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Abstract. Upper-air measurements of essential climate vari-
ables (ECVs), such as temperature, are crucial for climate
monitoring and climate change detection. Because of the in-
ternal variability of the climate system, many decades of
measurements are typically required to robustly detect any
trend in the climate data record. It is imperative for the
records to be temporally homogeneous over many decades
to confidently estimate any trend. Historically, records of
upper-air measurements were primarily made for short-term
weather forecasts and as such are seldom suitable for study-
ing long-term climate change as they lack the required conti-
nuity and homogeneity. Recognizing this, the Global Climate
Observing System (GCOS) Reference Upper-Air Network
(GRUAN) has been established to provide reference-quality
measurements of climate variables, such as temperature,
pressure, and humidity, together with well-characterized and
traceable estimates of the measurement uncertainty. To en-
sure that GRUAN data products are suitable to detect climate
change, a scientifically robust instrument replacement strat-
egy must always be adopted whenever there is a change in in-
strumentation. By fully characterizing any systematic differ-
ences between the old and new measurement system a tem-
porally homogeneous data series can be created. One strategy
is to operate both the old and new instruments in tandem for
some overlap period to characterize any inter-instrument bi-
ases. However, this strategy can be prohibitively expensive at
measurement sites operated by national weather services or
research institutes. An alternative strategy that has been pro-
posed is to alternate between the old and new instruments, so-
called interlacing, and then statistically derive the systematic
biases between the two instruments. Here we investigate the

feasibility of such an approach specifically for radiosondes,
i.e. flying the old and new instruments on alternating days.
Synthetic data sets are used to explore the applicability of
this statistical approach to radiosonde change management.

1 Introduction

Radiosondes are indispensable for monitoring the upper air
as they provide high vertical resolution in situ observations
of temperature, pressure, and water vapour between the sur-
face and the upper troposphere–lower stratosphere. Deter-
mining long-term temperature trends from radiosonde mea-
surements is challenging because changes in instrumenta-
tion can, among other things, introduce discontinuities in
the measurement time series (see Fig. 1). Since radiosonde
measurements are primarily made to provide the data needed
to constrain weather forecasts and not to detect long-term
changes in climate, little attention has been paid to ensur-
ing the long-term homogeneity of the measurement record
when changing from one instrument to another. As a result,
radiosonde data records typically fall short of the standard
required to reliably detect changes in climate. Another cause
of inhomogeneities in the record is undocumented changes
in data processing (Thorne et al., 2011). While much effort
has been spent attempting to remove discontinuities in ra-
diosonde data records (e.g. Sherwood et al., 2005; Randel
and Wu, 2006; Haimberger et al., 2012), lack of confidence
in the long-term homogeneity erodes confidence in derived
trends. Seidel and Free (2006) used upper-air temperatures
from the NCEP-NCAR reanalysis (Saha et al., 2010) to in-

Published by Copernicus Publications on behalf of the European Geosciences Union.



3022 S. Kremser et al.: Estimating the difference in instrument bias

Figure 1. (a) Monthly temperature anomalies (smoothed with a 13-point running mean) during 1958–2009 from radiosonde observations
at Camborne, Cornwall, UK at 200 hPa (near tropopause) and 700 hPa (lower troposphere). Included are raw (black) and adjusted (green)
radiosonde temperature data from the Hadley Centre (HadAT). The smooth difference series between the two (blue solid line) shows the
adjustments applied to the raw data (offset by 2.25 K; dashed grey line, indicating the zero line for the differences). (b) The four radiosonde
types used over this period (from left to right, with typical periods of operation): Phillips Mark IIb (1950–1970); Phillips MK3 (mid-1970s to
early 1990s); Vaisala RS-80 (early 1990s to 2005–2006); and Vaisala RS-92 (since 2005–2006). Dates of radiosonde changes are indicated
by red dotted lines. Five other potential sources of inconsistencies in the data sets include change in the radiation correction procedure
(cross), change in the data cut-off (star), change in pressure sensor (diamond), change in wind equipment (triangle), and/or change in relative
humidity sensor (square). Figure adapted from Thorne et al. (2011).

