scan line along the satellite ground track.
This requires stitching together successive granules. There-
fore, a novelty of this approach is that the variance scaling
can be derived instantaneously (i.e., no time averaging as in
KT09).
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Figure 4. Same as Fig. 3 using the water vapor mass mixing ratio.

The diameters of the circles can vary with arbitrary incre-
ments; we select 0.5◦, which should yield sufficient resolu-
tion to resolve scale-dependent breaks and other behavior in-
troduced in Sect. 4. After the standard deviations are calcu-
lated as a function of length scale, the three exponents (i.e.,
the slopes) are estimated by a least squares fit (Weisstein,
2017).

For αL, the formula of Weisstein (2017) is:

αL =
n
∑n
i=1(lnxi lnyi)−

∑n
i=1(lnxi)

∑n
i=1(lnyi)

n
∑n
i=1(lnxi)2− (

∑n
i=1 lnxi)2

, (3)

where xi = li and yi = σi , with 6◦ ≤ li ≤ 12◦ and n= 13.
For αS and αT, the formulas are used with 1.5◦ ≤ li ≤ 4◦,
0.5◦ ≤ li ≤ 1.5◦, and n= 6 and n= 3, respectively.

We note that βL, βS, and βT are the analogs of αL, αS and
αT and will be interchangeably used with α values as β val-
ues are more commonly used in the literature.

3.4 Scale break detection

To quantify the length scale lb at which the exponents change
(e.g., from β =−3 to β =−5/3) the standard deviation as a

function of l is approximated by two power laws, which is
equivalent to fitting two straight lines in a double-log scaled
figure. When using the higher spatial resolution AIRS–OE
retrieval, the double scale break is examined by fitting three
straight lines in the variance scaling plots. To do this opti-
mally, we iterate over all possible (double) scale break po-
sitions l ∈ {1.5◦, . . .,15◦} to find the two (three) fitted lines
that minimize the sum of the squares of the vertical offsets
from the data to the lines. Since such a minimum always ex-
ists, albeit at times very subtly, we find an optimal single
scale break l in each variance scaling diagram for AIRS–
AMSU–HSB, AIRS–AMSU, and AIRS–IR, and two scale
break values of l for AIRS–OE. In future work, thresholds
could be used to make a distinction between variance scaling
diagrams with and without scale breaks.

4 Results

4.1 Variance scaling diagrams

To demonstrate the methodology, we aim to construct vari-
ance scaling diagrams that are analogous to Fig. 3 of Nastrom

Atmos. Meas. Tech., 11, 2717–2733, 2018 www.atmos-meas-tech.net/11/2717/2018/
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Figure 5. (a) AIRS–OE temperature 500 hPa variance scaling exponents αL, αS and αT as a function of Aqua’s flight time. The right axis
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(c) Aqua’s longitude (left axis) and latitude (right axis).

and Gage (1985). In this work, Fig. 3 shows the standard de-
viations of 500 hPa T at four selected locations on the Aqua
track. The four locations are shown because they encompass
typical behavior of the scaling. We note that the scaling be-
havior drastically changes at these locations depending on
the day. The four available AIRS retrievals are shown in or-
der to gain insight regarding the uncertainty of the scaling
that arises from sampling, retrieval algorithm, and observa-
tion frequency differences.

The standard deviation typically increases as a function
of l; only in Fig. 3c do we find that the standard deviation

decreases at larger l for AIRS–OE. In Fig. 3a this increase
is not constant: at larger l, β =−3, while at smaller l, β =
−5/3 for AIRS–OE. In Fig. 3a, the slope changes between
l = 9◦ and l = 11◦ and is a clear example of a well-behaved
scale break. Observe in Fig. 3c that the slope at smaller l is
steeper than at larger l, and is an example of a reverse scale
break previously reported in KT09 for specific humidity. In
Fig. 3d, there is no clear scale break at all except for some
subtle fluctuations in the spectra.

