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Abstract. While water vapor is the most important tropo-
spheric greenhouse gas, it is also highly variable in both
space and time, and water vapor concentrations range over
3 orders of magnitude in the troposphere. These properties
challenge all observing systems to accurately measure and
resolve the vertical structure and variability of tropospheric
humidity. In this study we characterize the humidity mea-
surements of various observing techniques, including four
separate Global Positioning System (GPS) radio occultation
(RO) humidity retrievals (University Corporation for Atmo-
spheric Research (UCAR) direct, UCAR one-dimensional
variational retrieval (1D-Var), Wegener Center for Climate
and Global Change (WEGC) 1D-Var, Jet Propulsion Labo-
ratory (JPL) direct), radiosonde, and Atmospheric Infrared
Sounder (AIRS) data. Furthermore, we evaluate how well the
ERA-Interim reanalysis and NCEP Global Forecast System
(GFS) model perform in analyzing water vapor at different
levels. To investigate detailed vertical structure, we analyzed
time–height cross sections over four radiosonde stations in
the tropical and subtropical western Pacific for the year 2007.
We found that the accuracy of RO humidity is comparable to
or better than both radiosonde and AIRS humidity over 800
to 400 hPa, as well as below 800 hPa if super-refraction is
absent. The various RO retrievals of specific humidity agree
within 20 % in the 1000–400 hPa layer, and differences are
most pronounced above 600 hPa.

1 Introduction

Tropospheric humidity is one of the key parameters driving
weather and climate, and it plays an important role in the de-
velopment of many extreme events. To accurately model cur-
rent and future climate, it is crucial to understand the distri-
bution, transport, and vertical structure of tropospheric water
vapor. However, measuring water vapor accurately is a great
challenge, as it is highly variable on both spatial and tem-
poral scales, and its tropospheric concentration varies over 3
orders of magnitude between the tropical planetary boundary
layer (PBL) and the tropopause. At present, no single observ-
ing system can provide accurate tropospheric humidity data
on a global scale with high vertical resolution.

Passive (microwave and infrared) nadir-sounding systems
provide data globally, but with relatively low vertical reso-
lution. Weighting functions are used to quantify vertically
resolved humidity information, and these vertical scales are
large (2 to 3 km) compared to the variability of water vapor
in the vertical. Furthermore, infrared-based systems cannot
provide data within or below clouds.

Radiosonde (RS) balloon measurements are launched
globally, although with sparse coverage in many areas, such
as over oceans or in the Southern Hemisphere. They can have
a high vertical resolution, but data quality varies strongly de-
pending on the sensor type (Miloshevich et al., 2006; Ho
et al., 2010). Operational weather forecasting still benefits
greatly from RS measurements, but the current global RS
network is neither designed nor suitable for detecting and
monitoring climate change. First, many different sensor types
are used globally, each with their unique known and un-
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known biases. Second, sensor types at different locations
change over time, and these changes have been poorly doc-
umented in the past, which can lead to artificial trends or
jumps in the station’s record (Dai et al., 2011). The GCOS
(Global Climate Observing System) Reference Upper-Air
Network (GRUAN) aims to address this issue by providing
long-term high-quality vertical profiles of selected essential
climate variables, including an estimate of the measurement
uncertainty (Bodeker et al., 2016). GRUAN will play an im-
portant role for calibrating data from other global networks;
however, at this point in time certified data are available at
only a few locations with a relatively short time range (less
than 4 years).

Research aircraft can provide high-quality, high-resolution
profiles, but these missions are infrequent and cannot pro-
vide a complete global picture continuously over time by
themselves. They are, however, important to evaluate mea-
surements from other observing systems or models (Rieckh
et al., 2017).

The Global Positioning System (GPS) radio occultation
(RO) technique provides near-vertical profiles of refractivity
with high vertical resolution and high accuracy and precision.
Other features of the RO technique are global coverage, all-
weather capability, and SI traceability. Profiles penetrating
down into the lower troposphere became available with open-
loop tracking (Sokolovskiy et al., 2006). Since refractivity
depends on temperature and water vapor pressure, tropo-
spheric specific humidity can be derived from refractivity via
a so-called direct retrieval (using ancillary temperature infor-
mation) or a one-dimensional variational retrieval (1D-Var),
which finds the optimal solution for water vapor pressure,
temperature, and refractivity, taking their prescribed errors
into account. Thus the RO water vapor retrievals and their
quality vary depending on the a priori (and the accuracy of
the prescribed data) and inversion method used. Several RO
processing centers currently provide RO water vapor profile
retrievals: University Corporation for Atmospheric Research
(UCAR), Jet Propulsion Laboratory (JPL), Danish Meteoro-
logical Institute (DMI), and Wegener Center for Climate and
Global Change (WEGC).

The above observing techniques have been used to inves-
tigate the global humidity distribution, trends, and radiative
impact. RO, despite being a relatively young observing tech-
nique, has shown the potential to provide data of climate
benchmark quality for refractivity and temperature between
about 8 and 25 km (Ho et al., 2009, 2012; Steiner et al.,
2013). The quality of RO humidity is subject to research
since ancillary data are required to retrieve humidity from re-
fractivity. Kursinski et al. (1995) provided a first estimate for
water vapor accuracy of less than 5 % for individual profiles
in the boundary layer and 20 % up to about 7 km. Chou et al.
(2009) found humidity differences smaller than 40 % below
7 km for individual profile comparisons between dropsondes
and RO. For observations near strong typhoons, they found
differences up to 100 % in the mid- and upper troposphere.

Regarding global specific-humidity distributions, Chou et al.
(2009) found good agreement within 15 % between RO and
Atmospheric Infrared Sounder (AIRS) but significant dis-
crepancy between NCEP/NCAR reanalysis and RO humid-
ity. Ho et al. (2010) showed that UCAR COSMIC (Con-
stellation Observing System for Meteorology, Ionosphere,
and Climate) water vapor profiles agree well with those
of European Centre for Medium-range Weather Forecasts
(ECMWF) analysis over different regions, demonstrating the
quality of the RO humidity data. Furthermore, they used
RS and RO co-located data to identify biases of various RS
types. Wang et al. (2013) also used UCAR COSMIC wa-
ter vapor products and global RS data with very strict co-
location criteria (1 h, 100 km) to verify the quality of UCAR
RO humidity and found a mean specific-humidity bias of
−0.012 g kg−1, with a standard deviation of 0.666 g kg−1

