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Abstract. Molecules with hydroperoxide functional groups
are of extreme importance to both the atmospheric and bio-
logical chemistry fields. In this work, an analytical method
is presented for the identification of organic hydroperox-
ides and peroxy acids (ROOH) by direct infusion of liquid
samples into a positive-ion atmospheric pressure chemical
ionization–tandem mass spectrometer ((+)-APCI-MS/MS).
Under collisional dissociation conditions, a characteristic
neutral loss of 51 Da (arising from loss of H2O2+NH3) from
ammonium adducts of the molecular ions ([M+NH4]

+)
is observed for ROOH standards (i.e. cumene hydroperox-
ide, isoprene-4-hydroxy-3-hydroperoxide (ISOPOOH), tert-
butyl hydroperoxide, 2-butanone peroxide and peracetic
acid), as well as the ROOH formed from the reactions of
H2O2 with aldehydes (i.e. acetaldehyde, hexanal, glyoxal
and methylglyoxal). This new ROOH detection method was
applied to methanol extracts of secondary organic aerosol
(SOA) material generated from ozonolysis of α-pinene, in-
dicating a number of ROOH molecules in the SOA ma-
terial. While the full-scan mass spectrum of SOA demon-
strates the presence of monomers (m/z= 80–250), dimers
(m/z= 250–450) and trimers (m/z= 450–600), the neutral
loss scan shows that the ROOH products all have masses less
than 300 Da, indicating that ROOH molecules may not con-
tribute significantly to the SOA oligomeric content. We antic-
ipate this method could also be applied to biological systems
with considerable value.

1 Introduction

Organic hydroperoxides and peroxy acids (ROOH) are pro-
duced by the gas-phase oxidation of volatile organic com-
pounds (VOCs) (Jackson et al., 1999; Lee et al., 2000; Atkin-
son and Arey, 2003), as well as in cloud and wet aerosols
(Zhao et al., 2013; Lim and Turpin, 2015). Atmospheric oxi-
dation of VOCs leads to secondary organic aerosol (SOA), an
important fraction of the atmospheric aerosol burden. Both
modeling and experimental studies indicate that organic per-
oxides (i.e. organic peroxides (ROOR) and ROOH species)
are major components of SOA (Jenkin, 2004; Bonn et al.,
2004; Docherty et al., 2005). In recent years, ROOH in par-
ticular have been proposed to be involved in high-molecular-
weight products leading to SOA formation (Krapf et al.,
2016; Kristensen et al., 2016; Sakamoto et al., 2017). Or-
ganic peroxides are also widely used industrially as radical
initiators; bleaching and disinfecting agents; and reactive in-
termediates in the polymer, food and pharmaceutical indus-
tries (Odian, 2004; Moll et al., 1979; Reile et al., 2011). In
biological systems, ROOH are formed from the reactions of
radicals and singlet oxygen with amino acids, peptides and
proteins (Gebicki and Gebicki, 1993; Wright et al., 2002;
Agon et al., 2006; Morgan et al., 2008). Classified as one
component of reactive oxygen species (ROS), ROOH are
hazardous, irritating to skin, eyes and mucous membranes.
They also cause progressive oxidative damage, cell death and
even cancer (Liou and Storz, 2010).
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Despite their importance in both atmospheric and biologi-
cal chemistry, the identification of specific ROOH molecules
in a complex mixture remains analytically challenging. There
are two reasons for this: (i) unavailability of the ROOH stan-
dards because of their thermally unstable nature (Bach et al.,
1996) and (ii) the lack of appropriate analytical techniques.
So far, the analysis of ROOH in the condensed phase has
mainly been done by means of chemical assays, such as
the iodometric (Docherty et al., 2005; Banerjee and Budke,
1964), triphenylphosphine (Nakamura and Maeda, 1991),
ferrous oxidation–xylenol orange (Wasylaschuk et al., 2007),
and horseradish peroxidase approaches (Walker et al., 2006;
Hong et al., 2008). These techniques react ROOH with re-
ducing agents followed by analysis of the reaction products.
ROOH have also been analyzed by high-performance liq-
uid chromatography (HPLC) analysis followed by the post-
column chemical derivatization method (Valverde-Canossa
et al., 2005; Francois et al., 2005; Hasson et al., 2001).