The differences in the standard deviations among the three
coarser-resolution AIRS data products are generally small
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Figure 6. Same as Fig. 5 using the water vapor mass mixing ratio.

and are partly attributed to sampling differences from clouds.
AIRS–OE generally yields higher standard deviations, most
notably in Fig. 3b, which is to be expected because of the
higher spatial resolution. Other contributions to discrepan-
cies among the retrievals may be attributed to spatial sam-
pling differences that arise from differences in the spatial
distributions of unsuccessful retrievals. Given that the vari-
ance of T and q is highly location dependent, the additional
sampling provided by the microwave frequencies will also
lead to differences in the four retrievals in Fig. 3. Observe
that the relative differences between the slopes of the four
different retrievals appear to be smaller than the magnitude
differences themselves.

The corresponding q spectra at 500 hPa are shown in
Fig. 4. The scaling of q in Fig. 4a is similar to scaling in
T in Fig. 3a; however, the slopes appear to be closer to
β =−5/3 at smaller l in Fig. 4a. In Fig. 4b, a reverse scale
break is clearly visible near l = 9◦. In Fig. 4c, the discrepan-
cies between the four retrievals are more significant at larger
l, where AIRS–OE shows a decreasing standard deviation
as a function of increasing l. However, the AIRS–OE with
a peak around 8◦ may be a result of finer-scale fluctuations
that are only captured by AIRS–OE. At smaller scales, the
slopes are similar and reside between β =−3 and β =−5/3.

In Fig. 4d, the slopes are close to β =−3 at larger l, then are
close to β =−1 (i.e., α = 0) around l = 7◦, then again in-
crease (α) and decrease (β) at smaller length scales, in sharp
contrast to T in Fig. 3d.

4.2 Along-track variance scaling

We now focus on the scaling exponents αL, αS, and αT, along
84 min of the Aqua track starting at the second granule avail-
able in the AIRS archive. We estimate scaling exponents
500 hPa T and q. The 84 min dataset is a very small subset
of the ∼ 15 year AIRS dataset and corresponds to just under
one complete orbit. The centers of consecutive 15.4◦ diame-
ter circles are 8 s apart from each other, corresponding to the
time it takes to make 30 AIRS–AMSU soundings along the
width of the swath. As consecutive 15.4◦ circular areas have
high overlap, there are large correlations in exponents along
neighboring scan lines.

The three scaling exponents derived from AIRS–OE re-
trievals are shown in Fig. 5a. Observe that the exponent αL
fluctuates between 0 and 1 (left vertical axis) that corre-
sponds to β between −1 and −3 (right vertical axis). The
exponent αS has smaller fluctuations around α = 1/3 (β =
−5/3). The exponent αT exhibits even smaller fluctuations
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Figure 7. Variance scaling exponents αL (blue lines), αS (red lines), and αT (cyan lines) as a function of Aqua’s flight time for temperature
(a) at 300 hPa, (b) at 500 hPa, and (c) at 850 hPa using AIRS–AMSU (αL and αS) and AIRS–OE (αT). Additionally, the date (left upper
corner) and granule numbers (bottom) of the corresponding β values can be seen on the right axis.

than αS and usually resides between 1/2 and 1/3, and corre-
sponds to β between −2 and −5/3.

The standard deviation estimates from which these scaling
exponents are calculated are shown in Fig. 5b. The lowest
line is the standard deviation that corresponds to l = 0.5◦, the
line above corresponds to l = 1.0◦, and so forth. The stan-
dard deviations are usually, but not always, increasing as a
function of length scale.

Local maxima of the standard deviation at 15.4◦ co-align
with local maxima of αL (local minima of β =−3). A large
standard deviation at synoptic scales is indicative of merid-
ional temperature gradients along the satellite track, and cor-
relates well with αL (shown later). The latitude and longitude
at nadir are depicted in Fig. 5c.

Increased separation between the three values of α

(Fig. 5a) suggest the existence of scale breaks at those lat-
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Figure 8. Same as Fig. 7 using the water vapor mass mixing ratio.

itudes. For example at 75 min (40◦ S), αL = 1 (β =−3),
while αS = 0.6 and αT = 0.5. Nearer to the equator around
33 min, the estimates are reversed: αL = 0, αT = 0.5 nearly
unchanged, and αS is in between the two other values of α,
indicating a double reverse scale break (steeper exponents
at smaller scales). Around 58 min near Antarctica, the three
values of α are nearly equal with no apparent scale breaks.
Analogous variance scaling diagrams would be similar to
that shown in Fig. 3.