over the 925–200 hPa layer. Ladstädter et al. (2015) com-
pared WEGC RO profiles from multiple missions to a 5-year
record of GRUAN RS profiles (both of which have the poten-
tial to serve as reference observations in the GCOS) and to
a standard 11-year record of RS profiles (Vaisala RS90/92).
Vaisala RS90/92 shows a dry bias of 40 % in the troposphere
compared to RO, whereas GRUAN, with an elaborate humid-
ity bias correction scheme, agrees within 5 % with RO below
300 hPa. Ladstädter et al. (2015) state that the good agree-
ment of the RO and GRUAN RS data sets strongly encour-
ages further development and advancement of both systems
for the benefit of future climate monitoring and research. Ver-
gados et al. (2015) compared relative humidity (RH) of JPL
RO, ECMWF ERA-Interim reanalysis, and Modern-Era Ret-
rospective analysis for Research and Applications (MERRA)
in the tropics and showed that, from a climatological stand-
point, MERRA and JPL RO are in agreement, whereas the
ECMWF reanalysis is drier. Vergados et al. (2018) compared
JPL and UCAR RO humidity data sets to MERRA, ERA-
Interim, and AIRS from 2007 to 2015 for the ±40◦ latitude
range between 700 and 400 hPa. They found that both RO hu-
midity retrievals agree well with MERRA and ERA-Interim,
but the JPL retrieval is overall moister than all other data sets,
while both the UCAR retrieval and AIRS are overall drier
than all other data sets.

All of the above work considered differences averaged
over large geographical regions and long time periods (a
month or longer). While useful for climate and error estima-
tions, these averages obscure variability that takes place on
smaller temporal and spatial scales. Case studies fill this gap,
but they often focus on a single particular event that occurs
over only a few days.

In this study we focus on the water vapor variability in
both a temporal and spatial sense by comparing data from
multiple observing techniques (RO, RS, AIRS) and model
(re)analyses (ERA-Interim, Global Forecast System (GFS))
at particular locations in the tropics and sub-tropics over
an entire year. We chose the year 2007, when the maxi-
mum number of COSMIC RO profiles was available (COS-
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MIC was launched in 2006; Anthes et al., 2008). We com-
pare each of these individual data sets with co-located ERA-
Interim humidity results for (a) the surface to the upper tro-
posphere, (b) four locations, (c) four seasons, and (d) during
typhoon passages. We quantify the structural uncertainty of
RO-derived humidity profiles in the troposphere, which re-
sults from different inversion implementations and a priori.
To understand how the RO humidity data sets are different
from other humidity products, we collected RS–ERA pairs,
AIRS–ERA pairs, and GFS–ERA pairs near the four RS sta-
tions. Although these data pairs may not sample the same
local times, the errors due to local time sampling differences
are probably small over these oceanic regions.

As humidity varies strongly in time and space, this study
allows us to show in detail how humidity conditions change
over time, both daily and seasonally, and how atmospheric
conditions affect the ability of these data sets to provide accu-
rate and precise humidity information. We can identify high-
frequency variability and patterns at selected locations that
would be obscured if only statistical parameters were ana-
lyzed.

We focus on several challenging locations in the tropics
and sub-tropics where water vapor is highly variable. We
show the entire 1000–400 hPa range to show how data quality
for different observing and modeling systems varies with al-
titude. For example, the humidity data from many RS sensors
are biased in the mid- and upper troposphere. RO-derived hu-
midity can be biased in the lowest few kilometers (due to
super-refraction in the atmosphere) and is unreliable once
temperatures get as low as 250 K in the upper troposphere
(around 350 hPa in the tropics). Using data from 1000 to
400 hPa without layer averaging allows us to identify details
in the vertical humidity structure as measured by these sys-
tems.

ERA-Interim reanalysis (hereafter ERA) is used as a ref-
erence for all comparisons. Although all data sets used in
this comparison are assimilated in the ERA, comparisons are
still valuable since (i) data from a large number of differ-
ent observing techniques are assimilated (number of assimi-
lated observations more than 107 per day in 2010 (Dee et al.,
2011), thus lowering the impact of any single observation),
and (ii) the RO uncertainties used in data assimilation are
large in the mid- and lower troposphere, and hence RO makes
a relatively small contribution in the ERA reanalysis. In the
ERA, the standard deviation of the RO observation error dis-
tribution (in bending angle space) is assumed to decrease lin-
early with increasing height, from 20 % at the surface to 1 %
at 10 km impact height (Poli et al., 2010).

In a companion paper (Anthes and Rieckh, 2018), these
data sets are compared statistically in different ways to esti-
mate the error variances of each data set. This method indi-
cates that the ERA-Interim data set has the smallest errors in
refractivity, temperature, specific humidity, and relative hu-
midity from 1000 to 200 hPa. The current paper sets the stage
for this statistical comparison by describing the data sets in

detail and showing how they vary over the year at the four
locations.

The structure of this paper is as follows: Sect. 2 explains
the data sets used in this study. Section 3 shows an overview
of the results for the different observing systems, which are
analyzed in greater detail in Sect. 4. Section 7 provides a
summary and conclusions.

2 Data and method

2.1 Radio occultation

Radio occultation (RO) is a limb-sounding technique that
provides near-vertical profiles with high vertical resolution
of bending angles (Melbourne et al., 1994; Hajj et al., 2002),
which can be used to retrieve atmospheric refractivity N .
N can be related to atmospheric temperature T , pressure p,
and water vapor pressure e via the Smith–Weintraub formula
(Smith and Weintraub, 1953):

N = 77.6
p

T
+ 3.73× 105 e

T 2 + [. . .]. (1)

The contribution toN from liquid water (the terms in [. . . ] in
Eq. 1) can be neglected in most conditions (Ho et al., 2018).
When e is negligible (at temperatures lower than 250 K;
Kursinski et al., 1997), the second term is assumed zero and
atmospheric temperature can be computed using Eq. (1).

In the troposphere, where water vapor content is signif-
icant, Eq. (1) is ambiguous and ancillary temperature data
from another data source (usually model or analysis tem-
perature) are required to solve for e. Direct retrievals use a
prescribed T from another source to derive e. In a 1D-Var
retrieval, a cost function is minimized to find the optimal so-
lution for e, T , andN with their prescribed errors (Poli et al.,
2002). In this study, three different RO retrievals and four dif-
ferent humidity retrievals are compared in order to provide an
indication of the uncertainty in RO-derived water vapor.

GPS RO humidity accuracy varies depending on the
choice of retrieval (direct versus 1D-Var retrieval). For a di-
rect retrieval, humidity accuracy is determined by both the
quality of the a priori temperature (Vergados et al., 2014,
Fig. 1) and the refractivity accuracy. For the 1D-Var retrieval,
humidity accuracy depends on the a priori temperature and
humidity quality, the GPS RO refractivity accuracy, and the
error variances for the input parameters. A general estimate
for RO specific-humidity accuracy is given in Vergados et al.
(2018) (and references therein) as ∼ 10–20 %.

