
Atmos. Meas. Tech., 11, 2863–2878, 2018
https://doi.org/10.5194/amt-11-2863-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Preliminary verification for application of a support vector
machine-based cloud detection method to GOSAT-2 CAI-2
Yu Oishi1,a, Haruma Ishida2, Takashi Y. Nakajima3, Ryosuke Nakamura1, and Tsuneo Matsunaga4

1National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto, Tokyo 135-0064, Japan
2Meteorological Research Institute, 1-1 Nagamine, Tsukuba, Ibaraki 305-0052, Japan
3Research and Information Center, Tokai University, 2-28-4 Tomigaya, Shibuya, Tokyo 151-0063, Japan
4National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
acurrently at: National Agriculture and Food Research Organization, 3-1-1 Kannondai, Tsukuba, Ibaraki 305-8517, Japan

Correspondence: Yu Oishi (oishi.yu@affrc.go.jp)

Received: 18 December 2017 – Discussion started: 22 January 2018
Revised: 25 April 2018 – Accepted: 29 April 2018 – Published: 17 May 2018

Abstract. The Greenhouse Gases Observing Satel-
lite (GOSAT) was launched in 2009 to measure global
atmospheric CO2 and CH4 concentrations. GOSAT is
equipped with two sensors: the Thermal And Near infrared
Sensor for carbon Observations (TANSO)-Fourier trans-
form spectrometer (FTS) and TANSO-Cloud and Aerosol
Imager (CAI). The presence of clouds in the instantaneous
field of view of the FTS leads to incorrect estimates of the
concentrations. Thus, the FTS data suspected to have cloud
contamination must be identified by a CAI cloud discrimi-
nation algorithm and rejected. Conversely, overestimating
clouds reduces the amount of FTS data that can be used to
estimate greenhouse gas concentrations. This is a serious
problem in tropical rainforest regions, such as the Amazon,
where the amount of useable FTS data is small because of
cloud cover. Preparations are continuing for the launch of
the GOSAT-2 in fiscal year 2018. To improve the accuracy
of the estimates of greenhouse gases concentrations, we
need to refine the existing CAI cloud discrimination algo-
rithm: Cloud and Aerosol Unbiased Decision Intellectual
Algorithm (CLAUDIA1). A new cloud discrimination
algorithm using a support vector machine (CLAUDIA3)
was developed and presented in another paper. Although the
use of visual inspection of clouds as a standard for judging
is not practical for screening a full satellite data set, it has
the advantage of allowing for locally optimized thresholds,
while CLAUDIA1 and -3 use common global thresholds.
Thus, the accuracy of visual inspection is better than that
of these algorithms in most regions, with the exception of

snow- and ice-covered surfaces, where there is not enough
spectral contrast to identify cloud. In other words, visual
inspection results can be used as truth data for accuracy
evaluation of CLAUDIA1 and -3. For this reason visual
inspection can be used for the truth metric for the cloud dis-
crimination verification exercise. In this study, we compared
CLAUDIA1–CAI and CLAUDIA3–CAI for various land
cover types, and evaluated the accuracy of CLAUDIA3–CAI
by comparing both CLAUDIA1–CAI and CLAUDIA3–CAI
with visual inspection (400× 400 pixels) of the same CAI
images in tropical rainforests. Comparative results between
CLAUDIA1–CAI and CLAUDIA3–CAI for various land
cover types indicated that CLAUDIA3–CAI had a tendency
to identify bright surface and optically thin clouds. However,
CLAUDIA3–CAI had a tendency to misjudge the edges
of clouds compared with CLAUDIA1–CAI. The accuracy
of CLAUDIA3–CAI was approximately 89.5 % in tropical
rainforests, which is greater than that of CLAUDIA1–CAI
(85.9 %) for the test cases presented here.

1 Introduction

The Greenhouse Gases Observing Satellite (GOSAT) was
launched in 2009 to measure global atmospheric CO2 and
CH4 concentrations. Preparations are continuing for the
launch of its successor, GOSAT-2, in the fiscal year 2018.
The mission objectives of GOSAT-2 are as follows: to con-
tinue and improve the satellite measurements of major green-
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Figure 1. Monthly changes in the number of FTS L2 XCO2 data in
the Amazon. The five-point cross-track scan mode was used until
1 August 2010, when it was replaced with the three-point cross-
track scan mode. Therefore the numbers themselves before and after
1 August 2010 cannot be compared.

house gases performed by GOSAT, to monitor the effects of
climate change and human activities on the carbon cycle,
and to contribute to climate science and climate change re-
lated policies (NIES GOSAT-2 Project, 2014). These poli-
cies include Reducing Emissions from Deforestation and
Forest Degradation and the role of conservation; sustain-
able management of forests and enhancement of forest car-
bon stocks in developing countries (REDD+); and the Joint
Crediting Mechanism (JCM), which was proposed by the
Japanese government to facilitate the diffusion of leading
low-carbon technologies, products, systems, services, and
infrastructure in developing countries (Ministry of the En-
vironment, Japan, 2015). Monthly regional CO2 fluxes are
estimated from the column-averaged dry-air mole fractions
of CO2 (XCO2) retrieved from spectral observations made
by GOSAT (Maksyutov et al., 2013). The results are pub-
licly available as the L4A CO2 product (Maksyutov et al.,
2014). The expected role of the CO2 fluxes estimated from
the GOSAT data is the system for measurement, reporting
and verification (MRV) of CO2 fluxes estimated from forest
inventory data. Currently, the uncertainty of the L4A CO2
product is about 0.9 Gt-C region−1 yr−1 in the Amazon (L4A
CO2 product V02.03 in region ln 09-12, 2009–2012). Thus,
the total net CO2 flux from deforestation for the period 2000–
2010 in tropical America was estimated to be 0.56 Gt-C yr−1