The disadvantage of the assay techniques is that they mea-
sure total peroxide content (some combination of organic
peroxides, organic hydroperoxides, and hydrogen peroxide)
and are not able to identify specific molecules. There are
limited studies on direct analysis of ROOH in the literature.
Using electrospray ionization–mass spectrometry (ESI-MS),
Hui et al. (2012a, b) identified ROOH formed from the oxi-
dation of cholesteryl ester, reporting ammonium and sodium
adducts of the ROOH molecular ions under positive ion mode
and acetate adducts of ROOH molecular ions under negative
ion mode (Hui et al., 2012a, b). Reinnig et al. (2009) identi-
fied ROOH using online ion trap mass spectrometry, propos-
ing that neutral loss (NL) of 34 Da (loss of H2O2) from the
protonated molecular ions is a characteristic fragmentation
route for ROOH. Using this technique, the authors identified
three ROOH molecules from SOA generated from reaction
of α-pinene and ozone (Reinnig et al., 2009).

Recently, using high-resolution mass spectrometry, a num-
ber of studies have proposed ROOH detection arising from
atmospheric oxidation of biogenic organics (Zhang et al.,
2017; Riva et al., 2017). However, due to the fact that the
high-resolution mass spectrometry can only provide elemen-
tal composition of the molecules, the identification of ROOH
in the reaction systems remains speculative.

In the present work, a positive-ion atmospheric pressure
chemical ionization–tandem mass spectrometer ((+)-APCI-
MS/MS) is applied to identify specific ROOH molecules.
The analytical method is developed by using ROOH com-
mercial standards and ROOH molecules that are generated
from the reactions of aldehydes with H2O2. The method is
applied to SOA formed from ozonolysis of α-pinene, and
a number of ROOH molecules are identified. The goal of this
work is to provide an analytical technique that can widely be
applied in not only the atmospheric chemistry field but also
other settings.

2 Experimental section

2.1 Chemicals and reagents

Cumene hydroperoxide (80 %), tert-butyl hydroperoxide
(35 %), 2-butanone peroxide (35 %), peracetic acid (32 %),
di-tert-butyl peroxide (98 %), benzoyl peroxide (≥ 98 %),
di(dodecanoyl) peroxide (97 %), 2-nonenal (97 %), meso-
erythritol (≥ 99 %), cis-pinonic acid (98 %), formaldehyde
(37 %), acetaldehyde (> 99 %), hexanal (98 %), methyl gly-
oxal (40 %), glyoxal (40 %), hydrogen peroxide (H2O2,
30 %), α-pinene (≥ 99 %) and ammonium acetate (≥
99.99 %) are all purchased from Sigma-Aldrich (Canada).
Isoprene-4-hydrox-3-hydroperoxide (ISOPOOH) is synthe-
sized according to the literature (Rivera-Rios et al., 2014).
Methanol (MeOH, LC-MS grade) is purchased from VWR,
Canada. All the chemicals and reagents are used as received.

2.2 Sample preparation and reactions of aldehydes
with H2O2

Stock solutions for ROOH standards (i.e. cumene hydroper-
oxide, ISOPOOH, tert-butyl hydroperoxide, 2-butanone per-
oxide and peracetic acid), other peroxides (di-tert-butyl per-
oxide, benzoyl peroxide and di(dodecanoyl) peroxide), 2-
nonenal, meso-erythritol and cis-pinonic acid are prepared
by dissolution of the substances in MeOH (2.0–10 mM). One
hundred microliters of stock solutions are further diluted in
MeOH to a final volume of 1 mL for mass spectrometry
analysis. In some cases, ammonium acetate (AA) is added
(∼ 5 mM) to enhance the signal for the ammonium adducts
of the molecular ions in the mass spectra.

Reactions of the selected aldehydes (i.e. formaldehyde, ac-
etaldehyde, hexanal, glyoxal and methyl glyoxal) with H2O2
are performed by mixing the reactants in MeOH (∼ 3 mM
and∼ 13 mM for aldehydes and H2O2, respectively) at room
temperature (295±3 K) for∼ 10 min. AA is added (∼ 5 mM)
before the samples are analyzed. Sample blanks (i.e. aldehy-
des+AA and H2O2+AA) are prepared and analyzed in the
same manner as the reaction mixtures.