vestigate the effects of sampling frequency, changes in ob-
servation schedule, and the introduction of inhomogeneities
on the radiosonde climate data record. Their results indicate
that introducing inhomogeneities into a temperature time se-
ries provides the most significant source of uncertainty in
trend estimates. Maintaining the temperature measurement
stability to within 0.1 K for periods of 20 to 50 years avoids
uncertainties in trend estimates in at least 99 % of cases (Sei-
del and Free, 2006). With a weaker stability requirement of
0.25 K, the uncertainty in a 50-year trend estimate increases
by about 5 % for twice-daily sampling. Rust et al. (2008)

showed that inhomogeneities in temperature measurements
can cause spurious memory, leading to larger uncertainty for
statistics derived from these series. The results of these stud-
ies demonstrate the need to account for any inhomogeneities
in the measurement time series prior to any trend analysis.

The GCOS (Global Climate Observing System) Reference
Upper-Air Network (GRUAN) was established to provide
reference-quality measurements of atmospheric ECVs suit-
able for reliably detecting changes in global and regional
climate on decadal scales. To avoid compromising the in-
tegrity of the long-term climate record, it is essential that
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any change, e.g. in the instrumentation or data processing,
is adequately assessed before the change is implemented.
For example, when transitioning from one radiosonde type
to another, inter-comparison between the two radiosonde
types is required to assess a potential systematic differ-
ence between the radiosondes and to correct for it, ensur-
ing a continuous homogeneous data set without any intro-
duced discontinuities. Typically, inter-comparisons of mea-
surements from dual or quadruple (two of each instrument
type) radiosonde flights are used to robustly detect system-
atic differences between the instruments (e.g. Luers and Es-
kridge, 1998; Steinbrecht et al., 2008; Kobayashi et al., 2012;
Jensen et al., 2016). Results presented in Steinbrecht et al.
(2008) indicated that temperature biases often increase sig-
nificantly with increasing altitude, particularly in the lower
stratosphere. In the past, WMO conducted several radiosonde
inter-comparison campaigns (e.g. Jeannet et al., 2008; Nash
et al., 2011) with the objective of investigating the perfor-
mance of operational radiosonde systems. The results of
these campaigns are used in part to improve the accuracy
of daytime operational radiosonde measurements and the as-
sociated correction procedures to provide temperature and
relative humidity accuracies currently possible with night-
time measurements. The knowledge of the performance that
can be expected from various radiosonde systems allows the
users to make a well-informed decision on the choice of fu-
ture equipment. For a measurement network like GRUAN, it
is essential to have more than one good-quality radiosonde
type for operations. Instrument biases are also influenced by
clouds as shown in Jensen et al. (2016) who found systematic
differences in temperature measurements greater than 2 K
between the Vaisala RS92 and RS41 radiosonde when exiting
cloud layers. This large difference in temperature measure-
ments between the two radiosondes was attributed to the wet-
bulb effect, in which the temperature sensor gets wet while
passing through a cloud layer and is subject to evaporative
cooling after entering drier parts of the atmosphere. Below
28 km of altitude, Jensen et al. (2016) found a mean sys-
tematic difference between the temperature measurements
of the two radiosondes of 0.13 K. For radiosonde measure-
ments performed at GRUAN sites, it is suggested that sites
conduct dual sonde launches for at least 6 months when
changing from one instrument type to another (GCOS-171,
2013). However, analysis of data from dual sonde launches
conducted at the GRUAN Lead Centre suggests that at least
200 dual flights over a period of 1 year are required to accu-
rately assess the systematic difference between the two sonde
types (GCOS-171, 2013). The number of dual sonde flights
required may be site dependent, and therefore site-specific
analysis is likely required to determine the required number
of dual flights at any site. Furthermore, it is possible that in-
strument biases at one site may not be the same in differ-
ent atmospheric conditions at other sites, though this has not
been extensively evaluated. Therefore, it would be ideal if
all GRUAN sites could complete thorough radiosonde inter-

comparisons by performing dual radiosonde launches for at
least 6 months prior to any instrument change. However,
the costs of such a measurement campaign can be signif-
icant, preventing some stations from performing extensive
dual launches.