(Baccini et al., 2012). It is required to reduce the uncertainty
of the L4A CO2 product by a factor of 16, assuming that the
MRV for REDD+ and JCM needs an accuracy of 10 %.

GOSAT is equipped with two sensors: the Thermal And
Near infrared Sensor for carbon Observations (TANSO)-
Fourier transform spectrometer (FTS) and TANSO-Cloud
and Aerosol Imager (CAI) (Table 1). The presence of clouds
in the instantaneous field of view of the FTS leads to incor-

Figure 2. Clear-sky probability at 0.1◦× 0.1◦ calculated with
MYD35_L2. There are low clear-sky probabilities over most tropi-
cal rainforests because the moisture helps to create clouds.

Figure 3. Study areas for various land cover types. Black rectangles
indicate the locations of CAI frames.

rect estimates of greenhouse gas concentrations (Uchino et
al., 2012). To solve this problem, the FTS data suspected to
have cloud contamination must be identified by the Cloud
and Aerosol Unbiased Decision Intellectual Algorithm used
with CAI (CLAUDIA1–CAI) (Ishida and Nakajima, 2009)
and rejected. The cloud information is publicly available as
the CAI L2 cloud flag product. However, CAI does not have
a thermal infrared band. In general, cirrus cloud is identified
by using multiple thermal infrared bands, which include wa-
ter vapor absorption bands (Ishida et al., 2011a). Meanwhile,
the FTS has a 2 µm band that contains many strong water va-
por absorption bands. Moreover, the CAI L2 cloud flag prod-
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Table 1. Specifications of CAI.

Band 1 Band 2 Band 3 Band 4

Spectral coverage NUV Red NIR SWIR
(µm) 0.370–0.390 0.664–0.684 0.860–0.880 1.56–1.65

Swath (km) 1000 1000 1000 750

Spatial resolution 500 500 500 1500
At nadir (m)

Table 2. GOSAT CAI L1B product and CAI L2 cloud flag product used for various land cover types in this study. Land cover was derived
from the MODIS land cover type product (MCD12). Japan scenes include urban areas.

Location (CAI Path_Frame) Data period Land cover

Australia (4_35) 3 April 2012–3 March 2014 Open shrublands
Japan (5_25) 1 April 2012–1 March 2014 Mixed forests
Borneo (7_31) 3 April 2012–3 March 2014 Evergreen broadleaf forest
Thailand 1 (9_28) 2 April 2012–2 March 2014 Cropland/natural vegetation
Thailand 2 (9_29) 2 April 2012–2 March 2014 Cropland/natural vegetation
Mongolia (10_23) 3 April 2012–3 March 2014 Grasslands
Algeria (22_26) 3 April 2012–3 March 2014 Barren or sparsely vegetated
Canada (32_22) 1 April 2012–1 March 2014 Evergreen needleleaf forest
Alaska (43_19) 1 April 2012–1 March 2014 Open shrublands

Figure 4. Study areas in Borneo and the Amazon. CAI path and
frame system: XX_YY (XX indicates CAI path number and YY
indicates CAI frame number). Red rectangles indicate the locations
of CAI frames. The background image was generated from the CAI
L3 global reflectance distribution product (15 June to 14 July 2013).

uct may not be sensitive enough to detect clouds of subpixel
size in ocean observations. To cope with these difficulties, the
FTS data suspected to have cloud contamination are identi-
fied by two additional tests: the 2 µm band test and the CAI
coherent test (Yoshida et al., 2010). Conversely, overestima-
tion of clouds reduces the amount of the FTS data that can
be used to estimate greenhouse gas concentrations. This is
a serious problem in tropical rainforest regions, such as the
Amazon, where there is a small amount of suitable FTS data
(approximately 3 % of the number of observations) because
of cloud cover (Figs. 1 and 2). For this reason we need to

optimize thresholds between cloudy and clear sky because
there are tradeoffs in maximizing cloud detection accuracy
while minimizing false detection. To solve the problem, a
new cloud discrimination algorithm (CLAUDIA3) using a
support vector machine (SVM) (Vapnik and Lerner, 1963)
was developed (Ishida et al., 2018). CLAUDIA3 can auto-
matically identify the optimized thresholds using clear-sky
training data, although CLAUDIA1 requires setting various
thresholds by radiative transfer calculation results and fine
tuning in some methods. Verification was also performed by
comparing it with the MODIS cloud mask algorithm (Ack-
erman et al., 2010) and ceilometer data provided by the At-
mospheric Radiation Measurement Climate Research Facil-
ity (Mather and Voyles, 2013) in Ishida et al. (2018). Further-
more the impact of different support vector generation pro-
cedures on cloud discrimination using CLAUDIA3 has also
been evaluated in a previous study (Oishi et al., 2017).