2.3 Secondary organic aerosol (SOA) generation and
collection

SOA is generated in a steady-state manner in a 1 m3 Teflon
(FEP) chamber from gas-phase reaction of α-pinene with
ozone (Aljawhary et al., 2013). α-Pinene is introduced into
the chamber by passing a ∼ 2 mLmin−1 nitrogen through
a bubbler containing α-pinene that is chilled to −20 ◦C and
mixed with 5 Lmin−1 purified air. Ozone is generated by
passing ∼ 10 Lmin−1 purified air through a mercury lamp.
The final concentration of ozone is monitored to be ∼ 7.4×
1012 moleculescm−3 by a UV photometric ozone analyzer
(Thermo Model 49i), and the α-pinene concentration is esti-
mated to be ∼ 3.7× 1012 moleculescm−3.
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SOA generation is confirmed by a Scanning Mobility Par-
ticle Sizer (SMPS, Model 3034) and collected on quartz
fiber filters (47 mm diameter) for 72 h at a flow rate of ∼
15 Lmin−1. The filters are preheated at 500 ◦C for 24 h to re-
move organic impurities before SOA collection. After SOA
collection, the filter is extracted with 10 mL MeOH, and the
extract is immediately analyzed by the mass spectrometer.

2.4 Atmospheric pressure chemical ionization–tandem
mass spectrometer (APCI-MS/MS)

A unit resolution APCI-MS/MS instrument (Thermo TSQ
Endura) is operated in positive ion mode with direct infu-
sion of the samples into the mass spectrometer. The sam-
ple is injected at a flow rate of 10 µLmin−1 using a syringe
pump (Chemyx, Inc., USA; model: Fusion 101) to the APCI
source through polyether ether ketone (PEEK) tubing. The
spray voltage is set at +2500 V; vaporizer temperature and
ion transfer tubing temperature are set at 200 ◦C. Sheath gas,
auxiliary gas and sweep gas flows are set (arbitrary units) at
5, 2 and 0, respectively. The mass spectrometer is a triple
quadrupole that is calibrated with polytyrosine. Mass spec-
tra are obtained under either full-scan mode or selected ion
monitoring (SIM) mode.

In full-scan mode, RF lens voltages are the default from
the optimization in the mass calibration. The SIM scan is
achieved by isolating and monitoring a range of masses with
maximum mass range of 50 Da. The RF lens voltages in SIM
mode can be manually varied and are optimized to maximize
the intensities of the ammonium adducts of the molecular
ions.

Ion fragmentation in the MS/MS is accomplished by
application of electrical potentials (2–10 V) and collision
gas (Argon, 0.5 mTorr) in the collision-induced dissocia-
tion (CID) cell. Mass spectra from product scans are ob-
tained by transmitting ions of a specificm/z through the first
quadrupole (precursor ions), fragmenting in the CID cell, and
monitoring the resulting fragment ions (product ions) by the
third quadrupole.

In the NL scan mode, the first and third quadrupoles are
scanned at the same rate over mass ranges of the same width;
i.e. the third quadrupole transmits ions at a fixed mass-to-
charge ratio lower than the first quadrupole. In the NL scan,
the CID voltage and argon pressure are set at 2–10 V and
0.5 mTorr, respectively. The limit of detection (LOD) of the
analytical method is established by direct injection of the
ROOH standard solution in MeOH with 2–10 mM ammo-
nium acetate into the APCI source with the tandem mass
spectrometer being operated under NL scan mode. Three
ROOH standards – namely 2-butanone peroxide, tert-butyl
hydroperoxide and cumene hydroperoxide – are analyzed.
Since a neutral loss of 51 Da from the ammoniated molec-
ular ion ([M+NH4]

+) of the ROOH is characteristic for
ROOH molecules, as will be seen in the next section, the
calibration is performed by operating with a loss of 51 Da in

NL scan. The ROOH concentrations are selected when the
[M+NH4]

+ ions are well above the noise and clearly seen
in the average mass spectra. The LOD is reported as 3 times
the S/N where noise is estimated at mass-to-charge ratios
different from the mass-to-charge ratio for [M+NH4]

+.

