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Abstract. The Community Cloud retrieval for Cli-
mate (CC4CL) is a cloud property retrieval system for
satellite-based multispectral imagers and is an impor-
tant component of the Cloud Climate Change Initia-
tive (Cloud_cci) project. In this paper we discuss the optimal
estimation retrieval of cloud optical thickness, effective
radius and cloud top pressure based on the Optimal Retrieval
of Aerosol and Cloud (ORAC) algorithm. Key to this
method is the forward model, which includes the clear-sky
model, the liquid water and ice cloud models, the surface
model including a bidirectional reflectance distribution
function (BRDF), and the “fast” radiative transfer solution
(which includes a multiple scattering treatment). All of
these components and their assumptions and limitations
will be discussed in detail. The forward model provides the
accuracy appropriate for our retrieval method. The errors
are comparable to the instrument noise for cloud optical
thicknesses greater than 10. At optical thicknesses less than
10 modeling errors become more significant. The retrieval
method is then presented describing optimal estimation
in general, the nonlinear inversion method employed,
measurement and a priori inputs, the propagation of input
uncertainties and the calculation of subsidiary quantities that
are derived from the retrieval results. An evaluation of the
retrieval was performed using measurements simulated with
noise levels appropriate for the MODIS instrument. Results

show errors less than 10 % for cloud optical thicknesses
greater than 10. Results for clouds of optical thicknesses less
than 10 have errors up to 20 %.

1 Introduction

Remote sensing of clouds from satellites is vitally impor-
tant for advancing our understanding of the Earth and its cli-
mate. Essential cloud parameters to retrieve are optical thick-
ness, particle size and cloud top pressure. These parameters
are critical for determining the liquid and ice water content
of clouds and for evaluating both radiative and latent heat-
ing rates. Methods used to retrieve cloud properties from ra-
diometric measurements made from satellite-based sensors
abound. These methods differ in the types of measurements
used, the assumptions made and the way the forward prob-
lem (the simulation of measurements given cloud properties)
is inverted to obtain an estimate of cloud properties from the
measurements.

The theoretical basis for retrieving cloud optical thick-
ness and particle size from solar reflectance measurements
has been discussed by several authors (Hansen and Pol-
lack, 1970; King, 1997) while measurement studies with air-
borne sensors have also been presented (Twomey and Cocks,
1982; Foot, 1988, 1998; Rawlins and Foot, 1990). The re-
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trieval relies on the fact that the reflectance from clouds at
non-absorbing visible wavelengths (0.63 and 0.86 µm) is pri-
marily a function of optical thickness, whereas in the near-
infrared (1.6, 2.1 and 3.7 µm) both liquid water and ice par-
ticle absorption become significant so that the reflectance is
primarily a function of particle size. Essentially, the prob-
lem involves the solution of two nonlinear equations for
two unknowns. Nakajima and King (1990) formally out-
lined the theory as it is applied in many retrievals today.
In a companion paper, Nakajima et al. (1991) applied the
technique to ER-2-based measurements made with a mul-
tispectral cloud radiometer at 0.754 and 2.160 µm observ-
ing cloud along the same ground track as aircraft-based in
situ measurements. The encouraging results were followed
by similar retrievals of optical thickness and effective ra-
dius using AVHRR (Nakajima and Nakajma, 1995; Ou et al.,
1999), MODIS (Rolland et al., 2000; Platnick et al., 2003,
2017; King et al., 2010), VIIRS (Platnick et al., 2013), GOES
(Walther et al., 2013) and SEVIRI (Roebeling et al., 2006).
Research has also addressed the choice of near-infrared chan-
nels with several aspects to consider, including stronger par-
ticle absorption at 3.7 µm and therefore a stronger function
of reflectance to particle size compared to 1.6 and 2.1 µm,
deeper photon penetration at 1.6 and 2.1 µm compared to
3.7 µm (Nakajima and King, 1990; Platnick, 2000) and the
need to account for both solar and thermal components at
3.7 µm.

At night the retrieval of optical thickness and effective ra-
dius is more difficult. Past studies have focused on a split-
window method (Inoue, 1985; Prabhakara et al., 1988; Parol
et al., 1991) which relies on the radiative difference of cloud
particles at two wavelengths in the infrared window region
(8.5–12 µm). Unfortunately, this method is heavily depen-
dent on a priori knowledge of atmospheric temperature and
the cloud boundaries, both of which affect the cloud tem-
perature. Studies have shown that explicitly including cloud
boundary information from lidar or radar significantly im-
proves retrieval uncertainties (Miller et al., 2000; Cooper
et al., 2003) but, of course, this is limited to observations
coincident with these active sensors.

The retrieval of cloud top pressure typically relies on
matching thermal emission from a cloud in the 11 µm win-
dow to a vertical location in a known temperature profile.
Without accounting for cloud transparency, this method pro-
duces heights that are biased low for semi-transparent clouds
due to the contribution of thermal emission from below the
cloud. Including additional thermal channels allows for the
possibility of retrieving information on cloud transparency
from which it is possible to separate the cloud from the
below-cloud signal. In particular, the 3.7 µm channel paired
with 11 µm has been used to retrieve cloud top pressure
along with a single microphysical parameter that describes
the cloud radiative thickness in the infrared, typically re-
ferred to as the “effective emissivity” (Szejwach, 1982; Wu,
1987; Liou et al., 1990; Ou et al., 1995). In a similar man-

ner, Ou et al. (1993) have shown that the relative interdepen-
dence of optical thickness and effective radius in the 3.7 and
11.0 µm combination allows these to be retrieved along with
cloud top pressure, although with a significantly greater un-
certainty than using solar wavelengths during the day. CO2-
slicing techniques use multiple wavelengths in the 15 µm
CO2 band with increasing absorption and therefore increas-
ingly higher peaking weighting functions providing sensitiv-
ity to semi-transparent clouds at a range of heights from the
middle to upper troposphere (McCleese and Wilson, 1976;
Menzel et al., 1992; Wylie and Menzel, 1999). It is possible
to use CO2-slicing results to estimate the cloud top pressure
for the thermal methods discussed above to improve the un-
certainty in the cloud radiating temperature and the retrieved
optical thickness and effective radius (Cooper et al., 2003).
Use of CO2 slicing is limited to instruments that have at least
one 15 µm CO2 band, such as MODIS (Menzel et al., 2008)
and SEVIRI (Hamann et al., 2014), and is therefore not pos-
sible with the long heritage of AVHRR.

Some other retrievals using both solar and thermal chan-
nels to obtain information on both optical thickness and/or
microphysics and cloud top pressure have been presented. In
cases where a near-infrared channel is not available, optical
thickness and cloud top pressure may be retrieved with a so-
lar and thermal channel (Rossow and Schiffer, 1991; Minnis
et al., 1990, 1993). Alternatively, the radiative thickness can
be represented in a “cloud amount” effectively accounting
for semi-transparent clouds to obtain a better cloud top pres-
sure (Shenk and Curran, 1973; Reynolds and Vonder Haar,
1977). Finally, Arking and Childs (1985) combined solar
(visible and near-infrared) and thermal measurements to esti-
mate optical thickness, a microphysical parameter and cloud
top pressure.

The retrieval techniques discussed so far suffer from sev-
eral drawbacks. First, most of them are separated into solar
and thermal methods even though the measurements in these
spectral regions are not independent of parameters retrieved
in the other. As a result, not all of the available informa-
tion may be used, i.e., solar information on the thermal op-
tical thickness of semi-transparent clouds and thermal infor-
mation on particle size. Although some methods discussed
above use both solar and thermal channels, their usage is not
simultaneous and, therefore, information shared between the
different wavelengths may not be optimally used. In addi-
tion, the resulting retrievals may not be radiatively consistent
with each other. As a consequence, forward modeling using
the solar retrieved optical thickness and effective radius for a
cloud with its top placed at the thermally retrieved cloud top
pressure may produce simulated radiances that are signifi-
cantly different than the observed radiances. This inconsis-
tency could have significant impacts on broadband flux com-
putations for radiation studies. Finally, except in some spe-
cific cases, these methods tend to lack a formal characteriza-
tion of their uncertainties which incorporates measurement
noise and the uncertainty of assumed parameters.
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The optimal estimation approach to inverse problems is a
statistical inversion method based on Bayes’ theorem. Appli-
cation to atmospheric retrievals was presented by Rodgers
(1976) and Marks and Rodgers (1993) and formally out-
lined by Rodgers (2000). Although the method was origi-
nally applied to atmospheric temperature and composition
retrievals, application to other atmospheric constituents such
as clouds began in the late 1990s and has grown steadily in
the past 20 years. In optimal estimation the parameters to be
retrieved are inputs into a forward model that produces simu-
lated measurements. These inputs are optimized to obtain the
best match between the real and simulated measurements,
while being constrained by a priori knowledge of the state.
Optimal estimation offers several advantages over more tra-
ditional retrieval algorithms:

– It is able to use any number of channels, where the in-
dependent information provided by each channel con-
tributes to the retrieval, maximizing the use of the avail-
able information, whereas traditional methods are usu-
ally limited to a few preselected channels.

– The parameters are retrieved simultaneously, providing
a retrieval that is radiatively consistent over the wave-
lengths of the measurements, provided that the noise
characteristics of the instruments are well known.

– It is able to easily incorporate measurements from mul-
tiple sensors for synergistic retrieval algorithms, i.e.,
passive and active measurements.

– The same framework may be applied to the retrieval of
different parameters such as aerosol and cloud, provid-
ing more consistency in aerosol–cloud interaction stud-
ies, for example.

– A priori information can be explicitly included in the
retrieval in a way that is consistent with the measure-
ments. This a priori information can be thought of as
virtual measurements that help constrain the retrieval.

– It provides a rigorous characterization of the retrieval
uncertainties, including propagation of measurement
noise, the uncertainty of assumed parameters and the
uncertainty in the forward model.

– It provides a framework to objectively evaluate the in-
formation content of the measurements in a way that is
consistent across different measurement sources.

A look at the cloud retrieval literature reveals an increasing
usage of optimal estimation including application to AVHRR
(Heidinger, 2003; Heidinger and Pavolonis, 2009; Walther
and Heidinger, 2012), MODIS (Cooper et al., 2007), ATSR
(Poulsen et al., 2012), GOES (Miller et al., 2001; Walther
et al., 2013) and SEVIRI (Watts et al., 2011). There have also
been several studies using data from multiple instruments

synergistically including passive solar and/or thermal ob-
servations combined with cloud profiling radar (Austin and
Stephens, 2001; Cooper et al., 2003). Finally, objective infor-
mation content analyses for cloud retrievals from satellite im-
agers, using visible, near-infrared and thermal infrared chan-
nels simultaneously, have been presented (L’Ecuyer et al.,
2006; Cooper et al., 2006), including a technique for deter-
mining the optimal set of channels using the optimal estima-
tion framework.

This paper is Part 2 of two papers describing the Commu-
nity Cloud retrieval for Climate (CC4CL) retrieval system in
the context of the Cloud_cci (Hollmann et al., 2013; Stengel
et al., 2017) project. Part 1 (Sus et al., 2018) describes the
system as a whole including a description of the supported
satellite imagers, ancillary input details, cloud detection and
classification, the gridding over space and time, the applica-
tion of CC4CL to selected scenes and the validation of those
scenes against Cloud–Aerosol Lidar with Orthogonal Polar-
ization (CALIOP) products. Our intention with Part 2 is to
describe the details of the optimal estimation retrieval includ-
ing the forward model and the inversion technique based on
the Optimal Retrieval of Aerosol and Cloud (ORAC) algo-
rithm (Thomas et al., 2009; Poulsen et al., 2012). Taking
advantage of the benefits of an optimal estimation frame-
work, ORAC retrieves aerosol, cloud and volcanic ash pa-
rameters and supports measurements from several different
sensors. The focus of this paper will be on the retrieval of
cloud parameters given a set of satellite imager measure-
ments that are comparatively consistent with the AVHRR
heritage channels centered at 0.615 (AVHRR-2) or 0.630
(AVHRR-3), 0.862, 1.61 or 3.74, 10.8 and 12.0 µm. Note
that for Cloud_cci CC4CL uses this channel configuration
even for instruments with additional channels (see Part 1 for
supported instruments) to produce a consistent time series
across sensors, although ORAC, and the CC4CL system in
itself, is flexible enough to use any number of imager chan-
nels from the visible to the infrared. Finally, a summary of
all datasets generated in Cloud_cci using CC4CL is given in
Stengel et al. (2017). Section 2 will briefly clarify this, listing
the required parameters. Section 3 will present our forward
model, discuss assumptions and limitations, and provide a
validation using a more advanced, albeit much slower, refer-
ence model. Section 4 presents our retrieval method in gen-
eral and discusses specific details of the use of this method
and some additional products derived from the results, while
Sect. 5 presents a theoretical study of the performance of
the retrieval. Finally, some concluding remarks are given in
Sect. 6.