The accuracy of CLAUDIA1–CAI was evaluated by com-
paring it with the MODIS/Aqua cloud mask data prod-
uct (MYD35) (Ackerman et al., 2010) because the MODIS
cloud mask algorithm uses a larger number of bands for
cloud discrimination than CLAUDIA1–CAI, and CLAU-
DIA1 was developed based on the MODIS cloud mask al-
gorithm (Taylor et al., 2012; Ishida et al, 2011b). However,
these comparisons cannot identify common weak points in
the algorithms and another verification method is required.
Although the use of visual inspection of clouds as a standard
is not practical for screening a full satellite data set, it has the
advantage of allowing for locally optimized thresholds, while
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Table 3. GOSAT CAI L1B product and CAI L2 cloud flag product used for rainforests in this study.

Borneo Amazon

Date Location Date Location
(yy/mm/dd) (CAI Path_Frame) (yy/mm/dd) (CAI Path_Frame)

10/04/02 7_30 11/08/28 28_31
10/01/02 7_31 11/08/28 28_32
10/04/02 7_31 11/08/28 28_33
10/07/01 7_31 11/08/29 29_31
10/07/07 7_31 10/08/28 29_32
10/07/13 7_31 11/02/03 29_32
10/07/19 7_31 11/04/01 29_32
10/07/28 7_31 11/06/03 29_32
10/09/02 7_31 11/08/02 29_32
10/11/01 7_31 11/08/08 29_32

11/08/14 29_32
11/08/23 29_32
11/08/29 29_32
11/10/01 29_32
11/12/03 29_32
11/08/29 29_33
11/08/30 30_31
11/08/30 30_32
11/08/30 30_33

CLAUDIA1 and -3 use common global thresholds. Thus, the
accuracy of visual inspection is better than that of these algo-
rithms in most regions, with the exception of snow- and ice-
covered surfaces, where there is not enough spectral contrast
to distinguish cloud. In other words, visual inspection results
can be used as truth data for accuracy evaluation of CLAU-
DIA1 and -3. For this reason visual inspection can be used as
the truth metric for the verification exercise. Therefore, the
accuracy of CLAUDIA1–CAI has also been evaluated by vi-
sual inspection in tropical rainforests (Oishi et al., 2014). In
this study, we deal with the application of the CLAUDIA3 to
GOSAT CAI data. Then, we compare CLAUDIA1–CAI and
CLAUDIA3–CAI for various land cover types and evaluate
their accuracy by comparing both against visual inspection
(400× 400 pixels) of the same CAI images in tropical rain-
forests.

2 Materials and methods

2.1 Study area and data

The study area for directly comparing CLAUDIA1–CAI and
CLAUDIA3–CAI for various land cover types is the same
as in the previous study (Oishi et al., 2017) (Fig. 3) and the
accuracy can be evaluated by comparing them against visual
inspection in Borneo and the Amazon (Fig. 4).

The total forest area in the Amazon, Congo, and south-east
Asia rainforest basins is over 13 million km2, which corre-
sponds to one-third of the total global forest area (FAO and

Figure 5. List of the top 10 countries for changes in deforesta-
tion area (million ha) from 1990 to 2005. These were calculated
with data from the Global Forest Resources Assessment 2005 (FAO,
2005).

ITTO, 2011). The three most forest-rich countries (Brazil,
Democratic Republic of Congo, and Indonesia) account for
57 % of the total global forest area (FAO and ITTO, 2011).
However, the total net emissions of carbon from tropical de-
forestation and land use were estimated to be 1.0 Pg-C yr−1

in the three rainforest basins (Baccini et al., 2012). In partic-
ular, Brazil and Indonesia have by far the highest and second
highest deforestation rates, respectively (Fig. 5). Therefore,
the study areas for rainforests are Borneo and the Amazon
(Fig. 4).
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Figure 6. Flow chart for CLAUDIA1–CAI. For sun-glint areas, the thresholds are further increased based on the R0.87 µm test. CCL is
confidence level, Rwavelength is reflectance, NDVI is normalized difference vegetation index.