3 Results and discussion

3.1 APCI mass spectra of ROOH standards

Figure 1 presents examples of the direct infusion (+)-APCI
mass spectra for (a) cumene hydroperoxide (cumene HP)
and (b) 4,3-ISOPOOH, with and without addition of AA.
The chemical structures and molecular weights (MWs) of
the ROOH analyzed are given in Fig. S1 in the Supplement.
Note that we do not attempt to interpret the mass spectra of
ROOH and other standards obtained under full-scan and SIM
modes due to the presence of stabilizers and other impurities
in the standard samples that make the mass spectra complex.
Instead, we focus on the protonated and ammoniated molec-
ular ions of the ROOH molecules.

It can be seen from Fig. 1 that, although cumene HP
demonstrates the proton adduct of the molecular ion at
m/z= 153 ([M+H]+ (top panel of Fig. 1a), addition of AA
results in the ammonium adduct atm/z= 170 ([M+NH4]

+)
(bottom panel of Fig. 1a). For ISOPOOH, the molecular ion
is not seen in the full-scan mass spectrum (top panel of
Fig. 1b), and the dehydrated molecular ion at m/z= 101
([M+H-H2O]+) is clearly observed instead (top panel of
Fig. 1b). This is consistent with previous studies claiming
that hydroperoxy group (-OOH) is not a favorable protona-
tion or deprotonation site with ESI or APCI (Reinnig et al.,
2008; Rondeau et al., 2003; Nilsson et al., 2008). The addi-
tion of AA again leads to significant production of the ammo-
nium adduct of the molecular ion at m/z 136 (bottom panel
of Fig. 1b). Similar effects of AA on the APCI mass spectra
are observed for other ROOH species.

In comparison, a number of other common molecules in
atmospheric samples – e.g. ROOR, carbonyls, alcohols and
carboxylic acids – were also analyzed. The chemical struc-
tures of the other oxygenated organics are given in Fig. S2.
Similar to the ROOH samples, the ammonium adducts of the
molecular ions ([M+NH4]

+) are obtained for all the sub-
stances. The only difference is that in some cases, e.g. ben-
zoyl peroxide, the ammonium adduct of the molecular ions
can be clearly seen without addition of AA, via trace levels
of ammonia present in the water or air.

3.2 Product spectra of [M + NH4]
+ for ROOH and

other organics

Figure 2 gives the CID fragment patterns (i.e. product spec-
tra) for ammonium adducts of the molecular ions ([M+
NH4]

+) of (a) cumene HP and (b) ISOPOOH. Two types
of fragmentation, i.e. loss of 35 and 51 Da from the respec-
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Figure 1. (+)-APCI mass spectra of ROOH with and without
addition of ammonium acetate (AA) for (a) cumene HP and
(b) ISOPOOH.

tive [M+NH4]
+ ions, are observed in both cumene HP and

ISOPOOH. The loss of 35 Da, corresponding to [-H2O-NH3]
(Fig. S3), is also observed in meso-erythritol and pinonic acid
(Fig. S4). Neutral loss of 51 Da, corresponding to [-H2O2-
NH3] (Fig. S3), is only observed from fragmentation of the
[M+NH4]

+ ions of ROOH (Figs. 2 and S4). It is known
that the loss of the H2O molecule from protonated molecular
ions ([M+H]+) is typical for epoxides, alcohols and car-
boxylic acids (Holcapek et al., 2010). But the loss of 35 Da
from [M+NH4]

+ is not characteristic for ROOH. Instead, the
loss of 51 Da from [M+NH4]

+ is only observed in ROOH
standards, including peracetic acid (Fig. S5). Hence we pro-
pose that the neutral loss of 51 Da from [M+NH4]

+ is char-
acteristic for ROOH molecules. This is consistent with pre-
vious work that suggested that neutral loss of H2O2 from
[M+H]+ is also characteristic for ROOH species (Reinnig
et al., 2009).