2.1.1 UCAR 1D-Var

A one-dimensional variational (1D-Var) retrieval generally
uses an a priori state of the atmosphere (background verti-
cal profile), an observable (RO refractivity or bending angle),
and their specified associated errors to minimize a quadratic
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cost function. At COSMIC Data Analysis and Archive Cen-
ter (CDAAC), ERA profiles of temperature and humidity are
used as background, which are interpolated to the time and
location of the RO (accounting for tangent point drift during
the occultation). The humidity retrieval allows specified er-
rors for both T and e, but only a very small error for bending
angle/refractivity. CDAAC provides the resulting profiles of
N , T , e, and p (wetPrf1), hereafter called UCAR 1D-Var.

2.1.2 UCAR direct

A direct retrieval uses background temperature and RO re-
fractivity to compute humidity using Eq. (1). The influence
of a T error on e (i.e., the relation between δT and δe) can be
directly derived from Eq. (1) (Ware et al., 1996), under the
assumption that N and p are constant:

dN =
δN

δT
δT +

δN

δe
δe = 0−→ (2)

δe =
1

3.73× 105 (2NT − 77.6p)δT . (3)

Ware et al. (1996) showed that e could be estimated to
within 0.25 hPa in the lower troposphere if temperature were
known to within 1 K. Vergados et al. (2014) depict the re-
trieval errors of specific humidity q due to temperature un-
certainty for several latitude bands and pressure levels and
show that humidity errors increase with increasing altitude
and latitude, since humidity, and thus its contribution to at-
mospheric refractivity, decreases. In the tropics (relevant for
this study), the q uncertainty for 1 K T uncertainty is less
than ±3 % below 700 hPa and increases to 18 % at 400 hPa
(cutoff altitude in this study).

We use the RO variable “N_obs” (observed N before go-
ing through the 1D-Var) from the UCAR CDAAC wetPrfs.
We chose T from the co-located GFS profiles as prescribed
temperatures in the humidity retrieval for a greater indepen-
dence between RO and ERA. For the four locations in this
study, the maximum T difference between GFS and ERA
occurs at Guam, with up to 2 K in the 800–500 hPa layer
for the individual profiles. Comparisons of the UCAR di-
rect retrieval using GFS T versus ERA T as background
temperature shows specific-humidity differences of less than
3.5 % for seasonal and 200 hPa layer averages within the
800–300 hPa layer.

2.1.3 WEGC 1D-Var

The Wegener Center for Climate and Global Change
(WEGC) developed a simplified version of a 1D-Var method.
As a background, they use ECMWF 24 or 30 h forecast
fields, which are spatially interpolated to the location of the
RO (Schwärz et al., 2016). Combining the Smith–Weintraub

1http://cdaac-www.cosmic.ucar.edu/cdaac/ (last access: 17
September 2017)

equation and the hydrostatic equations for dry and moist air,
they are solved for e and p with prescribed T , and for T and
p with prescribed e. Iteration continues until the retrieved e
and T converge within a set tolerance. Then the results are
combined to get the optimally estimated T and e profiles.
More information about the retrieval and error characteris-
tics can be found in Ladstädter et al. (2015) and references
within.

2.1.4 JPL direct

JPL’s direct retrieval is similar to the UCAR direct but
uses the ECMWF Tropical Ocean and Global Atmosphere
(TOGA) T as a priori. Humidity is only derived below the
level of tropospheric T = 250 K (Kursinski et al., 1997). JPL
RO data were downloaded via the Atmospheric Grid Analy-
sis and Profile Extraction tool2.

2.2 ERA-Interim reanalyses

We use the ERA as a reference (or baseline) for our com-
parisons3. We do not consider the ERA as “truth”, but we
do consider the ERA to be the most accurate data set (An-
thes and Rieckh, 2018) because it uses quality-checked ob-
servations with a 4D-Var data assimilation scheme and an
accurate forecast model in a research mode to produce the
variables of interest here (temperature and water vapor) on
a 0.7◦× 0.7◦ grid. In 2007 ERA assimilated measurements
from many different observing techniques, including RS ob-
servations, AIRS radiances, and RO bending angles (Dee
et al., 2011). Thus, when using the word “bias” for a data set
in a comparison, we refer to the bias difference with respect
to ERA.

Apart from using ERA as a reference, we also created two
baseline data sets from ERA for comparison to the observa-
tions. The first one is the climatology (hereafter CLIMO) for
2007, which is simply the ERA 2007 annual mean. The sec-
ond one is the persistence (PERSIST) value of each variable
from the value of the time series 24 h earlier. It represents
a measure of the day-to-day variability in the ERA data set.
These two simple data sets represent a baseline against which
the value of observations can be compared. A minimum re-
quirement for an observation type to be useful is that it must
contribute additional information above those contributed by
these baseline data sets; i.e., they must be more accurate than
these data sets.

2.3 Radiosonde, AIRS, and GFS

RS data for Guam (13.5◦ N, 144.8◦ E) and three Japanese
stations (Ishigakijima: 24.2◦ N, 124.5◦ E; Minamidaitojima:

2https://genesis.jpl.nasa.gov/agape/ (last access: 18 September
2017)

3https://rda.ucar.edu/datasets/ds627.0/ (last access: 26 June
2017)
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25.6◦ N, 131.5◦ E; Naze: 28.4◦ N, 129.4◦ E) (Fig. S1, in the
Supplement) were downloaded from the National Oceanic
and Atmospheric Administration4. The RS are given on six
standard pressure levels between 1000 and 400 hPa, plus ad-
ditional levels if there is higher-resolution vertical structure.
The RS at the four stations are generally launched twice daily
during the hour before midnight and noon (UTC). The four
stations use the following sensors: Guam: Sippican VIZ-B2;
Ishigakijima: Meisei; Minamidaitojima: Vaisala RS92; and
Naze: Meisei5. The Sippican VIZ-B2 humidity sensor has a
nighttime wet bias (Wang and Zhang, 2008; Ho et al., 2010)
and performs poorly in dry conditions (Holger Vömel, per-
sonal communication, 2017). Ho et al. (2010) found no ob-
vious bias for the Meisei sensor. The Vaisala RS92 sensor is
known for its dry bias (Vömel et al., 2007) of ∼ 9 % at sur-
face, and up to 50 % at 15 km altitude, and several correction
schemes have been developed to address this (Miloshevich
et al., 2006; Vömel et al., 2007).

AIRS is a nadir-looking instrument aboard the National
Aeronautics and Space Administration (NASA) Aqua satel-
lite, which was launched in May 2002. AIRS provides at-
mospheric variables on 28 standard pressure levels between
1100 and 0.1 hPa (8 levels between 1100 and 400 hPa)6. The
vertical resolution is ∼ 1 km for temperature and ∼ 2 km for
humidity7. The horizontal resolution8 is 50 km. We use the
AIRS Version 6 Level 2 (AIRS2RET) data with a quality flag
of “BEST” or “GOOD”.