The corresponding q exponents are shown in Fig. 6a. The
αL has a similar range as the T exponent. The αS for q is

slightly larger than for T . However, the αT for q is signifi-
cantly larger than for T . Figure 6b depicts the standard devi-
ations of q. In the tropics (location from Fig. 5c), the standard
deviation is much larger than in the extratropics (e.g., com-
pare granules 231 and 235). Maximum values of standard
deviation are generally co-aligned with maximum values of
αL.

4.3 Variance scaling at 850, 500, and 300 hPa

Previous studies have demonstrated that the magnitude of
scaling exponents depends on altitude, surface type, and
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cloud cover (e.g., KT09). Therefore, we show variance scal-
ing exponents along the same orbit segment at three pressure
levels (300, 500, and 850 hPa) in Fig. 7 for T and Fig. 8 for q.
The results are typically noisier at lower pressure levels (e.g.,
compare Fig. 7c to a, b) and is consistent with a reduction in
the yield (percentage of successful retrievals).

The three coarser-resolution AIRS products are similar
when the yield is high. Therefore, we show only AIRS–
AMSU derived exponents in Figs. 7 and 8. The αL (blue
dash-dotted line) for T fluctuates between 0 and 1, except
for a portion of the 850 hPa pressure level (Fig. 7c) around
the South Pole (granule 235) where the yield is exceptionally
low. The small-scale exponent αS (red solid line) fluctuates
within a smaller range except for a portion of 850 hPa around
24 min in which αS = 1.

A reverse scale break in the tropics (granule 231) is clearly
visible at 500 hPa and to a lesser extent at 850 and 300 hPa,
which is consistent with KT09. The scaling exponent αT
(cyan dashed line) derived from AIRS–OE fluctuates be-
tween αT = 0.2 to 0.6 for all time segments at the three
pressure levels. Variations with surface type and cloud frac-
tion (not shown) are less obvious in Figs. 7 and 8 and be-
come clearer only after averaging over long time series (e.g.,
KT09).

The values of α for q exhibit more rapid along-track fluc-
tuations compared to T at the three pressure levels. The αL
for q fluctuates between 0 and 1 in Fig. 8. The αS for q is sim-
ilar to T , but αT for q is typically larger than 0.5 (β <−2)
and has a larger dynamic range for q than for T (compare
Figs. 7 and 8). In granule 233 at 300 hPa, αT exceeds 1.0
(β <−3).

4.4 Distributions of variance scaling exponents

Histograms of αL and αS for 500 hPa T and q obtained from
five days of Aqua orbits are shown in Fig. 9. To increase the
computational speed, only 100 circles are used in the Monte
Carlo method described earlier, which leads to a slight in-
crease in the number of extreme values of αL and αS. The
histograms of αL have larger ranges than αS, both for T and
q. The αS exhibit a more symmetric distribution and the max-
imum number of values is near αS = 0.5.

The asymmetry of αL for T is caused by different values
in the extratropics and tropics. In the tropics, αL is closer
to 0, while in the extratropics it is closer to 1. The values
of αS do not have a strong latitude dependency and thus the
distribution is more symmetric. The αL for q is skewed in
the opposite direction compared to αL for T , because αL is
closer to 1 in the tropics and closer to 0 in the exratropics.

These types of statistical distributions are valuable for
the development and evaluation of cloud parameterizations
based on PDF schemes. This is especially true for αT (not
shown); the AIRS–OE retrieval methodology is in develop-
ment and the sample size from the limited set of granules is
unable to yield a robust histogram. Our intent is to instead
demonstrate the new scaling approach. A much larger and
statistically robust dataset is outside the scope of this work.
Furthermore, the computational expense is excessive using
the Monte Carlo methodology with 10 000 circles rather than
100, and new ways of improving the speed of the calculations
remains necessary.

4.5 Correlation of scaling exponents to other quantities

To relate βL and βS to additional geophysical quantities, cor-
relation analysis is performed using the AIRS–AMSU re-
trieval and the results are summarized in Fig. 10. A total
number of 686 values (the number of L2 retrieval swaths)
cover a slightly longer extent of the orbital segment than the
84 min portion used in Sect. 4.2 and 4.3. The largest corre-
lation coefficient (r) is found between βL and the mean T
gradient (slope) in the along-track direction of Aqua at nadir
view (Fig. 10a). The T change we consider is the difference
between the average 500 hPa T over consecutive 15.4◦ diam-
eter circles. If the T gradient is large, βL is closer to −3. If
the T gradient is small or near zero, βL is closer to −1.