GOSAT returns to a similar footprint after 44 orbits (44
CAI paths) in 3 days. The satellite ground path of one or-
bit is divided into 60 equidistant CAI frames. We used the
GOSAT CAI L1B product, which general users could down-
load from the GOSAT User Interface Gateway (GUIG, https:
//data.gosat.nies.go.jp), for various land cover types at the be-
ginning of the month from 2012 to 2014 as was done in the
previous study (Oishi et al., 2017) (Table 2), and for rain-
forests (Table 3). Recently the GUIG has been changed to
GOSAT Data Archive Service (GDAS, https://data2.gosat.
nies.go.jp/index_en.html). The spatial resolution of these
products (pixel size at nadir) is 500 m, and the image size
is 2048× 1355 pixels (approximately 1000× 680 km). The
CLAUDIA algorithm requires a land–sea mask and surface
albedo data. The CAI L1B product includes a land–sea mask
with 500 m resolution, which is generated from the Shut-
tle Radar Topography Mission’s 15? land–sea mask and the

USGS Global Land 1-km AVHRR Data Set Project mask for
areas at latitudes higher than ±60◦. Surface albedo data at
1/30◦ resolution was generated from the CAI L1B data from
10 recurrent cycles by separating the land and water regions.
This processing consists of three steps (Ishihara and Nobuta,
2013):

1. calculate the minimum reflectance to remove cloud-
contaminated pixels,

2. cloud shadow correction (Fukuda et al., 2013), and

3. atmospheric correction.

2.2 CLAUDIA1

CLAUDIA1–CAI calculates the clear-sky confidence lev-
els (CCL) for every threshold test and their comprehensive
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Figure 7. Flow chart for CLAUDIA3–CAI. CCL is clear-sky confidence level, Rwavelength is reflectance, NDVI is normalized difference
vegetation index.

integration (Ishida and Nakajima, 2009). Integrated CCL of
0 means that the pixel is cloudy and 1 means that the pixel is
cloud-free. Ambiguous pixels between cloudy and cloud-free
are described by numerical values from 0 to 1. The threshold
below which the integrated CCL counts the pixel as cloud-
free for GOSAT FTS L2 is 0.33, otherwise the pixel is re-
garded as cloudy (Yoshida et al., 2010). The flow of the al-
gorithm is shown in Fig. 6.

2.3 New cloud discrimination algorithm (CLAUDIA3)

CLAUDIA1 performs cloud discrimination by using thresh-
olds set based on experience. The new cloud discrimination
algorithm (CLAUDIA3, Ishida et al., 2018) applies SVM
for objective threshold decision by using multivariate anal-
ysis. SVM is a supervised pattern recognition method. First,
it determines the following items using training samples of
typical clear and cloudy pixels: (1) a decision function to

Atmos. Meas. Tech., 11, 2863–2878, 2018 www.atmos-meas-tech.net/11/2863/2018/
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Figure 8. Analysis procedure. (a) CAI L1B image. (b) Visual inspection mask of CAI L1B. (c) Output mask from CLAUDIA1–CAI (CAI
L2 cloud flag product) or CLAUDIA3–CAI. Pixels that are determined as cloudy are black. (d) Comparison of the visual inspection image
and the output image. Pixels that are determined as cloudy in both are white. Pixels that are determined as clear in both are blue. Pixels that
are determined as cloudy in the output image and clear in the visual inspection image are green. Unusual pixels that are determined as clear
in the output image and cloudy in the visual inspection image are red.

Table 4. Yearly average accuracy, overlook, and overestimate for various land cover types.

Australia Japan Borneo Thailand Mongolia Algeria Canada Alaska

Accuracy (%) 96.4 94.3 79.4 88.7 89.0 96.6 92.1 84.2
Overlook (%) 33.1 1.6 1.0 4.8 17.7 55.2 2.9 11.9
Overestimate (%) 0.1 13.7 39.2 20.9 11.7 0.7 51.8 50.3

discriminate between two classifications (clear and cloudy),
(2) the thresholds, and (3) the support vectors, which are
training samples specified by the decision function. The sup-
port vectors are decided in a high-dimensional feature space
of the training samples. Next, it performs cloud discrimina-
tion by using the decision function, thresholds, and support
vectors it determined. CLAUDIA3 applies the kernel trick
(Boser et al., 1992) for soft-margin SVM (Cortes and Vapnik,
1995). The kernel uses a second-order polynomial (Eq. 1).

K(xi,x)=
(xi

qx+ 1)2

2
, (1)

where K is the kernel function, xi is the support vector, and
x is input data. The flow of CLAUDIA3–CAI is explained
in Fig. 7. For CLAUDIA3–CAI, an integrated CCL of 0.5
corresponds to the separating hyperplane of clear support
vectors and cloudy support vectors. In this study, we used
two kinds of support vector: (1) support vectors generated
by using MODIS data in February for cloud discrimination
between November and April, and (2) support vectors gen-
erated by using MODIS data in August for cloud discrimi-
nation between May and October based on a previous study
(Oishi et al., 2017).

www.atmos-meas-tech.net/11/2863/2018/ Atmos. Meas. Tech., 11, 2863–2878, 2018



2870 Y. Oishi et al.: Preliminary verification for application of a support vector machine

Figure 9. Monthly average accuracy, overlook, and overestimate for various land cover types. Blue line indicates accuracy, red line indicates
overlook, and green line indicates overestimate.

2.4 Analysis procedure for rainforests

The analysis procedure consists of the following steps
(Fig. 8).

1. Cut 400× 400 pixels around the center of CAI L1B im-
ages.

2. Perform a visual inspection of the pixels cut from the
CAI L1B images.

We performed a visual inspection of the presence or ab-
sence of clouds in every pixel (400× 400 pixels).