In this study, we investigate the feasibility of quantifying
the difference in biases of two instrument types by alternat-
ing between the two different instruments and then applying
a statistical model to infer any systematic biases between the
two instruments. For this study, we conduct the investigation
by applying the statistical model developed to synthetic data
sets, in which the persistence of weather conditions is a con-
trollable parameter, that represent such interlaced radiosonde
flights. Specifically, we investigate (i) whether a combina-
tion of interlaced measurements together with an appropriate
statistical model can be used to estimate the differences in
biases of two instrument types and, (ii) if so, how effective
the approach is. This method, if feasible, could reduce the fi-
nancial burden for sites seeking to manage such a transition,
since an interlacing approach would not require additional
measurements above what is needed for normal daily opera-
tion.

2 Methodology

2.1 Background

Any modification of instrumentation might introduce a sys-
tematic change to the measurement time series. This change
is typically assumed to be a constant difference (1) as a first-
order approximation resulting from differences in the indi-
vidual instrument biases, i.e. their systematic deviations from
the true value. As the true value of the quantity being mea-
sured is unknown in practice, it is not possible to estimate
each instrument’s individual bias. It is possible, however, to
estimate the difference 1= BiasA−BiasB in biases BiasA
and BiasB of instruments A and B. If temporally and spa-
tially coincident measurements are made using instrument
A and B (i.e. dual flights), this difference can be easily ob-
tained: consider some quantity of interest, e.g. air tempera-
ture (T ), measured with instrument A and instrument B at
the same location and time t . The bias of each instrument is
the difference between the expectation value of the instru-
ment’s measurement and the unknown true value Tt :

Bias(Tt,A)= E[Tt,A] − Tt and
Bias(Tt,B)= E[Tt,B ] − Tt , (1)

where Tt,A and Tt,B are the temperatures at time t measured
with instrument A and B, respectively. The difference in the
instrument bias is therefore

1t = Bias(Tt,A)−Bias(Tt,B)= E[Tt,A] −E[Tt,B ]. (2)
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Consider now that Tt,B differs from Tt,A only by a constant
offset 1, i.e.

Tt,A = Tt,B +1, (3)

which is independent of the true value and thus the mea-
surement time t . Under this assumption, an estimate for the
stationary difference in biases can be obtained from N dual
measurements according to

1̂=
1
N

N∑
t=1
(Tt,A− Tt,B)

=
1
N

N∑
t=1

(
(Tt,A− Tt )− (Tt,B − Tt )

)
, (4)

with 1̂ denoting an estimate of the constant offset 1. This
equation applies even if the true value Tt is changing with
time as it depends only on anomalies Tt,A/B−Tt . Under suit-
able conditions, the uncertainty (expressed in terms of stan-
dard deviation, SD) of this estimate decreases with

√
N and

depends on the persistence (i.e. autocorrelation) of the time
series (Wilks, 2011).

2.2 A statistical model for interlaced measurements

As dual measurements using both instrument types require
additional resources and therefore inherent additional costs,
estimating a systematic difference between the instruments
using interlaced measurements, i.e. using instrument A on
odd days t ∈ {1,3,5, . . .} and instrument B on even days t ∈
{2,4,6, . . .}, is explored in this study. Using this approach, at
every time t only one measurement from one instrument is
available, and hence Eq. (4) is not applicable.

The underlying assumption for the approach outlined here
to work is that the quantity of interest fluctuates around
a smooth climatological signal (i.e. a seasonal cycle) and
the fluctuations show a certain degree of persistence at the
weather timescale; e.g. the fluctuations show a day to day
dependence. For a typical difference in the biases between
radiosondes this persistence (i.e. autocorrelation) is key to
the idea of estimating a bias from interlaced measurements.
The difference in the biases tested here is smaller than the
day to day fluctuations themselves as it carries information
from the measurement A to the measurement B.

In the following, a simplified model for air temperature
time series complying with the above-mentioned assump-
tions is constructed. The true (unobserved) time series is rep-
resented by a smooth seasonal cycle with an autoregressive
process of first order (AR[1], e.g. Box and Jenkins, 1976;
Wilks, 2011) added to the time series; i.e.

Tt =µ0+µ1 sin
(

2π
dt

365
−
π

2

)
+µ2 sin

(
2π

2dt
365
−
π

2

)
+ εt , (5)

εt = a εt−1+ ηt , (6)

with dt ∈ [1, . . .,365] giving the day in the year for date t ,
where a is the autocorrelation coefficient which describes
the degree of persistence in the time series at the weather
timescale, e.g. the fluctuations show a day to day depen-
dence, and ηt ∼N (0,σ 2) is the driving noise of the AR[1]
process selected randomly from a Gaussian distribution. The
latter is taken to be Gaussian white noise with zero mean and
variance σ 2. This is a well-established model for the persis-
tence of e.g. daily air temperatures (e.g. Wilks, 2011).