The βL also correlates strongly with the standard deviation
of T in the 15.4◦ diameter circle (Fig. 10b); this confirms the
co-alignment of peaks observed in Fig. 5a and b. For q, βL
is moderately correlated with the standard deviation in the
15.4◦ diameter circle (Fig. 10d) and the along-track q gradi-
ent (Fig. 10e). The exponents βL and βS are positively cor-
related for both T (Fig. 10c) and q (Fig. 10f), but the cor-
relations are notably larger for T . The surface type (land vs.
ocean) is not strongly correlated with βL or βS at 850 hPa
(not shown). Lastly, the cloud fraction has a rather weak
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Figure 10. Scatterplots, linear fits, and correlations between physical quantities and the slope βL derived using AIRS–AMSU temperatures
at 500 hPa (T500) or water vapor at 500 hPa (WV500) along a 96 min segment of the Aqua track. Panels are ordered from strong (a) to weak
(f) absolute correlations.

correlation with βL and βS at 500 hPa (not shown); again,
a larger sample size may yield different results.

4.6 Scale break detection results

Figure 11 shows an example of the methodology to detect
scale breaks. This example makes it clear that the length scale
of scale breaks lb varies substantially along the Aqua tracks.
The lb differ by a factor of two (9 and 4.5◦, respectively).
lb fluctuates by an order of magnitude between 1.5 and 15◦

along the Aqua track at 850, 500, and 300 hPa for all four
AIRS retrieval products, and for both T and q.

We show PDFs in Fig. 12 to gain additional insight in the
distributions of lb. The resolution of AIRS–OE is fixed to
1.5◦ ≤ l ≤ 15.4◦ such that similar scale breaks will be de-
tected as the three standard AIRS data retrievals. The maxi-
mum frequency of occurrence in the PDFs is between 7 and
10.5◦ for T and between 5 and 8◦ for q at 850 hPa (Fig. 12e,
f), between 8 and 11◦ for T at 500 hPa (Fig. 12c) and around
9◦ for q at 500 hPa (Fig. 12d), between 5.5 and 9◦ for T at
300 hPa (Fig. 12a) and around 9◦ for q at 300 hPa (Fig. 12b).
These results, to some extent, are in agreement with the
500–700 and 450–750 km lb reported by Gage and Nastrom
(1985) and Tung and Orlando (2003), respectively. The PDFs
of T (Fig. 12a, c) have less well-defined maxima compared to

q (Fig. 12b, d, f), except for T at 850 hPa (Fig. 12e), in which
a clear peak is apparent at 7◦ (Fig. 12e) for three AIRS stan-
dard retrieval products. A tentative physical and algorithmic
explanation for the large spread of lb is provided in Sect. 5.

Lastly, an example of a double scale break detection is ap-
plied to the AIRS–OE dataset 0.5◦ ≤ l ≤ 15.4◦ for T and q
in Fig. 13. This example once again demonstrates the variety
of variance scaling that is potentially observable in the at-
mosphere. The slope in the spectrum is steeper at the smaller
scales less than 1.5◦. This behavior is of importance for cloud
parameterizations based on PDF schemes. Less variance ex-
ists at the smaller scales than what one obtains from a simple
extrapolation of exponents at larger scales to smaller scales;
this was previously shown with in situ aircraft observations
in Kahn et al. (2011) in a limited region of the subtropical
southeastern Pacific Ocean.

5 Discussion and conclusions

The scale-dependent variability of temperature (T ) and spe-
cific humidity (q) is derived from Level 2 satellite swath data.
The variance scaling of T and q uses data from the Atmo-
spheric Infrared Sounder (AIRS; Chahine et al., 2006) instru-
ment suite onboard the Aqua satellite. While these exponents
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Figure 11. Two variance-scaling plots for AIRS–AMSU–HSB de-
rived temperature at 500 hPa with detected scale breaks: (a) North
Pacific Ocean (40.3◦ N, 141.5◦W) (b) North Pacific Ocean
(44.6◦ N, 142.9◦W). In (a) the slope changes at 9◦ and in (b) at
4.5◦.

are frequently close to the canonical β =−5/3 and β =−3
values, deviations from these values are more the rule than
the exception. The large scale exponents βL that correspond
to length scales between 6 and 12◦ fluctuate between−3 and
−1, respectively.