The AIRS retrieval is a cloud-clearing retrieval. Susskind
et al. (2003) describe the cloud-clearing process that yields
the “clear” radiances from which all parameters except
clouds are retrieved (Kahn et al., 2014). The humidity re-
trieval of Version 6 is basically the same as in Version 5
but still yields improved humidity results due to the im-
proved first guess provided by the Neural-Net start-up sys-
tem, improvements in the determination of other atmo-
spheric variables, and improvements in cloud-cleared radi-
ances (Susskind et al., 2014).

RO co-located profiles for GFS are added in the compar-
ison to show results from an analysis that is different from
ERA. GFS profiles are given on a 25 or 50 hPa grid (depend-
ing on altitude) and are linearly interpolated to the time and
location of the UCAR 1D-Var profiles.

4https://www.ncdc.noaa.gov/data-access/weather-balloon/
integrated-global-radiosonde-archive (last access: 7 June 2017)

5https://www1.ncdc.noaa.gov/pub/data/igra/history/
igra2-metadata.txt (last access: 2 June 1017)

6ftp://airsl2.gesdisc.eosdis.nasa.gov/ftp/data/s4pa/Aqua_AIRS_
Level2/AIRS2RET.006/ (last access: 13 December 2017)

7http://airs.jpl.nasa.gov/data/physical_retrievals (last access: 13
December 2017)

8http://disc.gsfc.nasa.gov/uui/datasets/AIRS2RET_V006/
summary (last access: 13 December 2017)

2.4 Design of the comparisons

Since we are investigating humidity differences of various
observing systems, we chose regions where humidity con-
ditions are highly variable in both space and time with
extremely high and low values during the year. We use
the tropical location Guam, which frequently experiences
dry air intrusions from the subtropical upper troposphere–
lower stratosphere (UTLS) region from December to March
(Rieckh et al., 2017). This leads to sharp vertical humid-
ity gradients (relative humidity changes from less than 10
to about 80 % within a small vertical layer), conditions that
are favorable for RO super-refraction (Garratt, 1992). Super-
refraction, in turn, will lead to a negative bias in the RO-
observed N and q. See Fig. S3 for the ERA 2007 time series
of specific humidity, relative humidity, temperature, and re-
fractivity at Guam.

The other RS locations are subtropical stations around
Japan, which experience a large seasonal variability as well
as extreme conditions associated with occasional typhoons.
See Fig. S4 for the ERA 2007 time series of specific humid-
ity, relative humidity, temperature, and refractivity at Ishi-
gakijima.

To increase the number of co-located profiles, we picked
the year 2007 for our analysis, when all COSMIC satellites
were operating reliably. Since the measurement techniques
for RO, RS, and AIRS are different, we use different co-
location criteria to get a maximum number of high-quality
co-locations. For the ERA reference grid points matched to
the RS stations, the distance between any of the RS stations
and the respective ERA grid point is between 15 and 35 km,
and the time difference less than an hour from the 00:00 and
12:00 UTC ERA data. RO observations are co-located within
3 h and 300 km, and a co-location correction as described by
Gilpin et al. (2018) is applied:

1XSC = (XRO−XRS)SC

= (XRO−XRS)−
(
XRO loc

ERA −X
RS loc
ERA

)
, (4)

where 1XSC denotes the spatially corrected difference of
X, X is a variable measured by RO and RS, and the co-
location correction is the difference in the ERA values of
X at the RS and RO locations. Gilpin et al. (2018) show
that double-differencing correction significantly reduces the
mean and root mean square (rms) differences of the RO and
RS observations. Since our reference location is an ERA grid
point, we replace RS with ERA in Eq. (4), which simplifies
to 1XSC =XRO−X

RO location
ERA .

AIRS profiles are extracted within 30 km from the ERA
reference point; the maximum time difference is 3 h. Fig-
ure S2 depicts the co-location process for all data sets and
one time.

Due to the restrictions as explained above, the resulting
profile pairs (and number of profile pairs) between ERA and
any of the data sets are different. Furthermore, the four RO
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retrievals have different quality control schemes, which espe-
cially lowers the number of available JPL profiles. The pen-
etration depths also vary for the RO data sets and retrievals;
for example, the UCAR 1D-Var data are available on lower
levels than UCAR direct because the bottom height is given
as zOB−eCL, where zOB is the bottom height of observation,
and eCL is the background error correlation length (which is
500 m in the UCAR 1D-Var).

All data sets are interpolated to a common 25 hPa grid. We
chose this grid as a compromise between the effective reso-
lutions of all data sets used. The effective resolution of RO
is estimated to be higher than 100 m in the troposphere (Gor-
bunov et al., 2004). The RS has observations on additional
levels (significant levels) if there are significant changes in
the vertical profile. ERA and GFS are provided on a pres-
sure grid with 25 or 50 hPa increments. AIRS is sampled on
a sparser vertical grid and thus does not resolve small-scale
features in the vertical. But any biases over deep layers will
be evident, and if interpolation leads to biases in certain pres-
sure layers, a pattern will be clearly visible in the individual
profiles.

The horizontal scale (footprint) of each data set varies.
The horizontal resolutions of the ERA and GFS mod-
els (grid size) are approximately 80 km× 80 km and
28 km× 28 km, respectively. The AIRS footprint is approx-
imately 50 km× 50 km. The RO observations have a hori-
zontal length scale along the ray path of order 200 km (An-
thes, 2011). Finally, the RS is essentially a point measure-
ment. These differences can lead to representativeness errors,
or differences, because the finer-scale data sets can resolve
horizontal variability on smaller scales than the lower reso-
lution of the RO (200 km). Some of this representativeness
difference is reduced by the vertical averaging to 25 hPa lay-
ers. The remaining differences tend to cancel in the mean
because the ERA, RS, and RO observations are located ran-
domly with respect to each other, and the smaller-scale struc-
tures that they resolve vary randomly within the model grid
volumes. However, these differences in representative scale
will contribute to the rms differences from the ERA data set.

Profile pairs of ERA and each data set are extracted, and
the computed differences are normalized by the ERA 2007
mean value (CLIMO) at each level: normalized difference
(ND) = 100 · (dataset−ERA)/CLIMO (expressed as %). To
make it easier to transfer results from normalized to actual
differences, the constant value CLIMO is used to normalize
all data sets. The values for CLIMO are shown in Fig. 1, and
the exact values are provided in the Supplement in Table S1
for an easy reproduction of the original values.

3 Results

3.1 Overview: general agreement and correlation
between the data sets

Figure 2 shows values of q for UCAR direct, UCAR 1D-
Var, WEGC 1D-Var, JPL direct, RS, AIRS, and GFS (left
to right) versus ERA from high- to low-pressure layers (top
to bottom), depicting the correlation between the observa-
tional data sets and ERA at Guam (log–log correlation coef-
ficients in the title of each panel). Additionally, the mean and
standard deviation values of the differences for each pressure
layer are depicted in each panel (since values are not normal-
ized, values from the lower levels will have a larger influence
on the result).