3. Perform cloud discrimination by using CLAUDIA1–
CAI and CLAUDIA3–CAI.

Atmos. Meas. Tech., 11, 2863–2878, 2018 www.atmos-meas-tech.net/11/2863/2018/
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Figure 10. CAI L1B images (R: Band 2, G: Band 3, B: Band 1) and comparative results of CLAUDIA1–CAI and CLAUDIA3–CAI for
various land cover types.

For CLAUDIA1–CAI, we produced output images
setting the integrated-CCL threshold to 0.33. For
CLAUDIA3–CAI, we produced output images setting
the integrated-CCL threshold to 0.5.

4. Compare output with visual inspection.

We colored the images by comparing the visual inspec-
tion images with the output images pixel by pixel.

3 Results

In this study, “accuracy” is defined as the ratio of the number
of pixels for which the standard image and output from the
cloud discrimination algorithm agree with the total number
of pixels in the input image. “Overlook” is defined as the
ratio of the number of pixels judged clear in the output and
cloudy in the standard image to the number of pixels that

www.atmos-meas-tech.net/11/2863/2018/ Atmos. Meas. Tech., 11, 2863–2878, 2018
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Figure 11. Comparison of the visual inspection images and the output images in the Amazon. Orange circles indicate the maximum accuracy
values. Orange dotted lines indicate the integrated-CCL thresholds. Blue line indicates the accuracy, red line indicates the overlook, and green
line indicates the overestimate.

were judged cloudy in the standard image. “Overestimate” is
defined as the ratio of the number of pixels judged cloudy in
the output and clear in the standard image to the number of
pixels judged clear in the standard image. These definitions
are written as follows.

Accuracy=
Both cloudy+Both clear

Total number of pixels
, (2)

Overlook=
Clear despite cloudy

Both cloudy+ clear despite cloudy
, (3)

Overestimate=
Cloudy despite clear

Both clear+ cloudy despite clear
. (4)

3.1 Results for various land cover types

Figure 9 shows the monthly average accuracy, overlook, and
overestimate for an integrated-CCL threshold of 0.33 for
CLAUDIA1–CAI and 0.5 for CLAUDIA3–CAI; and Table 4
shows the yearly average accuracy, overlook, and overesti-
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Table 5. Results for integrated-CCL thresholds of 0.33 for CLAUDIA1–CAI and 0.5 for CLAUDIA3–CAI in the Amazon.

Accuracy (%) Overlook (%) Overestimate (%)

Date Location CLAUDIA1 CLAUDIA3 CLAUDIA1 CLAUDIA3 CLAUDIA1 CLAUDIA3 (0.5)
(yy/mm/dd) (CAI Path_Frame) (0.33) (0.5) (0.33) (0.5) (0.33) (0.5)

11/08/28 28_31 84.6 95.1 56.6 16.9 0.0 0.5
11/08/28 28_32 80.6 92.9 49.7 7.5 0.1 6.9
11/08/28 28_33 92.0 95.9 11.6 13.4 7.4 2.4
11/08/29 29_31 87.6 93.8 27.2 9.5 0.3 3.5
10/08/28 29_32 89.8 90.8 32.6 9.9 1.7 9.0
11/02/03 29_32 86.6 92.9 35.5 2.4 0.5 9.9
11/04/01 29_32 95.0 91.6 5.8 0.1 2.1 36.6
11/06/03 29_32 89.9 90.2 38.1 4.1 0.8 11.7
11/08/02 29_32 77.9 90.6 71.0 27.3 0.1 1.5
11/08/08 29_32 84.5 92.9 66.0 26.3 0.1 1.2
11/08/14 29_32 87.8 93.2 77.4 36.0 0.1 1.4
11/08/23 29_32 90.0 92.2 77.8 54.0 0.1 1.0
11/08/29 29_32 79.6 91.0 52.4 19.7 0.1 2.2
11/10/01 29_32 87.1 92.2 33.9 5.5 0.1 9.1
11/12/03 29_32 82.8 93.4 30.7 1.7 0.1 12.9
11/08/29 29_33 90.6 90.8 20.8 15.1 2.3 5.6
11/08/30 30_31 85.7 85.1 24.7 9.2 3.2 21.0
11/08/30 30_32 86.0 91.4 20.9 10.2 0.4 5.5
11/08/30 30_33 94.9 93.0 11.1 3.6 1.5 9.1

Average 87.0 92.0 39.1 14.3 1.1 7.9

Table 6. Results for integrated-CCL thresholds of the maximum accuracy values in Fig. 11 (CLAUDIA1–CAI: 0.75, CLAUDIA3–CAI: 0.5)
in the Amazon.