Pseudo-observations are now obtained from a realization
of Tt (Eq. 5) with an instrument bias and random mea-
surement noise added. Here, we aim for interlaced temper-
ature measurements Tt,A and Tt,B from instruments A and
B and thus add the instrument biases cA and cB , respec-
tively, and independent Gaussian measurement uncertainties
εt,A ∼N (0,σ 2

A) and εt,B ∼N (0,σ 2
B):

Tt,A = Tt + cA+ εt,A t ∈ tA = {1,3,5. . .} and (7)
Tt,B = Tt + cB + εt,B t ∈ tB = {2,4,6. . .}. (8)

For simplicity, we assume equal variances σ 2
A = σ 2

B for the
measurement uncertainties. The continuous series of com-
bined interlaced measurements Tt,AB for t ∈ {1,2,3, . . .} is
therefore

Tt,AB = Tt + cAχ(t ∈ tA)+ cB χ(t ∈ tb)+ εt , (9)

with indicator function χ being 1 if t is a member of the
set tA or tB and 0 otherwise. Figure 2 shows an example of
such a synthetic time series of interlaced measurements. This
example is based on a simulated temperature time series us-
ing a realization of an AR[1] process using an autocorrela-
tion coefficient of a = 0.5 in Eq. (6), similar to the autocor-
relation coefficient of radiosonde measurements at 300 hPa
above Lindenberg, Germany (see Sec. 2.4).

2.3 Estimating the difference in instrument biases

A direct approach to estimate the difference in instrument
biases 1= cA− cB is an estimation using the differences in
means T A and T B of instrument A and B, respectively, over
a common time period t1 to t2; i.e.

1̂mean = T A− T B , (10)

with

T A =
1
NA

t≤t2∑
t≥t1

Tt,A for t ∈ tA and

T B =
1
NB

t≤t2∑
t≥t1

Tt,B for t ∈ tB (11)

being the arithmetic means for the individual instruments;
NA and NB are the number of measurements made by in-
strument A and B, respectively, in the given time period. The
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Figure 2. Example time series for interlaced measurements of instrument A (red dots) and instrument B (green dots). Horizontal lines are
the means of the measurements using instrument A (red) and instrument B (green). Smooth dashed lines (red for instrument A, green for
instrument B) are spline estimates with the differences being an estimate for the differences in the instrument biases.

uncertainty in this estimate of the difference in instrument bi-
ases decreases with increasing NA and NB but also depends
on the persistence of the underlying time series: larger per-
sistence leads to larger uncertainties when calculating arith-
metic means (e.g. von Storch and Zwiers, 1999).

Here, we exploit the persistence and suggest an approach
based on the estimation of a slowly varying signal common
to both instruments. Imagine, for example, a smooth temper-
ature time series in the absence of weather-induced noise.
Measurements are then made of that signal using instrument
A and this measurement series is represented by s(t) and
an additional measurement noise εt . Analogously, measure-
ments of the same slowly varying signal are made using in-
strument B and can be represented by the same s(t) but with
the difference in instrument biases1 and again measurement
noise εt ; i.e. s(t)+1+εt . A model for these interlaced mea-
surements Tt,AB is constructed using the indicator function
χ :

T̂t,AB = s(t)+1χ(t ∈ tB)+ εt . (12)

For t ∈ tB , the indicator function χ(t ∈ tB) returns 1 and
we obtain a measurement with instrument B, i.e. T̂t,B =
s(t)+1+εt . For other time steps t ∈ tA the indicator function
returns 0 and we obtain a measurement of instrument A, i.e.
T̂t,A = s(t)+ εt , excluding the difference in instrument bias
1. The statistical model described in Eq. (12) belongs to the
class of generalized additive models (GAMs; e.g. Chambers
and Hastie, 1992), a fundamental class of regression mod-
els. GAMs extend generalized linear models (or linear re-
gression) by additionally introducing to the classical linear
components a smooth term s. This smooth term can be esti-
mated using a smooth spline fit with its degrees of freedom
(i.e. its flexibility of smoothness) determined by generalized
cross validation (Wood, 2006). This functionality is imple-
mented in the R package mgcv (Wood, 2006).