2 Data

The method described in this paper requires satellite imager
measurements and several ancillary quantities, all of which
are prepared for input in a preprocessing stage described in
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detail in Part 1. We will only briefly summarize here what
is required. The measurements include, for each pixel, re-
flectance for the visible and near-infrared wavelengths and
the brightness temperature for the thermal wavelengths. The
method also requires the corresponding pixel geolocation
(latitude and longitude) and solar and instrument geometry
(solar zenith angle, satellite zenith angle and relative azimuth
angle, defined as the shortest absolute difference between the
solar and satellite azimuth angles). Several ancillary quanti-
ties are also required. These include meteorological profiles
of pressure, temperature, water vapor and ozone, as well as
surface reflectance and emissivity characteristics. In addition
to the measurements and ancillary quantities, an estimate of
their uncertainty characteristics is also required for an ac-
curate estimate of the uncertainty of the retrieved quantities.
Preprocessing is also responsible for cloud masking and clas-
sification and the retrieval methodology described in this pa-
per will assume the properties of liquid water or ice cloud
based on the cloud classification.

3 Forward model

The forward model contains the physics that simulates radi-
ances as observed by a satellite instrument at the top of the at-
mosphere (TOA) given both retrieval and assumed model pa-
rameters. In addition, derivatives of the TOA radiances with
respect to the retrieval parameters must also be computed.
The forward model can be thought of as consisting of sev-
eral component models and a radiative transfer solution that
computes the radiances and associated derivatives given the
outputs of the component models and solar and instrument
geometry. The component models are

– a clear-sky model including molecular (Rayleigh) scat-
tering, absorption and emission;

– a cloud layer model including cloud particle scattering,
absorption and emission;

– a surface reflectance model incorporating ocean and
land surface bidirectional reflectance distribution func-
tions (BRDFs).

It is important to develop a forward model that accounts
for the physics to the desired accuracy of the retrieval but is
also computationally efficient enough to be used for large-
scale data processing. The ORAC forward model is numeri-
cally efficient by making use of both an offline component
and an online component. The offline component handles
the expensive particle scattering computations and the mul-
tiple scattering radiative transfer computations, the results of
which are then used to produce look-up tables (LUTs) of fun-
damental radiative operators. These LUTs are then used in
the online component, along with simple arithmetic expres-
sions, to compute the “fast” radiative transfer solution.

3.1 Clear-sky model

Our model assumes a plane-parallel atmosphere with the lev-
els defined by the ancillary meteorological input profiles dis-
cussed in Part 1. The required meteorological inputs are pres-
sure, height, temperature, specific humidity and ozone mix-
ing ratio. The surface is taken to be at the bottom level.

To account for the effects of molecular absorption and
emission in a clear-sky atmosphere, transmittances and ther-
mal radiance profiles are required. Specifically, the required
transmittances include two profiles, one for transmittance
from each level to TOA

[
Tac(p)

]
and one for transmittance

from each level to the surface
[
Tbc(p)

]
, both for a satellite

slant path, where p is the atmospheric pressure at a par-
ticular level. The required thermal radiance profiles include
upwelling radiance, which is the total radiance emanating
from the layers between the corresponding level and TOA[
L
↑
ac(p)

]
; downwelling radiance, which is the total radiance

emanating from the layers between the corresponding level
and the surface

[
L
↓
ac(p)

]
; and upwelling radiance, where for

each level in the profile is the total radiance from the layers
from the surface to that level

[
L
↑

bc(p)
]
.

The transmittances and thermal radiance profiles are com-
puted with the Radiative Transfer for TOVS (RTTOV) model
(Saunders et al., 1999; Hocking et al., 2014) version 12.1.
RTTOV is a “fast” radiative transfer model for downward-
viewing passive visible, infrared and microwave satellite
radiometers, spectrometers and interferometers. RTTOV’s
methodology is based on linear regression of line-by-line
computations from LBLRTM version 12.2 (Clough et al.,
2005) and the AER molecular database version 3.2. An ex-
tensive set of regression predictors is used based on the
molecule type with pressure, temperature, specific humid-
ity, ozone mixing ratio and slant path angle as variables. In
ORAC, water vapor and ozone are the only variable gases
with RTTOV treating effects from other gases using clima-
tology. Additional input parameters include the surface emis-
sivity and the surface skin temperature discussed in Part 1.

In our case RTTOV actually only provides the trans-
mittance Tac(p) and thermal radiance profiles L↑ac(p) and
L
↓
ac(p) but Tbc(p) and L↑bc(p) can be computed from RT-

TOV output with

Tbc(p)= T ∗ /Tac(p) (1)

and

L
↑

bc(p)=
[
LTOA−L

↑
ac(p)

]
/Tac(p), (2)

respectively, where T ∗ is the transmittance from the surface
to TOA for a satellite slant path and LTOA is the clear-sky
TOA radiance.

Since the clear-sky transmittance and emission profiles are
independent of cloud, their computation is considered a pre-
processing task performed only once in the preprocessing
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phase discussed in Part 1. The effect of the satellite zenith
angle is removed from the transmittance profiles with

Ti(0)= Ti(θv)
cos(θv), (3)

where T (θ) is transmittance for an air mass factor 1/cosθ
and θv is the mean satellite zenith angle within a grid box.
An air mass factor is then reapplied to the transmittances on a
pixel-by-pixel basis in the RT solution discussed in Sect. 3.6
using the pixel’s solar or satellite zenith angles as appropri-
ate. Equation (3) is an approximation as satellite zenith angle
is one of the linear regression predictors, although it has been
shown that the effect is minimal compared to other sources
of model uncertainty.

In addition to the molecular absorption and emission
effects, RTTOV includes an extinction component due to
molecular (Rayleigh) scattering in the transmittance calcula-
tions. In ORAC this effect must be removed because, as will
be discussed in Sect. 3.4, Rayleigh scattering is incorporated
into the multiple scattering treatment of the cloud layer. The
corrected transmittance Tcorr is given by

Tcorr(λ,p,θv)=
TRTTOV(λ,p,θv)

TRay(λ,p,θv)
, (4)

where TRay = e
−τRay(λ,p,θv), the pressure- and path-

dependent Rayleigh scattering optical thickness
τRay(λ,p,θv) is

τRay(λ,p,θv)= τ
0
Ray(λ)

p

p0
secθv (5)

and the Rayleigh optical thickness of the entire atmosphere
at nadir is (Hansen and Travis, 1974)

τ 0
Ray(λ)= 0.008569λ−4(1+ 0.0113λ−2

+ 0.00013λ−4). (6)

For each layer bounded by upper and lower pressure levels
pu and pl, respectively, the Rayleigh scattering optical thick-
ness τRay(λ,pl,pu) that we apply (Sect. 3.4) is computed ac-
cording to Justus and Paris (1985) with

τRay(λ,pu,pl)= τRay(λ,pu)− τRay(λ,pl), (7)

where the Rayleigh optical thickness from TOA to the pres-
sure level p is

τRay(λ,p)= τ
0
Ray(λ)exp(−0.1188p− 0.00116p2) (8)

and the Rayleigh optical thickness of the entire atmosphere
is

τ 0
Ray(λ)=

ps

p0

1
115.6406λ4− 1.335λ2 , (9)

where p0 = 1013.25 hPa, ps is the surface pressure in hPa
and λ is in µm. The Rayleigh single-scattering albedo is im-
plicitly set to unity and the single-scattering phase function
PRay(λ,2) is computed with

PRay(λ,2)=
3
4

(
1+ cos22

)
+

(
1−

1− δ
1+ δ/2

)
, (10)

where the depolarization factor δ is taken to be constant at
0.0279 from Young (1981).

Note that ORAC does not take the variation of surface
pressure due to terrain height or meteorology into account.
Combined with the lack of polarization in the radiative trans-
fer calculations, this means that ORAC is not currently suit-
able for use with instrument channels in the blue or ultravio-
let, where the Rayleigh signal is much stronger and will vary
significantly with terrain height. The effects due to polariza-
tion at these small wavelengths would require a full vector
radiative transfer solution.

3.2 Cloud layer model

The cloud layer model accounts for particle scattering, ab-
sorption and emission effects and is parameterized in terms
of particle type (liquid water droplets or ice crystals) and
the following retrieved quantities: cloud optical thickness at
0.55 µm τ0.55,c, effective radius of the cloud particle size dis-
tribution re,c and cloud top pressure pc.

The cloud layer model is assumed to consist of a sin-
gle layer containing only a single particle type. The cloud
is assumed to be geometrically infinitely thin and plane-
parallel and is linearly interpolated into the plane-parallel at-
mospheric model at a given cloud top pressure pc, producing
values of pressure, height and temperature for the cloud at
pc. In addition, transmittances Tac(pc) and Tbc(pc) and ther-
mal radiance quantities L↑ac(pc), L

↓
ac(pc) and L↑bc(pc) are

also interpolated from their respective profiles discussed in
Sect. 3.1. An infinitely thin cloud model allows for a signifi-
cant performance gain as the effects of the atmospheric gases
are separated from that of the cloud. This is an important part
of the “fast” radiative transfer solution discussed in Sect. 3.6.

Optical thickness τ(λ) is defined as

τ(λ)=

H∫
0

βe(z,λ)dz=

H∫
0

(βs+βa)(z,λ)dz, (11)

where z is the vertical depth into the cloud, H is the geomet-
ric thickness of the cloud, λ is wavelength and βe(λ) is the
extinction coefficient defined as the sum of the scattering and
absorption components, βs(λ) and βa(λ), respectively. The
extinction coefficient βe(λ) may be related to the extinction
cross section σe(λ,r) and efficiency Qe(λ,r) by

βe(λ)=

∞∫
0

σe(λ,r)n(r)dr =

∞∫
0

πr2Qe(λ,r)n(r)dr, (12)

where r is, in general, the sphere equivalent particle radius,
n(r) is the particle size distribution in terms of number den-
sity, and σe(λ)= σs(λ)+σa(λ) and Qe(λ)=Qs(λ)+Qa(λ)

are sums of their scattering and absorption components, re-
spectively.
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If we introduce the normalized size distribution n̂(r)=
n(r)/N , where

N =

∞∫
0

n(r)dr, (13)

then Eq. (12) may be written as

βe(λ)=Nσ̂e(λ)=N

∞∫
0

σe(λ,r)n̂(r)dr

=N

∞∫
0

πr2Qe(λ,r)n̂(r)dr, (14)

where σ̂e(λ) is the normalized ensemble-averaged extinction
cross section. This value is dependent on the shape of the size
distribution but independent of the density of particles and
represents the spectrally dependent microphysical influence
on the cloud optical thickness. Since the cloud is parameter-
ized according to the cloud optical thickness at 0.55 µm but
forward model simulations must be performed in each wave-
length channel the required optical thickness τ(λ) in these
channels must be determined from the spectral variation de-
fined by

τ(λ)=
σ̂e(λ)

σ̂e(0.55)
τ (0.55). (15)

The effective radius re is defined as the ratio of the third
and second moments of the particle size distribution:

re =

∫
∞

0 r3n(r)dr∫
∞

0 r2n(r)dr
, (16)

while the effective variance of the distribution is defined as

ve =

∫
∞

0 (r − re)
2r2n(r)dr∫

∞

0 r2n(r)dr
. (17)

Hansen and Travis (1974) and Mishchenko and Travis (1994)
show that different size distributions that have the same ef-
fective radius and effective variance have similar scattering
and absorption properties. Thus, by parameterizing the size
distribution in terms of effective radius we reduce the depen-
dency on the details of the size distribution depending mainly
on the assumption of the distribution’s width.