Accuracy (%) Overlook (%) Overestimate (%)

Date Location CLAUDIA1 CLAUDIA3 CLAUDIA1 CLAUDIA3 CLAUDIA1 CLAUDIA3
(yy/mm/dd) (CAI Path_Frame) (0.75) (0.5) (0.75) (0.5) (0.75) (0.5)

11/08/28 28_31 86.9 95.1 47.9 16.9 0.0 0.5
11/08/28 28_32 84.2 92.9 40.2 7.5 0.2 6.9
11/08/28 28_33 83.6 95.9 7.1 13.4 18.1 2.4
11/08/29 29_31 89.6 93.8 21.8 9.5 1.2 3.5
10/08/28 29_32 90.6 90.8 23.5 9.9 4.0 9.0
11/02/03 29_32 88.9 92.9 27.8 2.4 1.4 9.9
11/04/01 29_32 96.2 91.6 3.7 0.1 4.1 36.6
11/06/03 29_32 90.9 90.2 29.3 4.1 2.4 11.7
11/08/02 29_32 80.1 90.6 63.6 27.3 0.3 1.5
11/08/08 29_32 85.9 92.9 59.4 26.3 0.2 1.2
11/08/14 29_32 88.8 93.2 70.1 36.0 0.2 1.4
11/08/23 29_32 90.9 92.2 70.3 54.0 0.1 1.0
11/08/29 29_32 82.2 91.0 45.5 19.7 0.2 2.2
11/10/01 29_32 89.7 92.2 26.6 5.5 0.4 9.1
11/12/03 29_32 86.7 93.4 23.3 1.7 0.5 12.9
11/08/29 29_33 90.9 90.8 13.5 15.1 6.4 5.6
11/08/30 30_31 87.1 85.1 20.4 9.2 4.9 21.0
11/08/30 30_32 89.9 91.4 14.7 10.2 1.0 5.5
11/08/30 30_33 95.1 93.0 7.0 3.6 3.6 9.1

Average 88.3 92.0 32.4 14.3 2.6 7.9
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Table 7. Results for integrated-CCL thresholds of 0.33 for CLAUDIA1–CAI and 0.5 for CLAUDIA3–CAI in Borneo.

Accuracy (%) Overlook (%) Overestimate (%)

Date Location CLAUDIA1 CLAUDIA3 CLAUDIA1 CLAUDIA3 CLAUDIA1 CLAUDIA3
(yy/mm/dd) (CAI Path_Frame) (0.33) (0.5) (0.33) (0.5) (0.33) (0.5)

10/04/02 7_30 89.7 91.7 28.8 1.7 0.1 12.0
10/01/02 7_31 85.6 85.0 25.8 1.8 0.6 31.1
10/04/02 7_31 94.8 85.4 8.3 0.6 3.5 22.8
10/07/01 7_31 90.8 92.2 29.0 5.0 0.4 9.0
10/07/07 7_31 76.5 85.9 54.2 22.5 0.5 7.8
10/07/13 7_31 88.2 89.1 32.6 5.8 2.0 13.3
10/07/19 7_31 77.1 88.4 31.1 11.0 1.0 13.5
10/07/28 7_31 70.6 81.5 44.8 8.2 1.1 37.5
10/09/02 7_31 89.3 87.8 37.8 6.5 1.3 14.2
10/11/01 7_31 85.8 81.8 20.6 0.4 1.2 54.7

Average 84.8 86.9 31.3 6.3 1.2 21.6

Table 8. Results for integrated-CCL thresholds of the maximum accuracy values in Fig. 13 (CLAUDIA1–CAI: 0.85, CLAUDIA3–CAI:
0.35) in Borneo.

Accuracy (%) Overlook (%) Overestimate (%)

Date Location CLAUDIA1 CLAUDIA3 CLAUDIA1 CLAUDIA3 CLAUDIA1 CLAUDIA3
(yy/mm/dd) (CAI Path_Frame) (0.85) (0.35) (0.85) (0.35) (0.85) (0.35)

10/04/02 7_30 91.9 94.6 22.3 8.5 0.3 3.8
10/01/02 7_31 89.2 90.7 16.8 8.0 3.6 10.9
10/04/02 7_31 93.8 91.5 4.6 2.3 7.2 12.2
10/07/01 7_31 92.1 93.2 21.5 10.3 1.9 5.3
10/07/07 7_31 79.4 83.5 46.1 33.0 1.6 4.2
10/07/13 7_31 88.9 90.9 25.1 11.4 4.4 7.9
10/07/19 7_31 81.7 83.4 24.1 20.1 2.7 7.1
10/07/28 7_31 77.3 80.7 33.2 18.9 3.2 20.0
10/09/02 7_31 90.3 90.6 29.0 12.3 3.0 8.3
10/11/01 7_31 90.8 89.4 10.9 3.3 5.8 25.5

Average 87.5 88.8 23.4 12.8 3.4 10.5

Figure 12. Average accuracy, overlook, and overestimate for all
data for the Amazon. The most suitable integrated-CCL thresholds
are 0.75 for CLAUDIA1–CAI and 0.5 for CLAUDIA3–CAI in the
Amazon.

mate. We used the CLAUDIA1–CAI result as the standard
image.