There is good agreement and high correlation for all data
sets in the 1000–400 hPa layer (Fig. 2, bottom panels). The
RS shows the largest difference (∼ 1 order of magnitude) for
generally low humidity values. Some larger differences can
also be seen for the UCAR direct, UCAR 1D-Var, JPL direct,
and GFS when these data sets are much drier than ERA (pri-
marily happening in the DJF season). The large differences
occur generally for q values less than 1 g kg−1, with many
lower than 0.1 g kg−1, which indicates dry higher altitudes
(i.e., above 500 hPa). RO refractivity becomes less sensitive
to water vapor at these higher altitudes, and the RO retrievals
of water vapor, whether direct or 1D-Var, are less reliable
at these levels (Kursinski et al., 1995). The UCAR 1D-Var
can also have difficulties retrieving very low humidity values
(which is the case in the DJF season at Guam). If the a priori
temperature is too low, it can happen that the UCAR 1D-Var
humidity values are set to zero, which would lead to a dry RO
bias overall for low values of specific humidity. The data sets
look similar in the 400–300 hPa layer, and a dry bias for the
RS becomes visible. In the 300–200 hPa layer, the UCAR di-
rect spread becomes very large (indicating limited usefulness
for RO direct retrievals at this level), while the UCAR 1D-
Var and WEGC 1D-VAR agree very well with ERA, since
they are using ERA and ECMWF short-range forecast pro-
files as background in the retrieval, respectively. JPL direct
humidity data are not available at these pressure levels. Both
RS and AIRS show a dry bias. Finally, in the 200–100 hPa
layer the UCAR direct data are useless, the UCAR 1D-Var is
practically identical to ERA (simply recovering ERA a pri-
ori values), and the RS and AIRS data both have a strong
dry bias. The GFS agrees fairly well with ERA in the upper
layers and has no obvious bias.

3.2 Time series at Guam

Figure 3a shows the time–height cross section of RH over
2007 from 1000 to 400 hPa at Guam. Overall, the conditions
at Guam are moist (RH> 80 % and q ∼ 17 g kg−1) year-
round in the boundary layer and in the mid-troposphere from
July to November, and dry in the mid-troposphere during
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Figure 1. ERA annual average profiles on the 25 hPa grid for (a) refractivity, (b) specific humidity, (c) relative humidity, and (d) temperature
at all four locations.

the rest of the year. The changing humidity pattern above
800 hPa results from the alternation of the high-humidity
tropical conditions and dry air intrusions from the subtropical
UTLS in December to June (Randel et al., 2016). These dry
intrusions (relative humidity as low as a few percent) are very
stable and suppress convection. The sharp humidity gradient
between the very dry lower mid-troposphere and the moist
boundary layer around 800 hPa often leads to conditions of
super-refraction, which results in a negative bias of N and
thus q in the RO profiles (Xie et al., 2010).

The ND of specific humidity q between the PERSIST data
set and ERA (which represents the day-to-day variability of
ERA) shows that q has almost no day-to-day variability in
the 1000–800 hPa layer during the entire year and in the 800–
600 hPa layer in August and September (Fig. 3b). Above,
day-to-day variability is significant. Exceptions occur in the
600–400 hPa layer during December through May, when per-
sistent dry air intrusions occur. This shows just how stable
and persistent these layers can be, suppressing major changes
in humidity for up to 20 days in a row.

The ND of q between GFS and ERA (Fig. 3c) shows that
the differences between the two model values of q are much
smaller than the differences between PERSIST and ERA, as
might be expected. GFS is up to 50 % moister than ERA
in the 800–600 hPa layer in the dry season, and in the 800–
550 hPa layer in the wet season. This is essentially the layer
of strong humidity variability above the bottom layer of con-

stant (about 80 %) relative humidity. This behavior may be
due to GFS difficulties in capturing the sharp transition be-
tween dry and wet conditions on the bottom of dry layers in
December to June. This is supported by individual profiles
(e.g., Randel et al., 2016, Fig. 4), as well as our comparison
of ERA with RS (Fig. 4a), which supports the ERA in this
respect.

The ND show a small wet bias of the RS relative to ERA
in the lower troposphere and large wet and dry biases in the
middle and upper troposphere throughout the year (Fig. 4a).
The large biases are likely caused by RS sensor malfunctions
(Holger Vömel, personal communication, 2017), which can
start as low as at 800 hPa. At some point during the ascent,
the sensor gets stuck and keeps reporting the same humidity
value, which manifests itself as a dry or wet bias compared
to ERA, depending on if tropospheric conditions are drier
(December through May) or wetter (June through November)
than the incorrect reported value.

AIRS shows an overall dry bias compared to ERA
throughout the entire troposphere in all seasons (Fig. 4b).
The dry bias appears to be less during the dry-air-intrusion
events in the 600–400 hPa layer in the dry season (December
to June). This indicates that AIRS is less biased if the over-
all atmospheric conditions are dry. The AIRS dry bias agrees
well with the findings of Wong et al. (2015), who studied the
uncertainties of AIRS Level 2 Version 6 q and T depending
on cloud types. They found reduced dry biases in the middle
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Figure 2. Guam: scatterplots of q for seven data sets versus ERA for four pressure layers. Left to right: UCAR direct, UCAR 1D-Var,
WEGC 1D-Var, JPL direct, RS, and AIRS. Correlation coefficients as well as mean and standard deviation of the differences are given for
each panel. Note that both axes are on a logarithmic scale and that axis limits vary for different pressure layers.

troposphere under thin clouds, but large dry biases (> 30 %)
in the lower troposphere with low thick clouds, and dry bi-
ases throughout the troposphere in the presence of high thick
clouds.

The normalized differences of the four RO retrievals to
ERA show similar patterns in the 1000–800 hPa layer but
larger differences in the mid- and upper troposphere (Fig. 5).
The UCAR direct data develop a wet bias above 600 hPa
in the wet season and alternate between dry and wet during
the other seasons. The UCAR 1D-Var data show an overall
dry bias throughout the troposphere with a few exceptions.
Both JPL and WEGC data develop a strong wet bias above
600 hPa in the wet season. Common features of all four RO
retrievals include the very small differences to ERA in the
wet season in the 1000–800 hPa layer and a dry bias and/or
frequent reduced penetration depth (loss of signal) in the dry
season. The latter is a signature of super-refraction, which it-
self is caused by strong humidity gradients, usually between
the planetary boundary layer and the free troposphere.