It is from these relationships and further assumptions
based on particle type that the three fundamental radiative
transfer quantities required for the multiple scattering com-
putations discussed in Sect. 3.4 are parameterized: the to-
tal optical thickness τ(λ), the ensemble-averaged single-
scattering albedo ω(λ) and the ensemble-averaged single-
scattering phase matrix F(λ,2). It is through these param-
eterizations that the radiative transfer quantities depend on
particle concentration and size distribution.

The single-scattering albedo ω(λ) is the proportion of ra-
diation incident on a particle that is scattered rather than ab-
sorbed and is given as

ω(λ)=
βs(λ)

βe(λ)
=
σ̂s(λ)

σ̂e(λ)
. (18)

The (4× 4) single-scattering phase matrix F(λ,2) describes
the angular distribution and state of polarization of scat-
tered radiation given the state of polarization of the inci-
dent radiation, where the radiation is described by the four-
element Stokes vector I = [I,Q,U,V ]. This form of the
phase matrix, depending only on the angle between the inci-
dent and scattering directions 2, is valid for mediums com-
posed of randomly oriented particles. The ORAC forward
model makes the so-called “scalar approximation” where
only the intensity I is considered. In this case only the (1,1)
element of the phase matrix is required, which is referred to
as the single-scattering phase function P(λ,2) with the fol-
lowing normalization condition:

1
2

π∫
0

P(λ,2)sin2d2= 1. (19)

Like σ̂e(λ), both ω(λ) and P(λ,2) are size distribution nor-
malized so they are independent of the density of particles.

The equations presented so far in this section are indepen-
dent of particle type and shape and are valid for all medi-
ums of randomly oriented particles. It is the source of the
normalized scattering and absorption cross sections σ̂s(λ,r)

and σ̂a(λ,r) and the phase function P(λ,2) that varies with
particle type. They are computed with physical models such
as Mie theory (Mie, 1908) or T-matrix theory (Mishchenko
et al., 2002) or, in the case of ice crystals, geometric optics
(Liou, 2002).

3.2.1 Liquid water droplets

For liquid water droplets the Mie theory code imple-
mentation presented by Grainger et al. (2004) is used
for the computation of Qs [λ,r,m(λ)], Qa [λ,r,m(λ)] and
P [λ,r,m(λ),2], where m(λ) = mr(λ) + imi(λ) is the re-
fractive index of the particle composition. It is convenient to
integrate the computations across an analytical size distribu-
tion described by a limited number of parameters for which
we use the modified gamma distribution given by Deirmend-
jian (1969). The distribution, in terms of number density as a
function of radius n(r), is given as

n(r)= arα exp(−brγ ), (20)

where the parameters a, α, b and γ are positive, α is an in-
teger and the mode rm of the distribution occurs when r =(
α
bγ

)1/γ
. In ORAC a = 2.373, α = 6, b = α/rm and γ = 1.
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As discussed, the size distribution is parameterized in
terms of effective radius, which is related to the modified-
gamma distribution of Eq. (20) by

re =
rm(α+ 3)

α
, (21)

while the effective variance is related to the modified-gamma
distribution by

ve =
1

α+ 3
. (22)

For the complex index of refraction for liquid water, values
were taken from Hale and Querry (1973) for wavelengths in
the range 0.25≤ λ≤ 0.69 µm, Palmer and Williams (1974)
for 0.69< λ≤ 2.0 µm and Downing and Williams (1975) for
λ > 2.0 µm.

3.2.2 Ice crystals

Ice crystal single-scattering property models provided by
Baum et al. (2011, 2014) are used, which are based on in
situ cloud microphysical measurements and single-scattering
calculations. The in situ measurements provide information
on particle size distributions, ice water content and the me-
dian mass diameter (Heymsfield et al., 2013). The single-
scattering properties are provided by Yang et al. (2013)
and are based on a combination of the Amsterdam discrete
dipole approximation, the T-matrix method and the improved
geometric-optics method. They are provided for each habit at
189 discrete sizes between 2 and 10 000 µm and for 445 dis-
crete wavelengths ranging from 0.2 to 100 µm.

The bulk single-scattering properties are computed for
each wavelength by integrating over particle size distribution
and the nine ice particle habits to produce size distribution
averaged properties for a “general habit mixture”. These are
made available as a function of effective radius in 23 bins
from 5 to 60 µm. It has been shown that ice particle roughen-
ing significantly impacts the single-scattering phase function
(Baum et al., 2010) and that the general habit mixture with
severe roughening provides the closest comparison with po-
larization measurements (Cole et al., 2013). These are the
models used in the ORAC retrieval.

ORAC currently accepts ice crystal scattering properties
up to an effective radius of 92 µm. The ice crystal properties
are only provided up to 60 µm and therefore linear extrapo-
lation is used up to 92 µm. The error incurred in the approx-
imation is minimal as the variation in the properties tends
to flatten as effective radius increases and cloud ice crystal
effective radii greater than 60 µm are rare.

3.3 Surface reflectance model

The surface is characterized by a BRDF which is computed
differently for ocean and land surface. The BRDF over ocean
is computed using the methodology outlined by Sayer et al.

(2010), which includes three components:

ρocean(λ,θ0,θv,1φ,u,v)= ρsg(λ,θ0,θv,1φ,u,v)

+ ρwc(λ,u,v)+ ρul(λ,θ0,θv,C), (23)

where ρsg is the sunglint off wave facets (Cox and Munk,
1954), ρwc is the reflectance from surface foam, so-called
“white caps” (Koepke, 1984), and ρul is the scattering from
within the water, so-called “underlight” (Morel and Prieur,
1977). The required physical parameters include the horizon-
tal wind vector u and v (m s−1), obtained from the mete-
orological input, to determine wave statistics and white-cap
coverage, as well as chlorophyll and dissolved organic mat-
ter concentration C (mg m−3), a globally averaged value ob-
tained from climatology.

The BRDF over land is a weighted sum of an isotropic
kernel (unity) and two BRDF kernels (Wanner et al., 1997),
both dependent on solar and satellite geometry only:

ρland(λ,θ0,θv,1φ)= fiso(λ)+ fvol(λ)Kvol(θ0,θv,1φ)

+ fgeo(λ)Kgeo(θ0,θv,1φ), (24)

where Kvol(θ0,θv,1φ) is known as the Ross-thick ker-
nel which parameterizes volumetric scattering and
Kgeo(θ0,θv,1φ) is the Li-sparse kernel which param-
eterizes geometric shadowing. Although our method is
independent of the source of the weights f (λ), in the current
CC4CL implementation the weights are provided by the
0.05◦ MODIS MCD43C1 BRDF ancillary input discussed
along with references in Part 1.

Over snow and ice the surface reflectance is assumed to be
Lambertian with reflectance values taken from the ASTER
Spectral Library Version 2.0 (Baldridge et al., 2009). This
reflectance is combined with the reflectance for either ocean
or land as described above based on the fraction of snow/ice
provided by the preprocessing stage described in Part 1.

3.4 Reflectance and transmission operators

The next step in the forward model is the computation of
reflectance, transmission and emissivity operators which are
used in the “fast” RT solution described in Sect. 3.6. This
computation involves the solution to the radiative transfer
equation (RTE) for monochromatic radiation through a sin-
gle plane-parallel homogeneous layer given as

µ
dL(λ,τ,µ,φ)

dτ(λ)
= L(λ,τ,µ,φ)− J (λ,τ,µ,φ), (25)

where L(λ,τ,µ,φ) is the radiance along the direction spec-
ified by the cosine of the polar angle µ and the azimuthal
angle φ at optical depth τ(λ) measured perpendicular to the
surface of the medium. The second term on the right-hand
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side is the source function given by

J (λ,τ,µ,φ)=
ω(λ)

4π

1∫
−1

1∫
−1

P(λ,µ,φ,µ′,φ′)

·L(λ,τ,µ′,φ′)dµ′dφ′

− Ssolar(λ,τ,µ,φ)− Sthermal(λ), (26)

where P(λ,µ,φ,µ′,φ′) is the single-scattering phase func-
tion for radiation from the direction (µ′,φ′) scattered into
the direction (µ,φ) and ω(λ) is the single-scattering albedo.
The first term on right-hand side of Eq. (26) represents the
source from multiple scattering. The second term is the solar
single-scattering source given by

Ssolar(λ,τ,µ,φ)=
ω(λ)

4π
E0(λ)P (λ,µ,φ,

−µ0,φ0)e
−τ(λ)/µ0 , (27)

whereE0(λ) is the TOA incident solar irradiance, andµ0 and
φ0 are the solar zenith and azimuth angles, respectively. The
third term on the right-hand side of Eq. (26) is the thermal
emission source given by

Sthermal(λ,T )= [1−ω(λ)]B(λ,T ), (28)

where B(λ,T ) is the Planck black body function and T is the
average layer temperature.

For performance reasons, the operators are precomputed
and stored in an LUT from which the values for an arbi-
trary set of geometric and optical parameters may be lin-
early interpolated. The LUTs are computed with the DIscrete
Ordinates Radiative Transfer (DISORT) software package
(Stamnes et al., 1988). This step, although slow, is performed
offline and the resulting LUTs are static. DISORT is a general
purpose plane-parallel RTE solver for monochromatic radi-
ation with support for multiple layers, absorption and mul-
tiple scattering, and solar and thermal emission sources. It
implements the delta-M correction of Wiscombe (1977) for
strongly asymmetric phase functions and the TMS single-
scattering correction of Nakajima and Tanaka (1988).

DISORT still makes approximations, which can limit its
accuracy in certain circumstances. The most important of
these are as follows:

– It assumes a plane-parallel atmosphere and so does not
account for the curvature of the Earth. This is important
at solar and satellite zenith angles greater than approxi-
mately 75◦.

– It is a one-dimensional model and so cannot repro-
duce the effects of horizontal gradients in the scattering
medium. This is important where strong gradients exist,
such as near cloud edges and/or in broken cloud fields,
but this limitation is not relevant as we treat each pixel
independently.

Table 1. The dimensions of the ORAC LUTs used in the liquid wa-
ter cloud retrieval. Note that not all LUTs are functions of all vari-
ables (for instance, atmospheric transmission terms are functions of
a single zenith angle only).

Parameter No. Min. Max. Spacing
points value value

τ0.55,c 18 1.0× 10−20 256.0 log10
re,c (µm) 20 1.0 40.0 linear
θ0 10 0◦ 89◦ linear
θv 10 0◦ 89◦ linear
1φ 11 0◦ 180◦ linear

– It does not model polarization effects and so cannot
be used to model measurements made by instruments
which are sensitive to polarization. In addition, this so-
called “scalar approximation” does not take into ac-
count polarization introduced into the diffuse compo-
nent of radiance by Rayleigh scattering and/or the sur-
face, and the subsequent depolarization effect of parti-
cles.

To compute the operators DISORT must be provided with
solar and instrument geometry and the optical thickness,
single-scattering albedo and phase function for each layer. In
addition to particle effects, the LUTs account for Rayleigh
scattering and therefore, even though the operators are for
a single homogeneous cloud, the computation is performed
for an entire atmospheric profile. For this we use the midlat-
itude summer profile provided by McClatchey et al. (1972)
to compute the Rayleigh scattering optical properties in each
layer as described in Sect. 3.1. In order to account for multi-
ple scattering between molecules and cloud particles we give
the cloud layer a physical thickness of 1 km and place it at
a top pressure of 560 hPa. In this layer, the optical proper-
ties for Rayleigh scattering and those of the cloud must be
combined by (assuming dependence on λ)

τ = τRay+ τc, (29)

ω =
τRay+ωcτc

τR+ τc
, (30)

P(θ)=
τRayPRay(θ)+ τcωcPc(θ)

τRay+ τcωc
, (31)

where the Rayleigh single-scattering albedo is equal to unity.
The computations are performed at optical thickness, effec-
tive radius, solar zenith angle, satellite zenith angle and rela-
tive azimuth angle vertices defined by the dimensions in Ta-
bles 1 and 2 for liquid water and ice cloud, respectively.