2.4 Simulation set-up

To investigate whether interlaced measurements diagnosed
using the methodology described above can be used to esti-
mate potential biases between instruments, we design a sim-
ulation study wherein an ensemble of synthetic upper-air
temperature time series is generated using a stochastic pro-
cess. For each member of the ensemble, interlaced measure-
ments for two instruments are obtained by adding a system-
atic measurement uncertainty (i.e. bias) for each instrument
plus some random measurement noise. As the instrument bi-
ases are known, their difference 1 is also known. The ques-
tions to be answered in this study are the following.

1. Can a combination of interlaced measurements, to-
gether with an adequate statistical model, be used to es-
timate the difference in instrument biases?

2. If so, how effective is this estimation compared to an
approach requiring dual measurements?

An analysis of the 300 hPa temperatures measured by ra-
diosondes at Lindenberg, Germany forms the basis for this
simulation study. After subtracting the seasonal cycle, the
temperature anomalies show a variance of about σ 2

anomalies =

10K2 and can be adequately described with an AR[1] pro-
cess as in Eq. (6) with a ∼ 0.5. To provide a realistic syn-
thetic time series for analysis, we use driving Gaussian white
noise η ∼N (0,σ 2

a ) with variance σ 2
a = (1− a

2)σ 2
anomalies.

This choice of σ 2
a ensures that the anomaly variance is fixed

at σ 2
anomalies = 10K2 independent of the value of a. This is

necessary as we vary the persistence parameter (i.e. the au-
tocorrelation coefficient) a ∈ (0,1) to study time series with
different persistence but identical anomaly variance.

The synthetic temperature series is generated using Eq. (9)
that includes a seasonal cycle and a realization of an AR[1]
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process. The instrument biases in Eq. (9) are prescribed at
cA =−0.1 K and cB = 0.2 K and are added to the time se-
ries together with a measurement uncertainty being spec-
ified as Gaussian white noise ε ∼N (0,σ 2). The resulting
two time series for instruments A and B are combined to
(a) a synthetic time series of dual measurements and (b) an
interlaced observational counterpart. The difference in in-
strument biases between the two time series is prescribed as
1= cA− cB =−0.1− 0.2=−0.3K. To investigate the in-
fluence of (i) persistence in the temperature series, (ii) mea-
surement noise, and (iii) the number of measurements on our
ability to estimate the difference in biases between two in-
struments, the following parameters are prescribed and con-
trolled in our study:

persistence of the time series
a ∈ {0.5,0.7,0.8,0.9,0.95,0.99}

number of measurements
N ∈ {50,100,250,500,1000,2000,3000},

leading to 6×7= 42 combinations, i.e. 42 synthetic time se-
ries to be analysed. The instrument noise is fixed at σ 2

∈ 0.1.
To generate a synthetic time series for a given a, N , and σ ,
the following steps were taken.

1. Generate a time series of length N consisting of an an-
nual cycle and a realization of an AR[1] process as de-
scribed above.

2. Add an offset of −0.1 K (instrument bias of instrument
A) and Gaussian noise with variance σ 2

= 0.1 to pro-
duce a synthetic time series for instrument A.

3. Add an offset of 0.2 K (instrument bias of instrument B)
and Gaussian noise with variance σ 2

= 0.1 to produce
a synthetic time series for instrument B.

4. Select measurements from A for odd days and from B

for even days to generate an interlaced time series.

5. Repeat steps 1 to 4 many times (e.g. M = 1000, where
M denotes the number of repetitions) to generate 1000
synthetic time series to derive statistically robust esti-
mates of 1̂.

The difference in instrument biases is then estimated based
on

1. the calculated mean values of N dual measurements
(Eq. 10), i.e. N measurements for A and N measure-
ments for B made simultaneously, and

2. results from the statistical model (Eq. 12) using the time
series of N interlaced measurement, i.e. N/2 measure-
ments for A and N/2 measurements for B.
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Figure 3. Box and whisker plots of bias estimates (1̂) against the
number of interlaced flightsN (50 flights means 25 flights of instru-
ment A and 25 flights of instrument B) as derived from M = 1000
simulations using an autocorrelation coefficient of a = 0.5 (a), a =
0.8 (b), and a = 0.9 (c) and a measurement noise of σ 2

= 0.1. The
boxes show the inter-quartile range. The upper and lower whiskers
represent the maximum (excluding outliers) and minimum (exclud-
ing outliers). Suspected outliers are shown as dots and are located
outside the fences (“whiskers”) of the box plot (e.g. outside 1.5
times the inter-quartile range above the upper quartile and below the
lower quartile). The true difference in biases1=−0.3K is marked
with a red line.