Figure 5 also shows that all RO data sets are biased dry
with respect to ERA in December through February in the
800–600 hPa layer, which is clearly above the layer of strong
humidity gradients (compare to Fig. 3a). We found similar
behavior in previous work. In Rieckh et al. (2017), Fig. 2,
lower right panel, ERA data are given on the 775, 750, 700,
and 650 hPa pressure levels (about 2.3, 2.6, 3.1, and 3.8 km,
respectively). The 775 and 650 hPa levels agree well with the
aircraft and RO measurements; however, the two levels in be-
tween smear the sharp profile, and the ERA shows humidity
values 1.5 to 2.5 g kg−1 (20 to 35 %) larger than the observa-
tions. Thus we conclude that the bias in Fig. 5 may not be a
dry bias in RO but could be a wet bias in ERA in the layer
just above the strong humidity transition from wet (PBL)
to dry (above). The assumed errors for assimilating RO in
ERA are large in the lower troposphere, and all assimilated
nadir-viewing instruments only provide vertical resolutions
of about 2 to 3 km. Unless a nearby approved RS contributes
information locally, ERA does not have any vertically well-
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Figure 3. 2007 time series at Guam: (a) ERA relative humidity (%) with blue representing moist air and red representing dry air; (b) normal-
ized difference of q (%) between PERSIST and ERA; (c) normalized difference of q (%) between GFS and ERA. The bottom panel shows
that there are significant (±50%) differences in the two model data sets. The color bar on the right indicates relative humidity (%) in (a) and
specific-humidity normalized differences (%) in (b) and (c).

resolved humidity data that will cause the ERA analysis to
develop such sharp humidity gradients.

The 2007 time series of the q normalized difference for all
data sets are depicted for a Japanese station (Minamidaito-
jima) in Figs. S5 and S6.

The 2007 time series of the refractivity N normalized dif-
ference for all data sets are depicted for Guam in Figs. S7
and S8.

3.3 Mean and rms differences from ERA at Guam

We compute the mean and root mean square (rms) of the
normalized differences at Guam to get a statistical overview
of the differences from the ERA for all data sets for three
pressure layers (1000 to 400 hPa in 200 hPa layers) and four
seasons (Fig. 6).

Some general aspects of the different data sets seen in the
individual time series are clearly visible in the mean (Fig. 6,
top), such as the large negative (dry) difference of RO com-

pared to ERA (green and blue bars) in DJF for the 1000–
600 hPa layer. In the 1000–800 hPa layer, a dry bias for RO
exists throughout the year. The dry bias is largest in DJF, but
it is smaller than and comparable in magnitude to the biases
of the RS and AIRS in MAM, JJA, and SON. RO retrievals
show the greatest differences from each other in the 600–
400 hPa layer year-round and in the 800–600 hPa layer in the
wet season. AIRS shows an overall dry bias at all pressure
layers and seasons. As expected, PERSIST has essentially
no bias at any pressure layer or season. Because of the large
seasonal variation in water vapor, CLIMO has large seasonal
positive and negative biases above 800 hPa that are much
larger than the biases of any other data set. GFS shows sig-
nificant differences from ERA, especially in the dry season
(DJF and MAM) in the 800–600 hPa layer.

Since the mean of the paired normalized differences is no
indicator of their variability, we also show the rms (Fig. 6,
bottom). The magnitude of the rms is a measure of the ac-
curacy and scatter of the data compared to the reference.

www.atmos-meas-tech.net/11/3091/2018/ Atmos. Meas. Tech., 11, 3091–3109, 2018



3100 T. Rieckh et al.: Evaluating tropospheric humidity from GPS RO, radiosonde, and AIRS

Figure 4. 2007 time series of the q normalized difference between (a) RS and ERA, and between (b) AIRS and ERA at Guam. The color
bar on the right indicates specific-humidity normalized differences (%).

All data sets have a rms comparable to (below 800 hPa) or
considerably smaller than (above 800 hPa) both CLIMO and
PERSIST in all seasons (Fig. 6, bottom). The former is ex-
pected, considering how little humidity changes throughout
the year in the 1000–800 hPa layer. The latter indicates the
value (over persistence and climatology) of all observation
techniques above 800 hPa. As for the individual data sets,
we see that the RO rms for all retrievals is comparable to
or lower than RS and AIRS rms for all seasons and pressure
layers. This increases our confidence regarding the value of
RO mid- and lower-tropospheric humidity data.

3.4 Statistics at the subtropical Minamidaitojima

At Minamidaitojima all data sets have a smaller bias com-
pared to ERA (Fig. 7, top) than at Guam. The strong RO
humidity bias in the dry-season lower troposphere (as seen at
Guam) is not present, and biases of all observational data sets
(with the exception of AIRS) are less than 5 % in the 800–
600 hPa layer. Biases are larger in the 600–400 hPa layer,
especially for the RS. The rms values at Minamidaitojima
(Fig. 7, bottom) show a similar pattern to the one at Guam,
with the RO and GFS rms differences being smaller than
the RS and AIRS differences. The statistics of the other two
Japanese stations (Ishigakijima and Naze) are similar (not
shown).

4 Differences from ERA in dry versus wet atmospheric
conditions

In Sect. 3 we saw how the general atmospheric humidity con-
ditions (wet versus dry) can have an influence on the biases in
the data sets with respect to ERA, especially for RO (super-
refraction with strong vertical humidity gradients) and AIRS
(smaller bias in dry conditions). In this section, we investi-
gate the different error characteristics for dry and wet con-
ditions in more detail at both the tropical and subtropical
locations. We created a “dry” and “wet” data set. For ev-
ery profile pair, we computed the average relative humidity
(RH) of the ERA (background) profile for the 800–400 hPa
layer (RH800−400). This layer was chosen according to the
humidity distribution throughout the year (see Fig. 3, top).
If RH800−400 ≤30 %, the entire profile is added to the dry
data set. If RH800−400 ≥ 70 %, the entire profile is added to
the wet data set. Then the mean and rms are computed for
both these data sets separately. These statistical values are de-
picted for the 1000–800 hPa layer and the 800–400 hPa layer
(Fig. 8).