3.3 ROOH formation from the reactions of aldehydes
and H2O2

Using 1H NMR spectroscopy, it has been shown that ROOH
species form from the reactions of aldehydes with H2O2
(Zhao et al., 2013). As shown in Fig. 3, the reaction proceeds
via reversible nucleophilic addition of H2O2 to the carbonyl
group in aldehydes, leading to α-hydroxyhydroperoxides
(HHP). The addition of H2O2 to methylglyoxal (MGL;
MW= 72) gives rise to MGL HHP (MW= 106) (Fig. 3a),
whose ammonium adduct is seen at m/z 124 in Fig. 4a. The

Figure 2. Product spectra of [M+NH+4 ]
+ for (a) cumene HP and

(b) ISOPOOH.

mass spectrum of the reaction mixture of glyoxal and H2O2
suggests that, rather than a direct addition to glyoxal, H2O2
is instead added to the glyoxal geminal diol formed by the
hydrolysis of glyoxal (Fig. 3b), producing [M+NH4]

+ at
m/z 128 (Fig. S6a). The [M+NH4]

+ ROOH peaks are also
observed in the reactions of other aldehydes with H2O2 (data
not shown).

The fragmentation spectra of the [M+NH4]
+ of the

ROOH from methylglyoxal and glyoxal are given in Figs. 4b
and S6b, respectively. It is clear that the neutral loss of
51 Da is again observed in the fragments of the ROOH
molecules. The ROOH products from all the other aldehyde
reactions with H2O2 also show loss of 51 Da in MS/MS
mode. Overall, we conclude that the neutral loss of 51 Da
from [M+NH4]

+ fragmentation can be used to identify
ROOH molecules.

3.4 Identification of ROOH in SOA material

Figure 5 presents mass spectra of the methanol extract of
SOA generated from ozonolysis of α-pinene under dry con-
ditions (relative humidity (RH)< 5 %). There are three fea-
tures of note. First, the well-characterized products from
this reaction – such as nopinone aldehyde (MW= 154), ter-
penylic acid (MW= 172) and cis-pinic acid (MW= 186)
(Jenkin et al., 2000; Larsen et al., 2001; Claeys et al., 2009)
– are present as protonated molecular ions ([M+H]+) in the
full-scan mode (Fig. 5a). Second, the full-scan mass spec-
trum (Fig. 5a) shows the presence of monomer (m/z= 80–
250), dimer (m/z= 250–450) and trimer (m/z= 450–600)
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Figure 3. ROOH formation from reactions of H2O2 with (a) methylglyoxal and (b) glyoxal.

Figure 4. (a) Mass spectrum of reaction of methylglyoxal with
H2O2 in the presence of AA; (b) product mass spectrum ofm/z 124
from panel (a).

species, as has been reported in previous work (Venkatachari
and Hopke, 2008). Third, and perhaps most importantly, the
51 Da neutral loss scan (Fig. 5b) indicates that all the ROOH
species have masses < 300 Da (Fig. 5b).

To confirm the observation of ROOH obtained with the
neutral loss scan, CID fragmentation spectra of a few in-
tense peaks at m/z 190, 202, 206, 218 and 220 in Fig. 5b
are analyzed. All the fragments of these products show loss
of 51 Da. An example of the fragment pattern for m/z 206 is
given in Fig. S7.

Figure 5. Mass spectra of SOA from ozone reaction with α-pinene
under dry conditions (RH< 5 %) obtained with (a) full scan and
(b) neutral loss scan of 51 Da.

The ROOH products in SOA are tentatively identified and
listed in Table 1. It should be noted that the chemical struc-
tures of these products are only obtained from their molecu-
lar ions and, therefore, remain speculative.

Several mechanisms for oligomer product formation in
SOA arising from VOC oxidation have been proposed:
(i) self- and cross-reactions of the peroxy radicals (RO2)
(Zhang et al., 2015); (ii) reaction of ozonolysis products in
the condensed-phase, such as aldol condensation, esterifica-
tion, hemiacetal and peroxyhemiacetal formation (Ziemann,
2003; Tolocka et al., 2004; Kristensen et al., 2014; Docherty
et al., 2005; Muller et al., 2009; Yasmeen et al., 2010; Hall
and Johnston, 2012; Witkowski and Gierczak, 2014; De-
Palma et al., 2013; Lim and Turpin, 2015); (iii) dimer cluster
formation from carboxylic acids (Hoffmann et al., 1998; To-
bias and Ziemann, 2000; Claeys et al., 2009; Camredon et al.,
2010; DePalma et al., 2013); (iv) reactions of Criegee inter-
mediates (CIs) with VOCs oxidation products (Bonn et al.,
2002; Lee and Kamens, 2005; Tolocka et al., 2006; Heaton
et al., 2007; Witkowski and Gierczak, 2012; Kristensen et al.,
2016; Wang et al., 2016); and (v) reactions of RO2 radicals
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Table 1. Possible identities of the ROOH in α-pinene SOA.