The reflectance and transmission operators represent the
transfer of either direct beam or diffuse incoming radiation
resulting in either direct beam or diffuse outgoing radiation.
They are computed separately for both direct beam and dif-
fuse incoming sources with results for both direct beam or
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Tbb(θ0) Tbd(θ0)

Rbb(θ0, θv,∆φ) Tbb(θv) Tdb(θv)

Rdd

L↑
ac(θv)

L↓
acRdb(θv) B(Tc)ε(θv) L↑

bcTdb(θv)

ρbb(θ0, θv,∆φ) ρbd(θ0) ρdb(θv) ρdd

CC4CL FM operators

Beam solar
Diffuse solar
Beam thermal
Diffuse thermal

Figure 1. A schematic diagram of the ORAC cloud reflectance, transmission and emission operators; surface reflectance operators; and clear-
sky emission profiles. Yellow arrows indicate reflectance and transmission operators and red arrows indicate emission. Solid lines indicate
beam transport and the dashed lines indicate diffuse transport.

Table 2. The dimensions of the ORAC LUTs used in the ice cloud
retrieval. Note that not all LUTs are functions of all variables (for
instance, atmospheric transmission terms are functions of a single
zenith angle only).

Parameter No. Min. Max. Spacing
points value value

τ0.55,c 18 1.0× 10−20 256.0 log10
re,c (µm) 23 4.0 92.0 linear
θ0 10 0◦ 89◦ linear
θv 10 0◦ 89◦ linear
1φ 11 0◦ 180◦ linear

diffuse outgoing radiation being produced simultaneously.
In addition, an operator representing the emissivity of the
cloud is produced by including a thermal source in the cloud
layer. A total of seven operators are required (assuming de-
pendence on τ0.55,c and re,c):

1. Rbb(λ,θ0,θv,1φ) is the bidirectional reflectance of the
cloud.

2. Rdb(λ,θv) is the downward diffuse reflectance from the
cloud, as viewed from a specific direction.

3. Rdd(λ) is the bihemispherical reflectance of the cloud.

4. ε(λ,θv) is the emissivity of the cloud, as viewed from a
specific direction.

5. T ↓bb(λ,θ0) is the downward direct transmission of the
cloud of the direct solar beam.

6. T ↑bb(λ,θv) is the upward direct transmission of the cloud
into the viewing direction.

7. T ↓bd(λ,θ0) is the downward diffuse transmission of the
cloud, as illuminated by the direct solar beam.

8. T ↑db(λ,θv) is the upward diffuse transmission of the
cloud, as viewed from a specific direction.

A schematic diagram of the operators and their interaction
with the surface is presented in Fig. 1. The symbol ↓ de-
notes transmission from the top to the bottom of the atmo-
sphere, while ↑ indicates the reverse. Dependence on the so-
lar zenith, satellite zenith and relative azimuth angles is de-
noted by θ0, θv and 1φ, respectively. The pairs of b and d
subscripts denote the type of radiation each term operates on
and produces; for example, T ↓bd(λ,θ0) operates on the direct
beam (b) of solar radiation and produces the diffuse radiation
(d) that results at the bottom of the atmosphere. Note that
T
↓

bb(λ,θ0)≡ T
↑

bb(λ,θv) when θ0 = θv so that a single LUT
can be used for each of these for a total of seven LUTs.

The operators are computed for each channel across the
channel’s spectral interval and then convolved with the chan-
nel’s instrument response function with

[X ·SRFi] =

λ2∫
λ1

X(λ)SRFi(λ)dλ, (32)

where X is either reflectance R, transmittance T or emissiv-
ity ε; SRFi is the spectral response function for channel i;
and λ1 and λ2 define the channel’s spectral interval.
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The inclusion of Rayleigh scattering effects in the re-
flectance and transmission operators requires some approx-
imation. This is because the Rayleigh scattering parameters
included are defined for each individual atmospheric layer
whereas the cloud layer is added to a single layer. This cloud
layer must be placed at a fixed top pressure within the atmo-
sphere (560 hPa) when producing the LUTs, since the cloud
top pressure is not an LUT variable. This is an approximation
since Rayleigh scattering effects are pressure dependent and
therefore vary with height. This means that when the retrieval
places the particle layer higher than 560 hPa, the Rayleigh
scattering effects will be slightly overestimated, whereas if
it is placed lower than 560 hPa, the Rayleigh scattering will
be slightly underestimated. We have investigated the effects
of this and have determined that relative to other sources of
error these effects are small at the wavelengths used in this
work but if smaller wavelength channels were to be incor-
porated (less than approximately 6 µm) the Rayleigh scatter-
ing pressure dependence would probably have to be consid-
ered in more detail. Rayleigh scattering could of course be
included in the clear-sky transmittances but this would be
an extinction only effect and would not account for multi-
ple scattering between molecules and between molecules and
particles.

3.5 Surface reflectance operators

Interaction with the surface is parameterized by four re-
flectance operators (assuming dependence on the appropriate
BRDF kernel parameters discussed in Sect. 3.3):

1. ρbb(λ,θ0,θv,1φ) is the bidirectional reflectance. This
is the reflectance of the surface to direct beam illumi-
nation at θ0, as viewed from a specific direction θv. It
is the reflectance that would be observed by a satellite
instrument in the absence of an atmosphere.

2. ρbd(λ,θ0) is the directional–hemispherical reflectance.
This is the fraction of incoming direct beam illumina-
tion at θ0 that is reflected across all zenith angles. This
is also referred to as the “black-sky albedo”.

3. ρdb(λ,θv) is the hemispherical–directional reflectance.
This is the reflectance of the surface to purely diffuse
illumination, as viewed from a specific direction θv.

4. ρdd(λ) is the bihemispherical reflectance. This is the re-
flectance of the surface to purely diffuse illumination,
across all viewing directions. This is also referred to as
the “white-sky albedo”.

A schematic diagram of the operators and their interaction
with a cloud is presented in Fig. 1, while a more detailed
diagram of the operators themselves is given in Fig. 2.

The first term ρbb(λ,θ0,θv,1φ) is computed
directly from the BRDF over land or ocean,
where ρbb(λ,θ0,θv,1φ)= ρocean(λ,θ0,θv,1φ) or

ρbb(λ,θ0,θv,1φ)= ρland(λ,θ0,θv,1φ) over ocean or
land, respectively. The three other terms are derived from the
BRDF integrated over solar and/or satellite geometry written
as (assuming dependence on λ)

ρbd(θ0)=

∫ 2π
0

∫ π/2
0 ρbb(θ0,θv,1φ)cosθv sinθvdθvd1φ∫ 2π

0

∫ π/2
0 cosθv sinθvdθvd1φ

=
1
π

2π∫
0

π/2∫
0

ρbb (θ0,θv,1φ)cosθv sinθvdθvd1φ, (33)

ρdb(θv)

=

∫ 2π
0

∫ π/2
0 ρbb(θ0,θv,1φ)cosθ0 sinθ0dθ0d1φ∫ 2π

0

∫ π/2
0 cosθ0 sinθ0dθ0d1φ

=
1
π

2π∫
0

π/2∫
0

ρbb(θ0,θv,1φ)cosθ0 sinθ0dθ0d1φ (34)

and

ρdd =

∫ π/2
0 ρbd(θ0)cosθ0 sinθ0dθ0∫ π/2

0 cosθ0 sinθ0dθ0

= 2

π/2∫
0

ρbd(θ0)cosθ0 sinθ0dθ0. (35)

Note that ρdb(λ,θ0)≡ ρbd(λ,θv) when θ0 = θv; that is, they
are both hemispherical reflectance, just seen from different
zenith angles.

3.6 The “fast” radiative transfer solution

The “fast” radiative transfer solution uses the cloud re-
flectance, cloud transmission and surface reflectance oper-
ators along with clear-sky transmittances to simulate the
measurements as observed by a satellite sensor at TOA.
Shortwave solar reflectance computations are separated from
the longwave thermal infrared brightness computations. Al-
though not strictly required, this separation results in an ef-
ficient implementation as components such as surface re-
flectance or cloud top emission are specific to solar and
thermal wavelengths, respectively. At thermal wavelengths,
where there is a significant solar contribution, separate cal-
culations are performed and the resulting solar reflectance is
converted to brightness temperature and added to the result-
ing thermal brightness temperature computation.

3.6.1 Solar reflectance

Using the reflectance and transmission operators described
in Sect. 3.4, the surface reflectance operators described in
Sect. 3.5, and neglecting molecular absorption, the observed
reflectance of the cloud–surface system can be written as (as-
suming channel dependence)
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Figure 2. Schematic diagrams of each of the four ORAC surface reflectance operators. Blue represents incident radiation and red represents
reflected radiation. The long arrows represent beam transport and the hemispheres with short arrows represent diffuse transport.

R(θ0,θv,1φ)= Rbb(θ0,θv,1φ)

+ T
↓

bb(θ0)ρbb(θ0,θv,1φ)T
↑

bb(θv)

+ T
↓

bb(θ0)ρbd(θ0)T
↑

db(θv)

+ T
↓

bd(θ0)ρdb(θv)T
↑

bb(θv)

+ T
↓

bd(θ0)ρddT
↑

db(θv)

+ T
↓

bb(θ0)ρbd(θ0)RddρdbT
↑

bb(θv)

+ T
↓

bb(θ0)ρbd(θ0)RddρddT
↑

db(θv)

+ T
↓

bd(θ0)ρddRddρdbT
↑

bb(θv)

+ T
↓

bd(θ0)ρddRddρddT
↑

db(θv)

+ T
↓

bb(θ0)ρbd(θ0)RddρddRddρdbT
↑

bb(θv)

+ T
↓

bb(θ0)ρbd(θ0)RddρddRddρddT
↑

db(θv)

+ T
↓

bd(θ0)ρddRddρddRddρdbT
↑

bb(θv)

+ T
↓

bd(θ0)ρddRddρddRddρddT
↑

db(θv)

+ . . . (36)

Here we have four terms resulting from a single surface
reflection in Eq. (36), which can be described as follows:

1. T ↓bb(θ0)ρbb(θ0,θv,1φ)T
↑

bb(θv) is the directly transmit-
ted solar beam that is reflected off the surface into the
viewing direction of the satellite and directly transmit-
ted back through the atmosphere.

2. T ↓bb(θ0)ρbd(θ0)T
↑

db(θv) is the directly transmitted so-
lar beam that is diffusely reflected off the surface and
diffusely transmitted into the viewing direction of the
satellite.

3. T ↓bd(θ0)ρdb(θv)T
↑

bb(θv) is the diffusely transmitted solar
beam that is reflected off the surface into the viewing
direction of the satellite and directly transmitted back
through the atmosphere.

4. T ↓bd(θ0)ρddT
↑

db(θv) is the diffusely transmitted solar
beam that is diffusely reflected off the surface and
diffusely transmitted into the viewing direction of the
satellite.

The terms following on from these describe the rapidly di-
minishing series of multiple reflections between the surface
and overlaying atmosphere. For these terms the assumption
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has been made that the surface–cloud pair are essentially
Lambertian reflectors so that only the bihemispherical re-
flectance of the cloud is required in the series. This is equiv-
alent to saying that neglecting directly transmitted solar radi-
ation, the sky is equally bright in all directions.

By gathering terms, Eq. (36) can be simplified to give

R(θ0,θv,1φ)= Rbb(θ0,θv,1φ)

+ T
↓

bb(θ0)ρbb(θ0,θv,1φ)T
↑

bb(θv)

+ T
↓

bd(θ0)ρdb(θv)T
↑

bb(θv)

+

[
T
↓

bb(θ0)ρbd(θ0)+ T
↓

bd(θ0)ρdd

]
· T
↑

db(θv)
(

1+ ρddRdd+ ρ
2
ddR

2
dd+ . . .