The mean of the normalized differences shows different
patterns for the dry and wet data sets at both Guam and Mi-
namidaitojima. At Guam, we see a dry bias of 6 to 14 % in the
1000–800 hPa layer for all RO retrievals for the dry data set
(Fig. 8, left). We assume that the dry air intrusions and sharp
humidity transitions above the PBL with associated super-
refraction conditions are primarily responsible for the nega-
tive N and thus negative q bias at Guam. The RO biases in
the 800–400 hPa layer vary around zero (−4 to 2 %). For the
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Figure 5. The 2007 time series of the q normalized difference at Guam for the (a) UCAR direct, (b) UCAR 1D-Var, (c) WEGC 1D-Var, and
(d) JPL direct retrieval. The color bar on the right indicates specific-humidity normalized differences (%).

wet data set, the mean RO differences from ERA vary sig-
nificantly in the 800–400 hPa layer from 0 to 16 %, while the
bias in the 1000–800 hPa layer is between 0 and−5 % for the
RO retrievals. At Minamidaitojima, the RO data sets show
smaller and similar biases for both pressure layers (Fig. 8,
right). The dry RO data set has no bias in the 800–400 hPa
layer and very small biases (2 to 5 %) in the 1000–800 hPa
layer. The bias with respect to ERA of the wet RO data set
ranges from−4 to 4 % in the 800–400 hPa layer and from−4
to 2 % in the 1000–800 hPa layer. Overall, we conclude that
there are no major differences in the RO error characteristics
between the dry and wet data sets or between the two pres-

sure layers at Minamidaitojima, in contrast to Guam, where
background humidity conditions clearly matter for the differ-
ent error characteristics.

AIRS clearly shows a strong dry bias for both pressure
layers for wet background conditions. The bias is stronger
at Minamidaitojima, reaching more than −30 % in the 800–
400 hPa layer and −20 % in the 1000–800 hPa layer. For dry
conditions, the AIRS bias ranges from −8 to 2 % for all lo-
cations and pressure layers. This agrees well with the small
bias seen in the regions of dry air intrusions (December to
June) in the profile time series (Fig. 4, bottom).
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Figure 6. Guam: The mean (a) and rms (b) of the q normalized difference for all data sets, three pressure layers, and four seasons. Data sets
from top to bottom (per pressure layer): JPL direct, WEGC 1D-Var, UCAR direct, UCAR 1D-Var, RS, AIRS, GFS, PERSIST, CLIMO.

Finally, the RS shows a small wet bias in the 1000–800 hPa
layer for both the dry and wet data sets and both locations. In
the 800–400 hPa layer, the dry data set shows a large wet
bias, which is likely due to the Sippican VIZ-B2 sensor’s
poor performance in dry conditions (see Sect. 2.3). At Mi-
namidaitojima, both the dry and wet data sets show a dry
bias in the 800–400 hPa layer, as described in Vömel et al.
(2007) for the Vaisala RS92 sensor for higher altitudes due
to a radiation bias.

5 Variability during typhoon passages

We used the subtropical RS station Ishigakijima to investi-
gate how the different data sets perform during the extreme
conditions of typhoon passages. In 2007, six typhoons passed
Ishigakijima within 350 km (the tracks and other details of
the typhoons can be found online9):

– typhoon #4, 6–16 July, date of closest approach
(320 km): 12 July, as typhoon category 4;

9http://weather.unisys.com/hurricane/w_pacific/2007/ (last ac-
cess: 10 December 2017)

– typhoon #7, 4–10 August, date of closest approach
(260 km): 7 August, as typhoon category1;

– super typhoon #9, 11–19 August, date of closest ap-
proach (300 km): 17 August, as typhoon category 4;

– typhoon #12, 11–17 September, date of closest ap-
proach (330 km): 14 September, as typhoon category 4;

– super typhoon #13, 14–20 September, date of closest
approach (40 km): 18 September, as typhoon category
3;

– super typhoon #17, 1–8 October, date of closest ap-
proach (110 km): 6 October, as typhoon category 4.

The time series of differences to ERA q for Ishigakijima
do not show a specific bias during typhoon passages, which
indicates that all data sets as well as ERA report a signal
similar in magnitude during the typhoon passages.

We computed the ERA average over the July–October
time range (CLIMOJulOct) to create a typhoon season clima-
tology. We then compared all data sets to CLIMOJulOct to see
how q and T deviate from the summer average during the
passage of a typhoon. All data sets show a rapid increase in
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Figure 7. Mina: Mean (a) and rms (b) of the q normalized difference for all data sets, three pressure layers, and four seasons

Figure 8. Mean differences for dry versus wet atmospheric conditions based on RH800−400 at Guam (a) and Minamidaitojima (b). The
different colors represent the different data sets. Circles and stars represent the data sets for dry and wet conditions in the mid-troposphere,
respectively.
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Figure 9. The q difference from CLIMOJulOct for (a) GFS, (b) UCAR direct, (c) RS, and (d) AIRS shows increased humidity during typhoon
passages near Ishigakijima. Typhoon passages are marked by vertical lines (dashed: closer than 110 km; dash-dotted: closer than 330 km).

humidity (Fig. 9) and higher temperature values (not shown)
as the typhoons approach and pass close to Ishigakijima. The
signal is strongest above 600 hPa, where deep convection as-
sociated with the typhoons transports large amounts of water
vapor and releases latent heat in the middle and upper tropo-
sphere (Emanuel, 1991).

GFS, RS, and all RO retrievals show similar results. The
AIRS moist deviation during a passage is much weaker than
for any other data set, likely because of all the cloud cover as-
sociated with the typhoons, which limits the AIRS retrievals.

All data sets show increased temperature during the ty-
phoon event (not shown), especially in the upper troposphere.
The UCAR and WEGC 1D-Var show a similar T structure.
The signal also agrees well with the GFS T signal. Neither
of the direct retrievals (UCAR and JPL) provides physical
temperature information on the troposphere.

The signals in q, T , and N during a typhoon passage
are similar for Minamidaitojima and Naze (not shown), but
fewer typhoons passed in close proximity to these two sta-
tions.

6 Structural uncertainty of RO

Since we have data from several RO retrievals available, we
have the opportunity to compute the structural uncertainty
of RO humidity for our data set, following the methods of
Steiner et al. (2013) and Ho et al. (2009, 2012). The structural

uncertainty is computed to get an estimate of the variability
among the various RO retrievals.

First we create sub-data-sets, which are limited to the
profiles and pressure levels that are available for all four
RO humidity retrievals. The sub-data-set for Guam con-
sists of 141 profiles, and the sub-data-set for the combined
Japanese stations (since atmospheric conditions are very sim-
ilar among them) consists of 543 profiles. For each retrieval,
the normalized deviation for N and q from the inter-center
mean is computed (per pressure level):

1X =
1
k

∑
k

(
Xk −X

inter-center
k

) 100

X
ERA
annual

, (5)

where k indicates the profile number, X
inter-center
k is the

inter-center average for the kth profile (1/4(XUCAR direct
k +

XUCAR 1D−Var
k +XJPL direct

k +XWEGC 1D−Var
k ), and 1X is the

deviation (of q or N ) of one particular RO retrieval from the
inter-center average.