In Australia and Algeria, the overlook was greater than
the overestimate. This means that there was a tendency
that CLAUDIA3–CAI was judged to be clear, despite
CLAUDIA1–CAI being judged cloudy in Australia and Al-
geria. In Japan, Borneo, Canada, and Alaska, the over-
estimate was greater than the overlook. This means that
there was tendency that CLAUDIA3–CAI was judged to
be cloudy, despite CLAUIDA1-CAI being judged clear in
Japan, Borneo, Canada, and Alaska. In Thailand and Mon-
golia, there was seasonal variation. In Thailand, the overlook
was greater than the overestimate from March to May, and
the overestimate was greater than the overlook from June
to February. In Mongolia, the overestimate was greater than
the overlook from February to March, and the overlook was
greater than the overestimate from April to January.
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Figure 13. Figure 13 compares the results of the visual inspection images and the output images for two select cases in Borneo: small
scattered clouds and optically thin clouds. We used the visual inspection result as the standard image. The comparison of the results for
Borneo is similar to that for the Amazon. Figure 14 shows the average accuracy, overlook, and overestimate of all data for all cases in
Borneo. These results indicate that the most suitable integrated-CCL thresholds are 0.85 for the CLAUDIA1–CAI and 0.35 for CLAUDIA3–
CAI in Borneo. Since the curved lines of the overestimate and overlook intersect in the same way as the Amazon cases, CLAUDIA3–CAI
can appropriately determine the boundary between cloudy and clear sky.

Figure 14. Comparison of the visual inspection images and the out-
put images in Borneo. Orange circles indicate the maximum accu-
racy values. Orange dotted lines indicate the integrated-CCL thresh-
olds. Blue line indicates the accuracy, red line indicates the over-
look, and green line indicates the overestimate.

Figure 10 compares the output images of CLAUDIA1–
CAI and CLAUDIA3–CAI for select cases in each region.

In Australia and Algeria, CLAUDIA3–CAI could identify
bright surfaces; however, there were a few oversights at the
edges of clouds. In Japan, CLAUDIA3–CAI misjudged veg-
etation areas as clouds. In Borneo, CLAUDIA3–CAI could
identify optically thin clouds. In Canada and Alaska, they
were snow- or ice-covered scenes. Since the CAI is not
equipped with any thermal infrared bands, cloud discrimi-
nation based on the temperature at the top of clouds is not

feasible. Accordingly, it is difficult to discriminate between
ice or snow and clouds. The difference or similarity between
CLAUDIA1–CAI and CLAUDIA3–CAI was attributed to
this source of error. In Thailand, CLAUDIA3–CAI could
judge smoke as noncloud, despite CLAUDIA1–CAI mis-
judging smoke as cloud; however, there were oversights of
optically thin clouds and the edges of clouds on 3 April 2013.
Furthermore CLAUDIA3–CAI misjudged muddy rivers and
boundaries between land and water as cloudy. This was also
reported for CLAUDIA1–CAI in a previous study (Oishi et
al., 2014). Conversely, CLAUDIA3–CAI could identify op-
tically thin clouds on 2 September 2012. In Mongolia, there
was a snow-covered scene on 3 February 2013 and the same
as Canada and Alaska. On the other hand CLAUDIA3–CAI
could identify bright surface; however, there were a few over-
sights at the edges of clouds on 2 June 2012.

3.2 Results in the Amazon

Figure 11 compares the visual inspection images and the out-
put images for four select cases in the Amazon: low cloud
cover, high cloud cover, small scattered clouds, and optically
thin clouds. We used the visual inspection result as the stan-
dard image.

CLAUDIA3–CAI produced fewer overlooked clouds but
slightly more overestimated clouds than CLAUDIA1–CAI
did. CLAUDIA3–CAI misjudged muddy rivers on 23 Au-
gust 2011 in CAI Path 29, Frame 32 and around clouds on 1
April 2011 in CAI Path 29, Frame 32. The maximum accu-
racy values of CLAUDIA3–CAI and the CLAUDIA1–CAI
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occur at different integrated-CCL values with the thresholds
for the Amazon. Figure 12 shows the average accuracy, over-
look, and overestimate of all the data in the Amazon for all 19
cases. These results indicate that the most suitable integrated-
CCL thresholds are 0.75 for CLAUDIA1–CAI and 0.5 for
CLAUDIA3–CAI in the Amazon. Since the curved lines of
the overestimate and overlook intersect, CLAUDIA3–CAI
can appropriately determine the boundary between cloudy
and clear sky.

Table 5 shows the results for an integrated-CCL thresh-
old of 0.33 for CLAUDIA1–CAI and 0.5 for CLAUDIA3–
CAI, and Table 6 shows the results for an integrated-
CCL threshold of the maximum accuracy values in Fig. 12
(CLAUDIA1–CAI: 0.75, CLAUDIA3–CAI: 0.5). There was
no notable change in the accuracies with the season or lo-
cation. When the integrated-CCL threshold was 0.33 for
CLAUDIA1–CAI and 0.5 for CLAUDIA3–CAI, the accura-
cies were 87.0 and 92.0 %, respectively. When the accuracy
of CLAUDIA1–CAI was higher than that of CLAUDIA3–
CAI, optically thick clouds covered a large area of the in-
put images. Furthermore, when the integrated-CCL thresh-
old was 0.75 for CLAUDIA1–CAI and 0.5 for CLAUDIA3–
CAI, the accuracies were at their highest, at 88.3 and 92.0 %,
respectively. In both cases, the accuracy of CLAUDIA3–CAI
was higher than that of CLAUDIA1–CAI.