)
+

[
T
↓

bb(θ0)ρbd(θ0)T
↓

bd(θ0)ρdd

]
×Rddρdb(θv)T

↑

bb(θv)
(

1+ ρddRdd+ ρ
2
ddR

2
dd+ . . .

)
. (37)

This can then be further simplified, using the appropriate
series limit, to give

R(θ0,θv,1φ)= Rbb(θ0,θv,1φ)

+ T
↓

bb(θ0)ρbb(θ0,θv,1φ)T
↑

bb(θv)

+ T
↓

bd(θ0)ρdb(θv)T
↑

bb(θv)

+

[
T
↓

bb(θ0)ρbd(θ0)+ T
↓

bd(θ0)ρdd

]
1− ρddRdd

×

[
T
↑

db(θv)+Rddρdb(θv)T
↑

bb(θv)
]

1− ρddRdd
. (38)

Finally, the reflectance at the top of the cloud (TOC), in-
cluding molecular absorption below the cloud, is obtained by
scaling the terms in Eq. (38) by the appropriate below-cloud
clear-sky transmittance terms, subscripted with “bc”:

RTOC(θ0,θv,1φ)= Rbb(θ0,θv,1φ)

+ Tbc(θ0)T
↓

bb(θ0)ρbb(θ0,θv,1φ)T
↑

bb(θv)Tbc(θv)

+ Tbc,dT
↓

bd(θ0)ρdb(θv)T
↑

bb(θv)Tbc(θv)

+

[
Tbc(θ0)T

↓

bb(θ0)ρbd(θ0)+ Tbc,dT
↓

bd(θ0)ρdd

]
1− ρddRddT 2

bc,d

×

[
Tbc,dT

↑

db(θv)+RddT 2
bc,dρdb(θv)T

↑

bb(θv)Tbc(θv)
]

1− ρddRddT 2
bc,d

,

(39)

and the reflectance at TOA including molecular absorption
above the cloud is obtained by scaling RTOC(θ0,θv,1φ) by
the appropriate above-cloud clear-sky transmittance terms,
subscripted with “ac”:

RTOA(θ0,θv,1φ)= Tac(θ0)Tac(θv)

×RTOC(θ0,θv,1φ), (40)

where Tac(θ)= Tac(0,pc)
secθ and Tbc(θ)= Tbc(0,pc)

secθ ,
and Tac(0,pc) and Tbc(0,pc) are above-cloud and below-
cloud nadir transmittances, respectively, interpolated from
transmittance profiles Tac(0,p) and Tbc(0,p), respectively,
obtained from RTTOV as described in Sect. 3.1. For dif-
fuse radiation the nadir transmittances are scaled in a man-
ner appropriate for a isotropic radiation field. Consider an
isotropic radiation field L(θ,φ)= L incident on a layer of
optical depth τ . The incident irradiance is

Ei
=

2π∫
0

π/2∫
0

L(θ,φ)sinθ cosθdθdφ = πL (41)

and the transmitted irradiance neglecting Rayleigh scattering
(accounted for in the cloud operators) is

Et
=

2π∫
0

π/2∫
0

L(θ,φ)e−τ/cosθ sinθ cosθdθdφ (42)

= 2πL

π/2∫
0

e−τ/cosθ sinθ cosθdθ. (43)

One can equate this to transmission through a scaled optical
depth τ ∗ so

πLe−τ
∗

=

2π∫
0

π/2∫
0

L(θ,φ)e−τ/cosθ sinθ cosθdθdφ, (44)

e−τ
∗

= 2

π/2∫
0

e−τ/cosθ sinθ cosθdθ, (45)

Td = 2

π/2∫
0

T (θ)sinθ cosθdθ. (46)

3.6.2 Thermal brightness temperature

The observed TOA brightness temperature is given by (as-
suming channel dependence)

LTOA(θv)= L
↑
ac+

[
L↓acR

↑

db(θv)

+ B(Tc)ε(θv)+L
↑

bcT
↑

db(θv)
]
Tac(θv), (47)

where Lac(θv) is the upward radiance into the viewing direc-
tion from the atmosphere above the cloud, L↓ac is the down-
ward radiance from the atmosphere above the cloud, L↑bc is
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the upward radiance from the atmosphere below the cloud,
B(Tc) is the Planck function as a function of the cloud top
temperature Tc and ε(θv) is the cloud emissivity operator de-
scribed in Sect. 3.4. The clear-sky radiance terms L are ob-
tained from RTTOV as described in Sect. 3.1.
L
↑

bc is computed as a preprocessing task but actually de-
pends on the surface temperature Ts, which is a retrieved pa-
rameter. Therefore, L↑bc must be updated during the retrieval
process. For this we approximate L↑bc by assuming a linear
relationship between Ts and L↑bc around the a priori base
state, i.e., the ancillary surface temperature input, given as

L
↑

bc = L
↑

bc,a+ (Ts− Ts,a)
∂L
↑

bc,a

∂Ts,a
Tbc,d, (48)

where L↑bc,a is the upward radiance from the atmosphere be-
low the cloud computed with the a priori surface temperature
Ts,a.

3.7 Derivatives

The gradient of the forward model (∂y/∂x), where y is a
radiance measurement in a single channel and x is one of
the retrieved parameters, is required for the following two
purposes:

1. The gradient with respect to parameters which are to be
derived from the measurements (state parameters) is re-
quired for the inversion of the nonlinear forward model
discussed in Sect. 4.

2. The gradient with respect to parameters which are con-
sidered known and are not retrieved, e.g., meteorology,
surface reflectance and surface emissivity, is used to
judge the sensitivity to these parameters and thus to es-
timate their contribution to the retrieval uncertainty.

Derivatives of the forward model may be obtained through
straightforward linearization of the forward model equations
already given and, as a result, the derivations will not be pre-
sented here.

3.8 Assumptions and limitations

The forward model introduces some assumptions and limi-
tations that contribute to uncertainty and may under certain
conditions bias retrieval results. Inaccuracies which result
from these assumptions and limitations are termed forward
model uncertainty and do not include uncertainties in the in-
put atmospheric and surface parameters (termed retrieval pa-
rameter uncertainty) or uncertainties in RTTOV (these are
forward model uncertainty, but their evaluation lies outside
the scope of this paper). The assumptions and limitations
may be grouped into two lists. The first list involves limita-
tions related to instrument resolution and assumptions related
to limited information content:

– Satellite pixels are assumed to be either completely
clear or completely overcast. Retrievals from pixels
with subgrid variability, i.e., broken cloudiness, will
be biased and therefore unrepresentative of the clouds
within the pixel (Zhang et al., 2012).

– Satellite pixels are assumed to be either completely of
land or completely of ocean so that the BRDF and emis-
sivity assumptions will be either for land or ocean. Re-
trievals from pixels with both land and ocean, such as
with coastlines, islands and inland waters, will be biased
since the BRDF and emissivity will be unrepresentative
of at least part of the pixel.

– The liquid water droplet size distribution has an as-
sumed shape and width and only varies in effective ra-
dius. Deviations from this assumption will result in bi-
ases particularly in optical thickness and effective ra-
dius. Although it is theoretically possible to retrieve ad-
ditional size distribution parameters besides effective
radius, the lack of information in typical multispectral
image measurements has made this impractical in the
current implementation of the forward model.

– Ice crystal scattering properties are computed based on
shape (habit) and size. The ice cloud bulk scattering
models used in the forward model must assume a size
distribution and a mixture of possible habits. These as-
sumptions are based on in-depth analysis of aircraft-
based in situ measurements. Deviations from this as-
sumption will result in biases, particularly in optical
thickness and effective radius.

The second list involves assumptions and limitations in the
radiative transfer solution:

– The forward model characterizes the cloud layer with an
infinitely thin geometric thickness. Since the peak sen-
sitivity of the thermal channels to the cloud is within the
cloud itself, the cloud will be placed at a height below
the top of a real cloud with finite geometric thickness.

– The forward model contains only a single cloud layer.
Retrievals from pixels with more than one cloud layer,
where the upper cloud layer is optically thin (cirrus
overlying liquid water cloud), will be the result of radi-
ance contributions from both clouds resulting in a bias
away from the properties of either cloud. For example,
relative to the cirrus cloud and assuming typical cloud
conditions, the optical thickness will be biased high, ef-
fective radius will be biased low and the cloud top pres-
sure will be at a level between the cloud layers.

– Each pixel is processed independently, which means
that the radiative transport that occurs in each pixel oc-
curs independently of that in the neighboring pixels; i.e.,
horizontal transport between neighboring pixels is not
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accounted for. In the literature this is referred to as the
independent pixel approximation (Cahalan et al., 1994).
It has been shown that the biases incurred can be sig-
nificant at higher spatial resolutions, whereas on the or-
der of 1 km the subgrid variability mentioned above will
usually dominate (Heidinger and Stephens, 2002).

– The forward model is a scalar operator model in which
radiation that is incident and reflected/transmitted
from/through the cloud layer or reflected from the sur-
face is modeled as one of two types: directional or hemi-
spherical. This is in contrast to multi-stream models
that model reflection and transmission with a range of
quadrature points over the upward and downward hemi-
spheres. The use of scalar operators is one of the pri-
mary reasons the forward model is orders of magnitude
faster than a multi-stream model. Note that the operators
themselves are computed with a multi-stream model to
accurately account for multiple scattering effects within
the cloud layer.

– Finally, the assumption of a plane-parallel atmosphere
and ignoring polarization effects, both discussed in
Sect. 3.4, should also be included in this list.

3.9 Validation

In this section we discuss the evaluation of the forward model
with respect to a “reference forward model”. The focus will
be based on the use of scalar operators versus a multi-stream
solution while all other aspects of the two models are essen-
tially identical; i.e., they use the same input parameters, both
use RTTOV for gas transmittance, both use the same method
to compute Rayleigh scattering parameters and both have the
same limitations and assumptions listed in the first list of
Sect. 3.8. The assumptions of a geometrically infinitely thin
cloud and on ignoring polarization effects are common and
well explored in the literature. Likewise, the plane-parallel
assumption and the assumption of 1-D geometry are inher-
ent in both the fast forward model and the reference model on
which numerous studies have been performed (see Heidinger
and Stephens (2002) and authors therein). The assumption of
a single layer in a multilayer case is covered in a another
study performed by the authors (McGarragh et al., 2018).

The reference forward model divides the atmosphere into
as many layers as the meteorological input contains. Gas
transmittance is taken from the clear-sky RTTOV computa-
tions. The Rayleigh scattering optical thickness for dry air
τRay(λ) is computed according to Justus and Paris (1985).
The Rayleigh scattering phase matrix FRay(λ,2) is com-
puted from the depolarization ratio, which may be deter-
mined from the King factor for dry air (Peck and Reeder,
1972). Liquid water particle single-scattering properties are
computed using the Mie theory code implementation pre-
sented by Grainger et al. (2004), assuming the same size
distribution parameters used for the fast forward model. The

refractive indices for liquid water are taken from Hale and
Querry (1973), Palmer and Williams (1974) and Downing
and Williams (1975). Ice crystal single-scattering properties
are taken from the same source as the fast forward model. A
standard discrete ordinate solution is performed accounting
for absorption, emission and multiple scattering with solar
and thermal sources using DISORT (Stamnes et al., 1988).
Unlike the fast forward model, for channels with both a so-
lar and thermal component a single solution is performed. In
addition, the solution includes delta-M scaling (Wiscombe,
1977), the TMS single-scattering correction of Nakajima and
Tanaka (1988) and the so-called pseudo-spherical approxi-
mation in which the solar beam is modeled through a spheri-
cal shell (Dahlback and Stamnes, 1991).