m/z Molecular Chemical
([M+NH4

+
]
+) weight (MW) structure

174 156  

190 172  

202 184  

206 188  

218 200  

220 202  

232 214  

with Cis (Sadezky et al., 2008; Zhao et al., 2015). Among
them, the reactions of CIs with protic substances (water, al-
cohols, acids and hydroperoxides) can form ROOH. How-
ever, the nature of the ROOH products observed in SOA ma-
terial suggests that these reactions do not take place to a sig-
nificant extent given that ROOH do not contribute signifi-
cantly to the dimer and trimer SOA signals (Fig. 5b). The
similar mass patterns for the SOA and ROOH obtained un-
der dry (RH< 5 %) and humid (RH= 50 %) conditions sup-
port this conclusion (Fig. S9). Of course, we can not rule
out that the oligomeric ROOH may not be sensitive with the
analytical method used. Additionally, while the ROOH for-
mation mechanisms are proposed via gas-phase ozonolysis
of α-pinene (Fig. S8), the ROOH observed in the SOA could

also potentially be arising from the decomposition of perox-
yhemiacetals during methanol extraction.

In the neutral loss scan mode, the LOD were measured to
be 0.2, 0.3 and 20 mM for 2-butanone peroxide, cumene hy-
droperoxide and tert-butyl hydroperoxide, respectively. The
LODs obtained by this method are a rough estimation and
will vary dependent on a number of parameters: ionization
voltage, sample injection flow, gas flow, CID gas pressure,
CID voltages etc. More importantly, if a specific ROOH is to
be analyzed, then multiple reaction monitoring mode would
be applied and the LOD of the ROOH would be substantially
reduced.

4 Conclusions

Organic hydroperoxides are molecules of crucial impor-
tance to atmospheric chemistry, arising under VOC oxidation
schemes that proceed under low-NOx conditions. Indeed, as
NOx levels continue to drop throughout many parts of the at-
mosphere through emission control measures, it is expected
that these species will become even more prevalent. Further-
more, many of these ROOH molecules are known to consti-
tute an important component of secondary organic aerosol
material. Once in atmospheric particles, ROOH can partic-
ipate in condensed-phase reactions, including nucleophilic
processes and photolysis, and they are likely harmful when
deposited into lung fluid.

A major complication in the study of ROOH chemistry has
been the lack of detection techniques that are able to iden-
tify different ROOH species. In this work we present an of-
fline method for the identification of aqueous-phase ROOH
molecules which involves first ionization by adduct forma-
tion with ammonium ions and then collision-induced dis-
sociation by a unique fragmentation pathway involving the
simultaneous loss of both NH3 and H2O2. Although only
a fraction of the total ion fragmentation pathway involves
51 Da neutral loss, the specificity of the tandem mass spec-
trometry approach will yield low detection limits.

We illustrate the utility of this analytical method by
demonstrating that a set of ROOH molecules is present in
α-pinene ozonolysis SOA, all arising from known oxida-
tion mechanisms. Perhaps most interestingly, ROOH species
were not observed to be present in the oligomeric fraction
of α-pinene ozonolysis SOA, indicating that reactions such
as Criegee radicals reacting with protic substances are not
a source of such dimeric and trimeric molecules (Lim and
Turpin, 2015). In this manner, we believe that this new ana-
lytical approach could be used widely to decipher the preva-
lence of ROOH molecules in different forms of SOA. Given
the specificity of the method, it could also be used to mon-
itor the kinetics of condensed-phase reactions of individual
ROOH molecules.

Although this work focused on the use of this new ana-
lytical method to analyze for atmospheric ROOH molecules,
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it could equally well be applied to the detection of ROOH
molecules in other systems, especially biological ones.
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