3.3 Results in Borneo

Average accuracy, overlook, and overestimate for all data
for Borneo. The most suitable integrated-CCL thresholds are
0.85 for CLAUDIA1–CAI and 0.35 for CLAUDIA3–CAI in
Borneo.

Table 7 shows the results for an integrated-CCL thresh-
old of 0.33 for CLAUDIA1–CAI and 0.5 for CLAUDIA3–
CAI, and Table 8 shows the results for an integrated-
CCL threshold of the maximum accuracy values in Fig. 14
(CLAUDIA1–CAI: 0.85, CLAUDIA3–CAI: 0.35). There
was no notable change in the accuracies with the sea-
son or location, similar to the results for the Amazon. For
an integrated-CCL threshold of 0.33 for CLAUDIA1–CAI
and 0.5 for CLAUDIA3–CAI, the accuracies were 84.8
and 86.9 %, respectively. Furthermore, for an integrated-
CCL threshold of 0.85 for CLAUDIA1–CAI and 0.35 for
CLAUDIA3–CAI, the highest accuracies of 87.5 and 88.8 %,
respectively, were obtained. In both cases, the accuracy of
CLAUDIA3–CAI was greater than that of CLAUDIA1–CAI.

4 Discussions and conclusions

Comparative results for CLAUDIA1–CAI and CLAUDIA3–
CAI for various land cover types indicated that CLAUDIA3–
CAI had a tendency to identify bright surface and optically
thin clouds; however, CLAUDIA3–CAI had a tendency to
misjudge the edges of clouds compared with CLAUDIA1–

CAI. There are tradeoffs in maximizing accuracy while min-
imizing overlook and overestimate. Thus, it is sufficient to
change the integrated-CCL threshold according to the pur-
pose. Furthermore, CLAUDIA3–CAI misjudged vegetation
areas as clouds in Japan. It is necessary to add clear training
data of Japanese vegetation areas for CLAUDIA3.

The averaged accuracy of CLAUDIA3 used with GOSAT
CAI data (CLAUDIA3–CAI) was approximately 89.5 %
in tropical rainforests, which was greater than that of
CLAUDIA1–CAI (85.9 %) for the test cases presented here.
This is mainly because, in contrast to CLAUDIA1–CAI,
CLAUDIA3–CAI can detect optically thin clouds and the
edges of clouds, which prevents cloud-contaminated FTS-
2 data from being processed as cloud-free FTS-2 data in
the greenhouse gas concentration calculations. However,
CLAUDIA3–CAI tends to overestimate the surroundings
of clouds, which are judged to be cloudy despite being
clear. Thus, CLAUDIA3–CAI is not expected to increase the
amount of the FTS-2 data that can be used to estimate green-
house gas concentrations in tropical rainforests. Conversely,
CLAUDIA3–CAI may be able to detect optically thin clouds
that cannot be detected by visual inspection.

CLAUDIA3–CAI misjudged muddy rivers and boundaries
between land and water as cloudy in the same manner as
CLAUDIA1–CAI. This has three possible causes: (1) insuf-
ficient training data on muddy rivers so the differences in
the spectral reflectance properties of muddy water and other
water cannot be distinguished; (2) deviation of the positions
in each CAI band owing to the band-to-band registration er-
ror; and (3) insufficient resolution of the surface albedo data.
The surface albedo data were generated at 1/8◦ resolution by
separating the land and water regions. If the border pixels be-
tween land and water regions were mixed pixels, the albedo
data of 1/8◦ areas that include the mixed pixels would be
included. To decrease this effect, higher-resolution surface
albedo data are needed. For boundaries between land and wa-
ter, the resolution of surface albedo data is being investigated
because it may be the main problem: the misjudged regions
and grid pattern of albedo data match. CLAUDIA3–CAI is
more sensitive to differences between land and water than
CLAUDIA1–CAI because there is a large difference in the
structure of support vectors between land and water. How-
ever, generating higher-resolution surface albedo data from
CAI L1B data for 10 recurrent cycles cannot completely
remove clouds in the minimum reflectance calculation. To
solve this, initially we need to confirm whether 500 m resolu-
tion albedo data should be used. If necessary, we will develop
a new method for generating surface albedo data. For exam-
ple, simple cloud discrimination could be added to calculate
the minimum reflectance, and if it is a cloud-contaminated
pixel then the pixel is replaced by a minimum reflectance
pixel, which is calculated from the same month over several
years.

Although we used MODIS data as training images to gen-
erate support vectors in this study, the MODIS data and
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CAI data depend on observation conditions. In future work,
we will use CAI data as training images to perform cloud
discrimination for CAI data. Furthermore, we will verify
CLAUDIA3–CAI by using global CAI data with an alterna-
tive method. For instance, it can be compared with satellite
lidar data, such as CALIPSO, because it is impossible to per-
form a visual inspection of global data and visual inspection
is also itself not perfect. Addressing these points will make
CLAUDIA3–CAI more reliable for GOSAT-2 CAI-2 cloud
discrimination.
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to download from GOSAT Data Archive Service (GDAS, https:
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