The comparisons that follow are presented in the form of
2-D plots of fractional difference given by

1(x)=
xref− xfast

xref
, (49)

where x is either reflectance R or brightness temperature L.
The comparisons revolve around a base state where any two
parameters in the state are varied in a plot. The base state can
be summarized as follows:

– midlatitude summer temperature, pressure and trace gas
profiles provided by McClatchey et al. (1972);

– all four BRDF operators, ρbb(λ,θ0,θv,1φ), ρbd(λ,θ0),
ρdb(λ,θv) and ρdd(λ), are set to 0.2;

– surface emissivity εs(λ)= 0.8;

– retrieval parameters τc and re,c are set to the a priori
values indicated in Tables 5 and 6 for liquid water and
ice cloud, respectively;

– retrieval parameter pc is set to 800 and 245 hPa for liq-
uid water and ice cloud, respectively;

– retrieval parameter Ts is set to 290◦ K;

– solar zenith angle θ0 = 35.0◦, satellite zenith angle θv =

35.0◦ and relative azimuth angle 1φ = 90.0◦.

The results are given as a function of optical thickness ver-
sus effective radius, solar zenith angle, relative azimuth angle
and the four BRDF parameters for 0.65 µm and effective ra-
dius, cloud top pressure and surface temperature for 3.70 and
11.0 µm. The satellite zenith angle is omitted as the results
for it are relatively similar to those for the solar zenith angle.
For the BRDF parameters ρdv and ρdd are combined as they
both account for incident diffuse radiation and the effect of
ρdv is usually relatively small.

We provide the minimum and maximum values (1min and
1max, respectively) in order to maintain a useful scale in the
plots. In addition,1 values equivalent to prelaunch measure-
ment noise requirements for the comparable MODIS chan-
nels are also provided as

∣∣1req
∣∣. MODIS is an instrument
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Figure 3. Fractional differences 1(x), where x is either reflectance R or radiance L, between the reference forward model and the fast
forward model for liquid water cloud as a function of optical thickness τ0.55,c versus effective radius re,c (µm), solar zenith angle θ0,
relative azimuth angle 1φ, bidirectional surface reflectance ρ0v, directional–hemispherical surface reflectance ρ0d and a combination of
hemispherical–directional and bihemispherical surface reflectance ρdv+ ρdd for wavelength λ= 0.65 and effective radius re,c (µm), cloud
top pressure pc (hPa) and surface temperature Ts (K) for 3.70 and 11.00 µm.

with relatively high accuracy requirements and one of the
Cloud_cci instruments. This value by no means should be
considered a requirement for the difference between the two
models and is only there as a relevant reference. The dif-
ference between these models is quite a different value es-

pecially since we assume that the reference model, although
more accurate than the fast model, surely cannot simulate the
measurements exactly.

In Fig. 3 fractional differences between the reference and
fast forward models are presented for liquid water cloud at
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0.65, 3.70 and 11.0 µm. The choice of the wavelengths is suf-
ficient to cover the full range of wavelengths used for our
retrieval, i.e., a shortwave solar wavelength where multiple
scattering of solar radiation will dominate (0.65 µm), a ther-
mal wavelength dominated by thermal emission and absorp-
tion (11.0 µm) and a mixed channel with both a solar and a
thermal component (3.70 µm). Note that values in the red di-
rection are due to overestimation by the fast forward model
relative to the reference forward model and values in the
blue direction are due to underestimation. At 0.65 µm it is
apparent that the errors tend to be small, above an optical
thickness of approximately 10. Small in this case is consid-
ered close to

∣∣1req
∣∣. One exception is at a solar zenith an-

gle of around 20◦, corresponding to single-scattering angles
of around 140◦ where there is rapid variation from the first
and second rainbows from 120 to 150◦. The other two excep-
tions are at relative azimuth angles of around 90◦, a single-
scattering angle of around 132◦ (again within the rainbow
region) and at 180◦, where at the base state solar and satel-
lite zenith angles of 35◦ corresponds to backscattering. It is
also apparent that the differences tend to be low below an op-
tical thickness of approximately 0.1. This indicates that the
surface reflection is well characterized in the solution since
most of the signal at low optical thicknesses will be from the
surface. It is in the critical region of optical thickness around
unity – the transition between single and multiple scattering
– where the differences are largest. For variation in bidirec-
tional reflectance there is a sweet spot around 0.2–0.3 with
overestimation below and underestimation above. This is due
to the fact that the model does not account for the reflection
from the bottom of the cloud of incident beam radiation from
the surface and the sweet spot falls where this is compensated
by incident diffuse radiation. The same minimum in the dif-
ferences occurs for ρ0d and ρdv+ ρdd, although to a lesser
degree.

For the thermal wavelengths the differences remain below
0.5 % for variation in effective radius and cloud top pressure.
Interestingly, as a function of surface temperature the differ-
ence can be much larger for a optical thicknesses below 10
away from the base state of 290 K. This is due to the linear
approximation of Eq. (48).

For ice cloud (Fig. 4) the results are, in almost all cases,
better than that for liquid water. Most of the variation as a
function of effective radius has disappeared, most likely due
to the flatter phase function for ice particles relative to liquid
water droplets. For the same reason, most of the features in
the plots as a function of solar zenith and relative azimuth
angle have also disappeared. It is also apparent that, as a
function of the BRDF parameters, the underestimation has
grown somewhat at the expense of overestimating a change
attributed to the flatter phase function and a slight change in
the balance discussed above.

4 Retrieval method

4.1 Optimal estimation

The ORAC retrieval algorithm is based on the optimal esti-
mation approach for atmospheric inverse problems described
by Rodgers (2000), in which the input state to a forward
model is optimized to obtain the best match between real
measurements and simulated measurements computed with
a forward model while being constrained by a priori knowl-
edge of the state. The relationship between the n element
state vector x and the m element measurement vector y is
given by

y = F(x,b)+ ε, (50)

where F is the forward model, b is the set of all other as-
sumed model parameters not in the state vector x and ε rep-
resents the measurement and forward model error. Optimal
estimation falls in the category of statistical inversion meth-
ods based on Bayes’ theorem:

P(x|y)=
P(y|x)P (x)

P (y)
, (51)

where x and y are continuous random variables, P(x) is the
prior probability density function (PDF) of the state x before
the measurements are made, P(y) is the prior PDF of the
measurements y before the measurements are made, P(y|x)
is the conditional PDF of y given x and P(x|y) is the con-
ditional PDF of x given y. The solution is obtained by min-
imizing P(x|y) to obtain the maximum posteriori solution,
the solution that has the maximum probability of being the
truth. If the PDFs are assumed to follow a Gaussian distribu-
tion P(x|y) can be expressed as a χ2 distribution:

χ2
=−2lnP(x|y)

=
[
y−F(x,b)

]TS−1
ε

[
y−F(x,b)

]
+ (x− xa)

TS−1
a (x− xa), (52)

where Sε is the measurement, forward model and forward
model parameter error covariance matrix, xa is the a priori
state vector and Sa is the a priori error covariance matrix. xa
and Sa denote the best guess of the state before the measure-
ment is made and the uncertainty of this guess, respectively.
Equation (52), known as the cost function, is a combination
of the squared deviations between the measurements and the
forward model and the retrieved state vector and the a pri-
ori state vector, each weighted by their associated covariance
matrix. The retrieval problem is that of finding the minimum
value of χ2.

As with most atmospheric inverse problems, our cloud re-
trieval problem is ill-posed in that noise in the measurements
y and forward model and parameter errors leads to signifi-
cant errors in the estimate of x. A problem is well posed if
for any y a solution x exists, the solution of x is unique and
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Figure 4. Same as Fig. 3 but for ice cloud.

the solution is stable with respect to perturbations in y (Engl
et al., 2000; Vogel, 2002). If any of these conditions are not
met then the problem is ill-posed, leading to non-existence,
non-uniqueness (due to discretization of the problem) and/or
ill-conditioning (due to amplification of errors in x due to
errors in y) (Doicu et al., 2010). It is for this reason that an
a priori constraint is required. The fact that the problem is
nonlinear requires an iterative method. Finally, in order to

perform the iteration efficiently, while maintaining a stable
step size, a form of regularization is required.

In ORAC regularization is achieved with the Levenberg–
Marquardt (Levenberg, 1944; Marquardt, 1963) method ap-
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plied to Gauss–Newton iteration, leading to

xi+1 = xi +
(

S−1
a +KT

i S−1
ε,iKi + γiDi

)−1

·

{
KT
i S−1

ε,i

[
y−F(xi,b)

]
−S−1

a (xi − xa)
}
, (53)

where the subscript i denotes the number of the current it-
eration, Ki is the m× n weighting function matrix, γi is the
Levenberg–Marquardt regularization parameter and Di is an
n× n diagonal scaling matrix. Each column of Ki contains
the derivatives of the forward model with respect to each state
parameter given by

ki,j,k =
∂fj (xi,b)

∂xk
. (54)

Thus, for a linear system, we could write y =Ki(xi − x0),
where x0 is some reference state.

Central to the Levenberg–Marquardt method is the regu-
larization parameter γi , which controls the type of step taken
at each iteration. On the one hand, if γi→ 0, the algorithm
behaves like Gauss–Newton iteration, which will provide an
exact solution to a linear problem in one iteration. On the
other hand, if γi→∞, the step direction tends to steepest
descent and the step size tends to zero. The optimal value of
γi will be one that maximally reduces the cost function for
each iteration. The procedure for determining the value of
γi is to start with a small value (so the initial iteration will
resemble Gauss–Newton), then at each iteration

– if, as a result of the step given by Eq. (53), the cost
function increases, do not update the state vector and
increase γi for the next step;

– if the cost function is decreased by the step given by
Eq. (53), update the state vector and decrease γi for the
next step.

Our implementation uses a factor of 10 for increasing and
decreasing γi . The initial value γ0 is chosen to be the mean
of the diagonal elements of the Hessian KT

i S−1
ε,iKi .

The scaling matrix D is used to ensure that the state space
parameters are of similar magnitude to avoid ill-conditioned
matrix operations and to therefore ensure numerical stability.
Alternatively, in ORAC D= I, where I is the identity matrix,
and the scaling is performed directly on the state vector pa-
rameters, their a priori values, their a priori uncertainties and
the derivatives of the simulated measurements with respect to
the state vector parameters according to the scaling values in
Tables 3 and 4 for liquid water and ice cloud, respectively.
With this method, scaling parameters may be chosen in a
more intuitive way than setting the scaling matrix D directly.
Finally, in some cases the step size will be large enough to
push state parameters out of a physically reasonable range. In
this case the values are bound to the ranges listed in Tables 3
and 4.

Table 3. Liquid water cloud scaling parameters and lower and upper
retrieval limits.

Parameter log10(τ0.55,c) re,c (µm) pc (hPa) Ts (K)

Scaling 10.0 1.0 1.0 1.0

Lower limit −3.0 1.0 10.0 250.0
Upper limit 2.408 35.0 1200.0 320.0

Table 4. Ice cloud scaling parameters and lower and upper retrieval
limits.

Parameter log10(τ0.55,c) re,c (µm) pc (hPa) Ts (K)

Scaling 10.0 1.0 1.0 1.0

Lower limit −3.0 4.0 10.0 250.0
Upper limit 2.408 92.0 1200.0 320.0

This iterative procedure, presented as a flow chart in Fig. 5,
is continued until either the convergence criteria are satis-
fied or a maximum number of iterations is exceeded. In the
former case the retrieval is said to have “converged” while
the latter case can generally be rejected as a failed retrieval.
ORAC uses the change in the cost function between itera-
tions to determine whether the algorithm has converged. A
negligible change in cost between iterations indicates that
the retrieval is no longer improving the fit between the mea-
surements and the forward model. In ORAC the cost change
threshold is set to 0.05 m and the maximum number of iter-
ations is set by “trial and error” to 40, although the number
of iterations usually required to achieve convergence is less
than half this value. An additional, purely Gauss–Newton
step (γ = 0) is performed to test for false convergence. If this
step changes the cost by greater than one then γ is reinitial-
ized and the iteration continues.