The precise value of βL depends strongly on the stan-
dard deviation of T and q within larger spatial areas. The
synoptic-scale T and q gradient in the along-track direction
also impacts the magnitude of βL. When the large scale fluc-
tuations or gradient are large, then βL ≈−3. When large
scale T fluctuations are reduced such as in the tropics, and
the atmosphere is dominated by small scale fluctuations,
βL =−1. In the tropics, small-scale T fluctuations dominate
because of the preponderance of deep convection. In contrast,

large-scale q fluctuations are more dominant in proximity to
and within the tropics, which results in βL ≈−3.

The small-scale variance scaling exponents βS that corre-
spond to length scales between 1.5 to 4◦ are more often near
to −2, and less often close to −3. By using recently devel-
oped retrievals from single-footprint AIRS data (Irion et al.,
2018), we show that at the smaller scales from 0.5 to 1.5◦,
the exponents βT are closer to −2 for T and slightly lower
(between −2 and −3) for q. The PDFs of small-scale βS ex-
hibit a maximum around −2 for both T and q. This is some-
what surprising since previous studies have suggested values
closer to −5/3.

Deviations from typical values of β (−5/3 and −3) have
been reported in the literature previously (e.g., KT09). Love-
joy et al. (2008) show that exponents derived from drop
sondes over the northern Pacific Ocean reside in between
−5/3 and −3 and have strong height dependence. It was
also shown that the vertical exponents are not equal to the
horizontal exponents, and suggests 3-D anisotropy. Love-
joy et al. (2009) and Pinel et al. (2012) showed that scale
breaks detected by in situ aircraft observations may be the
result of 3-D anisotropy in atmospheric properties. In Pinel
et al. (2012), scale breaks are observed in the 100–500 km
range with horizontal exponents that transition from−5/3 to
−2.4. In the vertical direction, an exponent of−2.4 is derived
and suggests that gently sloping isobaric aircraft trajectories
are the source of the transition to −2.4. Since the T and q
exponents reside on isobaric surfaces (e.g., 500 hPa) in this
work, one may expect that the vertical exponents may alias
into the large-scale horizontal exponents. However, we do
not find a clear indication of βL =−2.4, although a focused
effort on obtaining vertical scaling exponents with satellite
soundings warrants further investigation. Unfortunately, the
relative coarse vertical resolution of ∼ 2 km from AIRS re-
trievals is not ideal for obtaining reliable estimates of ver-
tical scaling exponents; dropsondes and radiosondes remain
the standard and are much better suited to this observational
challenge.

The methodology described uses circles to calculate stan-
dard deviations. The optimal shape of an area used to calcu-
late variance remains an open question. Rectangles have been
used previously (e.g., KT09) and are generally accepted, be-
cause GCM grid columns are often (nearly) rectangular. The
orientation of a rectangle or square should not be of ma-
jor importance when calculating variance scaling exponents.
One could argue that incremental rotation of the rectangle
about a central axis could be used to trace out the area of
a circle. Within each rectangle, the variance can be calcu-
lated, and the same for each slight rotation of the rectangle
about the center axis, until it is rotated 360◦. This procedure
of incremental rotation could be performed with any arbitrary
shape. In all cases, the circle is the final result, and therefore
one may conclude that the circle is the “optimal shape” to
calculate variance scaling exponents. A circle is optimal in
the event that rotational symmetry is desired if, for example,
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Figure 12. Probability density functions of the scale break length scale using (left) temperature and (right) water vapor fields at three pressure
levels.

the underlying field is isotropic. This is consistent with Pres-
sel and Collins (2012) who found that variance scaling of q
is approximately isotropic.

A major advantage of the “poor man’s spectral analysis”
method (Lorenz, 1979) is that relatively small datasets are
sufficient to estimate variance scaling exponents. Reliable
spectral power diagrams of observational data arise only af-
ter averaging over relatively large datasets. For instance, Nas-
trom and Gage (1985) obtained their spectral power diagrams
by averaging over observations collected during 6000 com-

mercial aircraft flights. The calculation of spatial variances
is still possible in the event of missing or poor quality data,
in which case conventional spectral analysis cannot be em-
ployed (Vogelzang et al., 2015).