Figure 10 shows the mean deviations of the four RO re-
trievals from the inter-center mean for Guam (left) and all
three Japanese stations combined (right) for N (top) and q
(bottom). Cutoff pressure is 350 hPa since JPL does not pro-
vide humidity data above that level. For N (Fig. 10a, b), the
absolute value of the mean deviation from the inter-center
mean is largest between 900 and 700 hPa for all data sets
(maximum of 0.7 %) and decreases to about 0.1 % at 350 hPa
(about 8 km) at both locations. The latter result agrees well
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Figure 10. Deviations for four RO retrievals from the inter-center mean for refractivity (a, b) and specific humidity (c, d) at Guam (a, c)
and the Japanese stations (b, d). The mean (and standard deviation) of each data set is shown by line style (and as shaded and hatched area):
UCAR direct: black solid (and o o o, blue); UCAR 1D-Var: black dash-dotted (and · · ·, blue); WEGC 1D-Var: black dashed (and ///, gray);
JPL direct: black dotted (and r r r, gray). Red horizontal lines indicate the number of profile pairs at that pressure level.

with the estimate of Ho et al. (2009), who showed that the
absolute values of fractional N anomalies among four cen-
ters (UCAR, WEGC, JPL, and GFZ (German Research Cen-
tre for Geosciences)) are 0.2 % from 8 to 25 km altitude. The
larger differences between the various RO processing centers
at lower altitudes primarily come from different handling of
profiles experiencing (1) atmospheric multipath, (2) receiver
tacking errors, and (3) super-refraction (see Ho et al., 2009,
for details on the RO processing center procedures). This is
especially true for direct retrievals (such as the UCAR direct
and JPL direct), where both RON and a priori T are assigned
zero error, and the differences in Fig. 10a and b are dom-
inated by the previously mentioned conditions. For 1D-Var
retrievals, another potential source of differences is the N er-
ror model in the respective 1D-Var retrieval. All these factors
vary with latitude and general atmospheric conditions.

For q (Fig. 10c, d), the structural uncertainty generally in-
creases with increasing altitude (since the impact of water
vapor on N decreases with increasing altitude). At Guam,
it is about 2 % in the PBL, increases sharply to 5 % around

800 hPa, and stays around 5 to 8 % above. At the Japanese
stations, the structural uncertainty increases constantly with
increasing altitude, from 2 % close to the surface to 5 % at
400 hPa. At both locations, the center anomalies increase
sharply at 350 hPa, which indicates again that RO-derived
humidity has high uncertainty at and above that level.

7 Conclusions

We compared three observational data sets (RO, RS, and
AIRS) and two model data sets (ERA and GFS) over the year
2007. Rather than comparing averages over larger timescales
and regions, we compared individual profiles over specific
locations (in the tropical and subtropical west Pacific). The
data sets that were compared to ERA, which we considered
the reference data set, include profiles from four different
RO retrievals (UCAR direct, UCAR 1D-Var, WEGC 1D-
Var, JPL direct), RS, AIRS, GFS analysis, ERA PERSIST,
and ERA CLIMO (the last two to set a quality baseline). We
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studied both the time series of profile pairs and the mean and
rms computed for the four seasons and three pressure layers
(1000 to 800, 800 to 600, and 600 to 400 hPa). As expected,
we found different characteristics for each data set. Our main
conclusions are as follows:

1. For all four RO humidity retrievals, the magnitude of
the mean biases relative to ERA is smaller than or com-
parable to those of the RS and AIRS in the 800–400 hPa
layer. Above 600 hPa, differences between the various
RO humidity retrievals generally become larger (Figs. 6
and 7, top).

2. All data sets have smaller rms differences than both
CLIMO and PERSIST (Figs. 6 and 7, bottom). The
exception is the tropical 1000–800 hPa layer, where
all rms values are comparable in magnitude due to
the nearly constant humidity conditions throughout the
year. This confirms that all observational data sets con-
tribute valuable information compared to persistence
and climatology.

3. The rms of all RO retrievals is comparable to or lower
than the rms of the RS and AIRS for all pressure layers
below 400 hPa, which confirms the high quality of RO
profiles (Figs. 6 and 7, bottom). The agreement among
the four different retrievals of specific humidity in the
lower and middle troposphere validates the stability of
the four retrievals.

4. In the time series, the four RO retrievals agree within
10 % in the 1000–600 hPa layer (Fig. 5). Differences
become larger in the 600–400 hPa layer, where the
UCAR 1D-Var gets drier, the UCAR direct alternates
between too dry and too wet, and both the WEGC 1D-
Var and JPL direct become too wet. Since water vapor
decreases exponentially with altitude, the retrieval be-
comes more and more sensitive to the prescribed tem-
perature, which can lead to larger humidity differences.

5. The structural uncertainty of RO humidity retrievals is
estimated from anomalies of RO retrievals from the
inter-center mean. Maximum differences among re-
trievals from 1000 to 400 hPa are between 1 and 0.2 %
for refractivity, and 3 and 10 % for specific humidity
(Fig. 10).

6. RO has the potential to contribute valuable informa-
tion on water vapor via data assimilation in the mid-
and lower troposphere, especially when high-quality RS
are unavailable (Southern Hemisphere, over oceans). In
contrast to infrared or microwave sounders, RO can re-
solve strong vertical gradients of humidity.

7. AIRS is biased dry throughout the entire troposphere, as
noted previously (Wong et al., 2015). This bias is par-
ticularly strong for wet atmospheric conditions (Fig. 8).

8. All data sets show increased humidity and temperature
values during a typhoon passage (Fig. 9). Differences
from ERA do not change noticeably during a typhoon
passage, indicating that all data sets and ERA report a
signal that is similar in magnitude during the typhoon
passages.

We find that the alternating wet and dry seasons at Guam,
together with the very sharp transition at the top of the plane-
tary boundary layer in the dry season at Guam, are especially
challenging for the RO, RS, and AIRS observational systems
compared to the conditions at the subtropical Japanese lo-
cations. The results comparing the different data sets to the
ERA are similar at the three Japanese RS stations.

All the observational data sets at the Japanese stations
show a response to the rapid increase of water vapor through-
out the troposphere during the passage of typhoons; however,
the AIRS response is weaker than the RS and RO responses,
probably because of the extensive clouds associated with the
typhoons.

Our results support the findings of Vergados et al. (2018),
e.g., the relative dryness of the UCAR 1D-Var and wetness
of the JPL RO humidity retrieval, and the dry bias of AIRS.
While Vergados et al. (2018) draw their conclusions from
large-scale multi-year climatologies, we use high-resolution
time series to depict the short-term and small-scale variabil-
ity of humidity, and we add results below 700 hPa, where the
tropospheric water vapor content is highest.

We conclude that the accuracy of RO humidity retrievals
is comparable to or better than both standard RS and AIRS
data at the four tropical and subtropical locations studied here
above 800 hPa, as well as below 800 hPa if super-refraction
is absent. If assigned smaller errors (and therefore greater
weights) in the assimilation process, RO could have a pos-
itive impact on improving the water vapor analysis in data
assimilation in the lower and mid-troposphere.
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