After successful convergence the retrieved state x̂ is set to
xi , where i is the index of the last iteration, and an uncer-
tainty estimate for the retrieved state Ŝ is calculated with

Ŝ=
(

S−1
a +KT

i S−1
ε,iKi

)−1
, (55)

where the uncertainty of a particular parameter x̂k is defined
as the square root of the corresponding diagonal element

σk =

√
Ŝkk .

4.2 Measurement vector and covariance matrix

In general, the measurement vector y contains solar re-
flectance (during the day) and/or thermal brightness temper-
ature values (day and night) for any number of channels.
For the retrieval described in this paper the required mea-
surements are those that correspond to the wavelengths of
the so-called AVHRR heritage channels: 0.615 (AVHRR-2),
0.630 (AVHRR-3), 0.862, 1.61, 3.74, 10.8 and 12.0 µm and
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Figure 5. The ORAC inversion system depicted as a flow chart.
Rectangles with corners are processes, diamonds are decisions and
rectangles with rounded corners are start and top terminals.

as a result, for the rest of this paper, we will assume that
these channels are available during the day while at night
only the thermal channels 3.74, 10.8 and 12.0 µm are avail-
able. (Please see the introduction of this paper and the ref-
erences therein for more details on the sensitivities of these
channels.) The 1.61 µm channel is only available from a sub-
set of the AVHRR-3 platforms and, in these cases, to save
bandwidth the 1.61 µm channel is used during the day while
at night the 3.74 µm channel is used. These are our effec-
tive radius sensitive channels and, to maintain a consistent

record over the AVHRR heritage, we elect to use only the
3.74 µm channel by default unless it is unavailable during the
day for AVHRR, in which case the 1.61 µm channel is used.
The other instruments used with Cloud_cci and their channel
configurations are discussed in Part 1.

The optimal estimation framework allows for explicit in-
clusion of uncertainties from the measurements, the forward
parameters and the forward model itself. These uncertainties
are combined into the so-called “measurement and forward
model” covariance matrix Sε,i for inversion iteration i given
by

Sε,i = Sy +Sfm+Kb,iSbKT
b,i, (56)

where Sy is the covariance matrix describing the measure-
ment uncertainties, Sfm describes the forward model uncer-
tainties due to incomplete physics or computational approxi-
mations, Sb describes the uncertainties in the forward model
input parameters in b and Kb,i is a weighting function matrix
which propagates this uncertainty into measurement space
and is given by

kb,i,j =
∂fi(xi,b)

∂bj
. (57)

The dependence of Sε,i on the iteration comes from the de-
pendence of Kb,i on the state vector; i.e., Kb,i is a lineariza-
tion around a base state defined by xi . Although it is pos-
sible to include covariance in the CC4CL implementation,
in the current configuration all three covariance matrices are
assumed to be diagonal, that is, it is assumed that there is no
correlation in the noise from different channels and no cor-
relation in the forward model and forward model parameter
uncertainties. Sy is based on the prelaunch error character-
ization of the instrument noise given in Part 1. Uncertain-
ties in the forward model itself Sfm were determined through
rigorous sensitivity studies (Watts et al., 1998; Sayer, 2009;
Siddans et al., 2011) and include effects from subpixel in-
homogeneity, assumed liquid water droplet size distribution,
ice crystal models (habit and size distribution), the surface
BRDF model, the radiative transfer assumptions and assump-
tions made in the “fast” radiative transfer solution. Uncer-
tainties in the forward model parameters Sb are obtained
from published uncertainties, if available, and include un-
certainties in meteorology (pressure, temperature, water va-
por and ozone) and surface parameters such as temperature,
wind vector, surface reflectance and emissivity and ice/snow
extent.

4.3 State vector and a priori state vector and
covariance matrix

The retrieval state vector x can be written as

x =


log10(τ0.55,c)

re,c
pc
Ts

 ,
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Table 5. Liquid water cloud a priori values and associated uncer-
tainties.

Parameter τ0.55,c re,c (µm) pc (hPa) Ts (K)
(sea/land)

A priori value 6.3 12.0 900.0 –

A priori uncert. 1× 108 1× 108 1× 108 2.0/5.0

Table 6. Ice cloud a priori values and associated uncertainties.

Parameter τ0.55,c re,c (µm) pc (hPa) Ts (K)
(sea/land)

A priori value 6.3 30.0 400.0 –

A priori uncert. 1× 108 1× 108 1× 108 2.0/5.0

where τ0.55,c is the total cloud optical thickness at a wave-
length of 0.55 µm, re,c (µm) is the cloud particle effective ra-
dius, pc (hPa) is the cloud top pressure and Ts (K) is the tem-
perature of the surface. The transformation to log10 space for
optical thickness is desirable as the forward model is a strong
nonlinear function of optical thickness. An added benefit is
that negative values of optical thickness, which may be en-
countered during the inversion process and must be bounded
to a minimum value, will be avoided in log10 space. The size
distribution for liquid water droplets is assumed to be the
modified gamma distribution as discussed in Sect. 3.2.1 and
aircraft measurements of ice crystals from optical probes in-
dicate exponential type distributions (Heymsfield and Platt,
1984; Arnott et al., 1994; Mitchell and Arnott, 1994; Kinne
et al., 1997; Wyser, 1998), for neither of which is a log10
transformation of the effective radius appropriate. The rela-
tionship of the forward model with cloud top pressure and
surface temperature is weakly nonlinear; therefore these pa-
rameters are also retrieved as absolute values.

The a priori state vector xa is written analogously to the
state vector x and the a priori covariance matrix Sa is di-
agonal; i.e., the a priori standard deviations are assumed to
be uncorrelated. The a priori state vector depends on the as-
sumed phase, the values for which are presented in Tables 5
and 6, along with their associated uncertainties for liquid and
ice cloud, respectively. The values for the cloud parameters,
τ0.55,c, re,c and pc are chosen to be typical average values
for each phase, although in the current retrieval setup the
standard deviation for these values is set to 108, so that the
corresponding diagonal elements of Sa are 1016, effectively
eliminating any constraint they have on the retrieval.

Surface temperature Ts was chosen as a retrieval param-
eter so that information in thermal channels can be used to
refine the assumed surface temperature, minimizing errors
which could bias retrieval results, especially cloud top pres-
sure. Retrievals will be particularly sensitive to surface tem-

perature in the case of thin clouds due to significant contribu-
tions to the measured brightness temperature in the thermal
channels from both the cloud and the surface. For example,
assuming a negative lapse rate, a positive change in surface
temperature will have a similar effect as a positive change in
cloud top pressure. In the case of low clouds, the thermal con-
trast between the surface and the clouds will be smaller ap-
proaching the uncertainties of thermal measurements and the
surface temperature. Due to the similar, approximately lin-
ear, relationship that thermal measurements have with cloud
top pressure and surface temperature, some constraint is re-
quired. Since cloud top pressure is unconstrained, the surface
temperature must be constrained. The a priori surface tem-
perature is obtained from the ECMWF ERA-Interim reanal-
ysis input and is given standard deviations of 5 and 2 K for
land and sea, respectively, so that the corresponding diagonal
element of Sa is either 25 or 4. Comparison with in situ mea-
surements made at the surface indicate that the errors in the
reanalysis surface temperature on the average remain well
within these uncertainties but can approach and or exceed
these values in situations such as ocean upwelling near the
land and over land surfaces such as desert with strong diurnal
effects. The values of 5 and 2 K for land and sea have been
chosen through trial and error to provide an optimal balance
between constraint and the use of the available measurement
information on surface temperature. It should be noted that
the retrieved surface temperature under cloudy conditions is
not intended for use as a product but, depending on cloud
optical thickness, and therefore the surface signal, there is
at least some reduction in uncertainty relative to that of the
ECMWF reanalysis inputs. In cases where the cloud is opti-
cally thick (negligible surface signal) the lack of sensitivity
and the a priori constraint assures that the surface tempera-
ture does not diverge significantly from the ECMWF value.

It should also be noted that estimates of uncertainty do
not account for systematic errors in the a priori, in particular
on a regional basis. Even if the a priori inputs are unbiased
globally they will have some regional bias. Users should be
aware that when averaging these data, the uncertainty will not
tend towards zero as the a priori uncertainty is systematic.

Our retrieval algorithm has different pathways depend-
ing on illumination conditions: “day” (solar zenith angle
θ0 < 80◦), “twilight” (80≤ θ0 < 90◦) or “night” (θ0 ≥ 90◦).
During the day all solar and thermal channels provided are
used and the state vector is complete. During twilight condi-
tions, due to the difficulty of modeling solar radiation at solar
zenith angles greater than 80◦, we use only channels with a
thermal component (11 and 12 µm) and include only pc and
Ts in the state vector. This can lead to significant biases as the
cloud optical thickness and effective radius, affecting cloud
infrared transparency, are fixed at the a priori values. As a
result, twilight retrievals should be used with caution, espe-
cially for ice cloud. At night (no solar signal) the retrieval is
limited to the thermal channels 3.7, 11 and 12 µm and lacks
a large amount of optical thickness and effective radius in-
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formation but even in the thermal-only measurements a sig-
nificant amount of this information on these parameters ex-
ists (see Sect. 1). As such, we include these parameters in
the state vector for night (as in day) to allow these to vary
in a way that is consistent with thermal-only measurements.
This significantly improves our estimate of cloud top pres-
sure at night. Ultimately, we do not report these in the final
product at night but together they contain enough informa-
tion for a single microphysical parameter so-called “effec-
tive emissivity” discussed in Sect. 4.6. Effective emissivity
is a common parameter tied to cloud top pressure retrievals
(see Sect. 1) used to describe cloud transparency that can be
used for nighttime radiative flux calculations.

4.4 First guess

The first guess x0 defines the state of the inversion iteration at
i = 0. This is distinct from the a priori state xa, which is the
best estimate of the state before the measurements are made,
i.e., it is independent of the measurements, such as that from
climatology or the reanalysis input. It is common to use the
a priori state as the first guess but this is not the only op-
tion. In fact, measurements may be used to determine a first
guess that is closer to the retrieval than the a priori result-
ing in faster convergence of the inversion. In some cases the
choice of first guess may change the retrieval result depend-
ing on the existence of less than optimal minima that may or
may not exist. In our case, the first guesses for τ0.55,c, re,c
and Ts are set to the a priori values.

The first guess for pc is derived from the measurements
by interpolating the observed brightness temperature in the
11 µm window channel within the reanalysis temperature
profile, which is in fact a simple retrieval of cloud top pres-
sure in itself, assuming an opaque cloud. The methodology
carefully deals with both tropospheric inversions and the
tropopause to bypass their effect. The steps involved are as
follows:

1. Remove inversions including the tropopause from the
temperature profile.

– Skip past any surface inversion by searching for
the lowest level at which the temperature decreases
with height.

– Locate inversions within the boundary layer defined
as levels with a temperature lower than that of the
level above them.

– If an inversion is found, locate the top of the
inversion, being the next level up at which the
temperature decreases relative to the previous.

– Overwrite all values from the bottom of the in-
version to two points above the top of the inver-
sion (assuring the inversion has some width) by
linearly extrapolating from the two levels just
beneath the inversion.

– Locate the tropopause as the lowest level between
500 and 30 hPa for which the lapse rate is less than
2 K km−1 and remains below that level for at least
2 km.

– Overwrite all values from the tropopause up by
extrapolating from the two levels just beneath the
tropopause.

2. Interpolate the 11 µm brightness temperature onto the
new temperature profile.

– If the brightness temperature is outside the range
of the profile set pc,0 to the minimum or maximum
temperature (as appropriate).

– Search through the profile for the first pair of levels
that bound the requested temperature. For a liquid
phase retrieval search from the bottom of the profile
up. Otherwise, search top down.

– Linearly interpolate brightness temperature be-
tween those located levels to determine pc,0.