The variance scaling exponents are computed nearly in-
stantaneously without using multiple satellite overpasses (no
time averaging) in this work. The exponents are derived from
satellite observations within a 15.4◦ diameter circle over a
few minute time window, thus strictly speaking, the method
is “approximately” instantaneous. A result of the instanta-
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Figure 13. In these double scale break examples it can be seen that
the slope can change at scales below 1.5◦. The standard deviations
are calculated with AIRS–OE derived (a) temperature and (b) water
vapor mass mixing ratio at 500 hPa.

neous approach is that a much wider variety of scaling ex-
ponents is revealed. The large variety of exponents is likely
due to some extent from the turbulent structure of T and
q fields with long-tailed non-Gaussian distributions (Tuck,
2010). These behaviors may inhibit the precise estimation
of variance scaling exponents from observations. Further re-
search is necessary to determine the impacts of the non-
Gaussian distribution shapes of T and q on derived expo-
nents, and their scale-dependence of non-Gaussianity. This
effect likely contributes to spreading out the PDFs of expo-
nents.

The results show that there is a preference for scale break
length scales (lb) around 7◦ (at 850 hPa) and 9◦ (at 500 hPa
and 300 hPa). This is slightly larger than the 500–700 and
450–750 km lb reported by Gage and Nastrom (1985) and

Tung and Orlando (2003), respectively, and smaller than
1000 km reported by Bacmeister et al. (1996). Pinel et al.
(2012) report lb between 100 and 500 km. The spread around
these values is large in our results and a preferred length scale
is only inferred from the maxima in the PDFs. An explana-
tion for the large spread in the PDFs is that convective sys-
tems of different sizes exist. The existence of a reverse scale
break depends on the scale of convective systems: the larger
the scale, the larger lb. Furthermore, as lb is obtained in the
along-track dimension, for instance when the satellite obser-
vation transitions from a regime with lb = 2◦ to a regime with
lb = 15◦, then the intermediate length scales between 2 and
15◦ are also retrieved in between the two regimes as the cir-
cular area advances along the swath. Due to the overlapping
nature of the circular areas, this additionally smooths out the
peaks in the PDFs, but further work is necessary to quantify
the magnitude of this effect compared to the spreading due
to non-Gaussianity.

The exponent βT (0.5 to 1.5◦) for q was shown to attain
smaller values, i.e., closer to β =−3 than the exponent βS
(1.5 to 4◦). This means that less variance is present at length
scales between 0.5 and 1.5◦ than if extrapolated from expo-
nents derived from length scales between 1.5 and 4◦. Scale
breaks at subgrid scales in GCMs are of significance for
cloud parameterizations in GCMs that extrapolate variabil-
ity (Tompkins, 2002; Teixeira and Hogan, 2002; Teixeira and
Reynolds, 2008).

This novel instantaneous variance scaling methodology
may enable detailed examination of the variance scaling of
the time evolution of storm systems, such as extratropical
cyclones at different stages in their life cycle as previously
demonstrated with numerical simulations by Waite and Sny-
der (2013), or with deep convection along the Mei-Yu front
by Peng et al. (2014). The changes in the kinetic energy spec-
tra in Waite and Snyder (2013) and Peng et al. (2014) occur
on time scales of hours to several days. We postulate that
scaling exponents derived from instantaneous snapshots ob-
tained from satellite swath data will be useful observational
constraints for time-dependent spectra generated from nu-
merical modeling experiments. To conclude, it is well known
that the time scale of predictability is closely linked to the
spatial scale of the phenomenon of interest (Lorenz, 1969).
In the case of moist baroclinic waves, steeper (shallower)
spectral slopes at small scales for individual baroclinic waves
are inherently more (less) predictable as the slope portrays
the relative importance of convection within any given dis-
turbance (Zhang et al., 2007). As a result, the instantaneous
scaling exponents are expected to potentially offer a new type
of observational constraint with relevance to the predictabil-
ity of individual tropical or extratropical disturbances.

Data availability. The AIRS version 6 data sets were processed
by and obtained from the Goddard Earth Services Data and Infor-
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mation Services Center (http://daac.gsfc.nasa.gov/; Teixeira, 2013).
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