3 Results

The box plots in Fig. 3 summarize the distribution of M =
1000 bias estimates 1̂ for a varying number of interlaced
flights N . Figure 3a is based on the simulated temperature
time series with an AR[1] coefficient a = 0.5, being similar
to the autocorrelation coefficient found for temperature mea-
surements at 300 hPa above Lindenberg. Figure 3b and c are
examples for stronger persistence, i.e. a = 0.8 and a = 0.9,
respectively. All panels show that the spread in the estimated
difference in bias between instruments A and B (1̂) con-
verges towards the true value (1=−0.3) for increasing N
in all cases. The rate at which this converges with increas-
ing N depends on the persistence (i.e. autocorrelation) in the
underlying time series. Weak persistence (small a) leads to
slower convergence (Fig. 3a), while strong persistence (a ap-
proaching 1) shows faster convergence.

The SD of 1̂ (see Fig. 4), representing the uncertainty with
which the difference in the bias between instrumentsA andB
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Figure 4. SD of 1̂ against the number of flights N for different
AR[1] coefficients a. The black solid line represents the reference
experiment with dual flights of instruments A and B, i.e. 2N mea-
surements. To compare the results from the dual flights (black solid
line) with the results obtained from interlaced flights, the number of
dual flights has to be doubled. Note the logarithmic vertical scale.

can be estimated, depends on the number of interlaced flights
and on the AR[1] coefficient a (coloured lines in Fig. 4). The
SD can be used to construct asymptotic confidence intervals
for the estimates using the standard normal assumption (e.g.
Wilks, 2011, chap. 5); i.e. for a 95 % confidence interval, the
estimated bias needs to be within 1.96 times the SD. For all
a, the SD decreases with increasing N ; however, the SD is
generally larger for weak persistence (small a ∈ (0,1)) and
smaller for strong persistent (large a ∈ (0,1)).

The synthetic time series of dual flights performed with in-
strument A and B simultaneously at N times (i.e. 2N mea-
surements, solid black line in Fig. 4) provides the most re-
liable estimate of the biases between the instruments; i.e.
the SD is smallest for any N . To provide a robust compar-
ison of the results from the dual flights to the results from
N interlaced measurements, the results from the dual flights
need to be compared to the results of doubled N interlaced
flights. For a time series with an autocorrelation coefficient
of a = 0.5, at least 2000 days of consecutive interlaced daily
measurements would be required to estimate the difference in
instrument biases with a SD of 0.22 K. Consider the follow-
ing example: a station operator seeks to detect the difference
in bias between two radiosondes in a temperature time se-
ries showing an autocorrelation coefficient of 0.95. The sta-
tion operator requires a SD of 1̂≤ 0.05 K, which leads to
a 95 % confidence interval of about 0.1 K (≈ 0.05× 1.96).
Then, from Fig. 4 it can be inferred that 500 interlaced mea-
surements are required to achieve this. Furthermore, we con-

Figure 5. Vertical profiles of calculated autocorrelation coefficients
for six GRUAN sites (colour coded as shown in the legend). Au-
tocorrelation coefficients were calculated from ERA5 temperature
data interpolated to the location of the GRUAN sites.

clude that if an operator has a given amount of two types
of radiosondes available from which the difference in instru-
ment biases needs to be estimated, it is clear from Fig. 4
that dual flights result in better estimates (i.e. smaller SD in
Fig. 4) than interlacing the instrument types from one day
to the next. The results presented here (from dual and in-
terlaced flights) also depend on the variance of the signal;
for a higher measurement noise, the number of required days
will increase and vice versa (not shown).

The results indicate that for typical difference in biases
between radiosonde types, the presented method on inter-
laced measurements is unlikely to provide a robust estimate
of the difference in biases for a reasonable length of the
measurement period (reasonable is considered as 2 years
here). That said, there might be cases of larger instrument bi-
ases and/or larger persistence in which the interlaced method
could provide an alternative method to dual measurements,
requiring fewer resources. Vertical profiles of autocorrelation
coefficients as calculated from temperature data obtained
from ERA5 reanalyses (https://www.ecmwf.int/en/forecasts/
datasets/archive-datasets/reanalysis-datasets/era5, last ac-
cess: 4 April 2018) are shown in Fig. 5. Temperature data
were interpolated to the locations of six GRUAN sites, in-
cluding sites in the tropics and the middle and high lat-
itudes. Here we calculated the autocorrelation coefficient
from ERA5 data rather than from radiosonde measurements,
as long-term continuous measurements are required to ob-
tain a robust estimate of the seasonal cycle of the temper-
ature time series before calculating the autocorrelation co-
efficients. Such continuous observations, covering at least
2 years of daily radiosonde flights, are currently only avail-
able at a small subset of GRUAN sites, which does not cover
all latitude bands. ERA5 is the latest reanalysis provided by
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the ECMWF and the calculated autocorrelation coefficients
are expected to provide a good estimate of the autocorrela-
tion coefficient at each of the selected sites. Figure 5 shows
that the persistence varies strongly with altitude, and if the
interlacing method is used, it has to be applied at different al-
titudes separately. For lower altitudes (pressure levels above
250 hPa), the autocorrelation coefficients vary between 0.4
and 0.8, with the lowest coefficients at the southern mid-
dle latitudes (e.g. Lauder, New Zealand). The persistence in-
creases at higher altitudes (below 250 hPa), ranging from 0.7
in the tropics to 0.95 at higher latitudes. The results indi-
cate that the interlacing method may be able to provide an
estimate of the difference in biases for high altitudes at e.g.
Ny-Ålesund, a GRUAN site showing the highest autocorre-
lation coefficients. However, a detailed case study needs to
be performed to investigate potential benefits; this is beyond
the scope of this study, which focuses on describing and pre-
senting the methodology.

4 Conclusions

We have used synthetic time series representing tempera-
ture measurements to investigate the possibility of using in-
terlaced measurements performed with two different instru-
ments types together with generalized additive models to ob-
tain an estimate of the difference in the bias between the two
instrument types. Performing dual radiosonde flights with
both instrument types is costly, and therefore we investigated
the feasibility of using interlaced flights to obtain an estimate
of the difference in the bias. This would be more sustainable
and less costly. Information about typically small differences
in instrument biases can be obtained from non-simultaneous
measurements using a persistence assumption; i.e. some in-
formation from the day’s measurement is carried over to the
next day. As atmospheric temperatures tend to be autocorre-
lated in time (e.g. Wilks, 2011; Maraun et al., 2004), the per-
sistence assumption is justifiable. However, the strength of
the autocorrelation depends in part on the geographical loca-
tion of the measurement site and on altitude. Here we inves-
tigated how a statistical approach to estimate the difference
between two instrument biases is affected by the persistence
of a time series.

The results presented here indicate that while it is in prin-
ciple possible to estimate the difference between two instru-
ment biases from interlaced measurements, the number of
interlaced flights required to obtain a satisfying accuracy is
very large for reasonable values of the autocorrelation co-
efficient. Strongly autocorrelated signals require fewer data
for an accurate estimate of the difference in biases and there-
fore fewer interlaced flights than time series with low auto-
correlation. The results show that for very strong persistence
(e.g. an AR[1] coefficient of 0.99) about twice the number
of measurements is needed compared to parallel measure-
ments to obtain a comparable uncertainty in estimates for in-

terlaced measurements. Hence, the described approach may
be used for measurements with very strong persistence or
for which the costs for sufficient parallel measurements ex-
ceeds the costs for sufficient interlaced measurements to con-
fidently infer the difference in the instrument bias. However,
if, for example, it were possible to derive a robust estimate of
the difference in instrument biases from interlaced measure-
ments in some reasonable time period (e.g. 2 years) and even
if this period was more than 2 or 3 times longer than would
be required from a dual measurement strategy to achieve
the same level of confidence, the interlacing approach would
provide a cost-saving alternative to an approach that would
start with dual flights and then continue with flights using
only the new instrument.

Code and data availability. The code can be obtained by contact-
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