4.5 Diagnostics

The retrieval implementation produces a number of diagnos-
tic fields, a few of which will be mentioned here as they are
presented later. First, the final cost χ2 (Eq. 52) normalized by
the number of measurementsm, given by χ2

N = χ
2/m, is out-

put. This quantity serves to indicate how well the measure-
ments fit the forward model given the final estimated state
vector, i.e., the state vector from the last iteration. A value
of less than unity is generally accepted as a “good fit”, but it
should be noted that a good fit does not necessarily mean that
the retrieval is an accurate estimate of the true state. We will
show in Sect. 5 that, due to non-uniqueness in the retrieval
space, it is possible to obtain a good fit with an unrepresen-
tative estimate of the state. The number of iterations used to
achieve convergence on the retrieved state is also output. This
can also be useful to indicate the quality of the retrieval but,
again, a large (small) number of iterations does not necessar-
ily indicate a poor (good) retrieval. Finally, two information
quantities are produced, including the averaging kernel ma-
trix A and the number of degrees of freedom for signal ds.
The averaging kernel is given by

A=
∂x̂

∂x
=GK= (KTS−1

ε K+S−1
a )−1KTS−1

ε K, (58)

where G is referred to as the gain matrix. A quantifies the
response of the retrieval to changes in the true state vector
about the retrieved state vector. The diagonal elements of A
range from 0 to 1, where for a perfect retrieval A would be
an identity matrix indicating that changes in each state vector
element are perfectly represented by the retrieval. Instead of
the averaging kernel we will present the degrees of freedom
for signal given by

ds = tr(A), (59)
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where tr(A) is the trace of A, which describes the number of
useful independent quantities there are in the measurements,
i.e., the number of independent pieces of information.

4.6 Derived products

Several products are produced that are derived from the re-
trieved state and the assumed input parameters. These in-
clude cloud top height Hc (km), cloud top temperature Tc
(K), cloud water path (CWP, g m−2), spectral cloud albedo
Rbd(λ,θ0) and spectral cloud effective emissivity ε(θv).
Hc and Tc are obtained by linear interpolation onto the

pressure profile at the retrieved cloud top pressure pc.
CWP is derived from the retrieved cloud optical thickness

τ0.55,c and effective radius re,c (Han et al., 1994) with

CWP=
4
3
τc,0.55re,cρ

Qe
, (60)

assuming a density ρ for water and ice of 1.0 and
0.9167 g cm−3, respectively, and an extinction coefficientQe
for water and ice of 2.0 and 2.1 g cm−3, both valid for parti-
cles large with respect to wavelength.

A “spectral cloud albedo”, a directional–hemispherical re-
flectance, also referred to as black-sky albedo, defined as
(with dependence on λ, τc,0.55 and re,c assumed)

Rbd(θ0)=

∫ 2π
0

∫ π/2
0 Rbb(θ0,θv,1φ)cosθv sinθv dθv d1φ∫ 2π

0

∫ π/2
0 cosθv sinθvdθvd1φ

=
1
π

2π∫
0

π/2∫
0

Rbb(θ0,θv,1φ)cosθv sinθv dθv d1φ, (61)

is derived from the retrieved τc,0.55 and re,c, where
Rbb(λ,τc, re,c,θ0,θv,1φ) is the bidirectional reflectance of
either liquid water or ice cloud introduced in Sect. 3.4. Cloud
albedo Rbd(λ,τc,0.55, re,c,θ0), is obtained from LUTs, de-
pending on phase and wavelength, built in the same man-
ner as the operators introduced in Sect. 3.4. Similarly “spec-
tral cloud effective emissivity” ε(λ,τc,0.55, re,c,θv) is derived
from the LUTs and is in fact the same as the cloud emissivity
operator described in Sect. 3.4. At night, this parameter can
be thought of as containing the microphysical information
retrieved in the optical thickness and effective radius, both of
which are not reported at night.

Finally, to account for the fact that the retrieval algorithm
may place the cloud top at a location lower than the physical
top, as discussed in Sect. 3.8, separate corrected cloud top
pressure, height and temperature values are produced by ap-
proximating the observed brightness temperature as emitted
from one optical depth into the cloud. Assuming the cloud
is vertically homogeneous with a constant lapse rate, we can
write the corrected Tc as

Tc = BT(λ)+
0

σeN
, (62)

where BT is the observed brightness temperature atmospher-
ically corrected to cloud top, σe is the cloud particle extinc-
tion cross section andN is the cloud particle number concen-
tration. Using the measurements at 11 and 12 µm provides
two simultaneous equations in Tc which can be solved using
σe values in an LUT. Corrected Pc and Hc values are ob-
tained by linear interpolation onto the temperature profile at
the corrected Tc. It must be noted that the result of this cor-
rection will no longer be radiatively consistent with the other
retrieved variables. In other words, broadband radiative flux
computations using the corrected cloud top pressure or height
values will be biased.

As with the primary retrieval parameters, an estimate of
the uncertainty in the derived parameters is computed. For
this, standard uncertainty propagation is used:

σxd =

√√√√ n∑
i=1

n∑
j=1

Ŝij
∂xd

∂xi

∂xd

∂xj
, (63)

where xd is a particular derived parameter.

5 Retrieval performance

In this section we test the performance of the retrieval sys-
tem just presented. The methodology can be summarized as
follows:

1. First, produce radiances using the “fast” forward model
for a given set of parameters. These parameters in-
clude the parameters that are assumed to be known,
such as meteorology and surface reflectance/emissivity
to which a Gaussian variability is applied in accordance
with their uncertainty. The parameters also include the
set of retrieval parameters which are taken as exact.

2. Then, apply Gaussian noise to the radiances. For this we
choose the prelaunch noise characteristics for MODIS.

3. Finally, perform a retrieval on the simulated radiances
and compare the results to the retrieval parameters used
to produce the radiances.

The channels simulated and subsequently used in the re-
trieval were the MODIS bands comparable to the AVHRR
heritage channels 0.630 0.862, 3.74, 10.8 and 12.0 µm,
specifically MODIS bands 1, 2, 20, 31 and 32. Note that we
performed the same performance analysis using the 1.61 µm
channel rather than the 3.74 µm channel and the results were
similar.

In the comparisons that follow we look at the fractional
error of the retrieved optical thickness τc,0.55, effective radius
re,c and cloud top pressure pc, defined as

ε(x)=
x− x̂

x
, (64)
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Figure 6. Daytime liquid water cloud retrieval results as a function of optical thickness τc and effective radius rc,e with everything else set
to the base state. The top row presents metrics of retrieval performance, the middle row the fractional error ε and the bottom row shows the
fractional uncertainty.

where x is the true value of a retrieved parameter and x̂ is the
retrieved estimate of the parameter. In addition, we will show
the estimate of the uncertainty of each retrieval parameter
normalized by the retrieved estimate given by

σ(x)=
σx

x̂
, (65)

where σ(x) is the estimated standard deviation of the param-

eter x such that σxk =
√

Ŝkk , where k is the index of the pa-
rameter in the state vector x. Finally, we will show the final
cost χ2 normalized by the number of measurements m: χ2

N,
the number of iterations used and the degrees of freedom for
signal computed for the retrieved state ds.

In Fig. 6 we present daytime liquid water cloud retrieval
results as a function of optical thickness τc and effective ra-
dius rc,e, with everything else set to our base state. A cost
χ2 < 1 is considered a good fit. It is clear that there is a
good fit in all the retrievals. This does not necessarily mean

the retrievals are accurate, only that a good fit has been ob-
tained. As already mentioned, these retrievals suffer from
non-uniqueness, which means it is possible to obtain a good
fit for a less-than-optimal solution. Looking at the error ε(x)
(red and blue represent overestimation and underestimation,
respectively) for optical thickness and effective radius we
can see that there is a breakdown around the critical opti-
cal thickness of unity, where a transition from the single-
scattering regime to multiple scattering approximately oc-
curs. It is worth pointing out that absolute errors in opti-
cal thickness are still quite small at low cloud optical thick-
ness in the context of cloud retrievals. Given the measure-
ment information available it is difficult to obtain an accu-
rate retrieval for optical thicknesses less than 0.1. We show
these low optical thicknesses because subvisible cirrus (op-
tical depth > 0.03) are known to exist (Jensen et al., 1996;
Reverdy et al., 2012) but also to demonstrate that the retrieval
is acceptable in most cases (optical depth > 1.0). There is
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Figure 7. Same as Fig. 6 but for ice cloud.

also an increase in the number of iterations and degrees of
freedom at low optical thicknesses. The increase in the de-
grees of freedom is due to the increased sensitivity to sur-
face temperature at low cloud optical thicknesses, making it
more difficult to distinguish the thermal cloud signal from
the thermal surface signal and therefore subjecting the re-
trieval to more non-uniqueness. The increases in the error in
effective radius at low optical thicknesses and smaller parti-
cle sizes are due to a decreased sensitivity to smaller parti-
cles. With cloud top pressure there is a very small error. It
should be noted that the analysis does not take into account
the potential biases from treating the cloud as geometrically
infinitely thin, as discussed in Sect. 3.8, since we used that
model to produce our synthetic measurements. The uncer-
tainties for optical thickness are below 20 % for optical thick-
nesses from about 4 to 30 but increase outside of this range
and are invariant with effective radius. For effective radius
the uncertainties are almost all below 20 % above an optical
thickness of approximately 5 except for effective radii be-
low approximately 6 µm. Finally, the uncertainties for cloud

top pressure are all below approximately 10 % for an optical
thickness greater than unity.

Our base state describes the parameters that are not ex-
plicitly indicated as something else in our discussion of the
results. These include the use of the same base state values
used for the forward model validation in Sect. 3.9. Unlike the
forward model validation, in the interest of brevity, we do not
show results as a function of geometry and choose the same
base state values (θ0 = 35.0◦, θv = 35.0◦ and 1φ = 90.0◦).

For ice cloud (Fig. 7), the cost increases slightly for a small
set of retrievals, the number of iterations increases for an op-
tical thickness around unity and the degrees of freedom for
optical thicknesses less than unity also increase relative to
liquid water due to a stronger sensitivity to ice cloud at ther-
mal wavelengths and therefore to surface emission. The error
for optical thickness is similar to that for liquid water while
the larger error in effective radius when τc < 1 is now for
larger particles and opposite in sign. This suggests that the
peak in sensitivity to effective radius is at around 30 µm and
the effective radius is subject to overestimation for smaller
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Figure 8. Same as Fig. 6 but for the night retrieval path.

particles and underestimation for larger particles. For cloud
top pressure, the error is larger for ice cloud when τc < 1,
which is most likely due to an increase in the importance of
absorption and emission for larger particles at thermal wave-
lengths which will decrease in importance as optical thick-
ness increases from the single-scattering regime to multiple
scattering. Finally, relative to liquid water cloud, the mini-
mum in the optical thickness uncertainties shifts to slightly
lower optical thicknesses, the effective radius uncertainties
are improved down to an optical thickness of around 0.5
due to greater sensitivity to effective radius at thermal wave-
lengths, and the cloud top pressure uncertainties are some-
what larger due to the reason stated above for error and due
to the greater sensitivity to surface emission and the difficulty
of separating cloud and surface signals.

Figures 8 and 9 repeat Figs. 6 and 7, respectively, except at
night. Even though we do not currently report optical thick-
ness and effective radius at night, we still present them here
to show that there is enough sensitivity to these parameters
to help the cloud top pressure retrieval. From the cost we

see that we obtain a good fit for liquid water cloud and the
number of iterations is mostly lower than 14. The degrees of
freedom vary little, with values around 3. The reason for this
is the lack of sensitivity to optical thickness and therefore
relatively little change to the sensitivity to surface tempera-
ture with optical thickness. The error in optical thickness is
beyond 50 % almost everywhere except for some parts of the
1–10 µm effective radius region. The error for effective radius
is significantly better and it is this microphysical information
that really helps improve the cloud top pressure retrieval of
liquid water cloud, which has very little error for clouds of
greater than approximately 1 optical depth. The uncertain-
ties for optical thickness are all greater than 100 % while
for effective radius they are lower for larger optical thick-
nesses and effective radii (30–70 %), as expected. For cloud
top pressure the uncertainties are almost all less than 20 %
for optical thicknesses greater than unity.

For ice cloud (Fig. 9) the night retrieval obtains good fits
for all, a slightly larger number of iterations in the optical
thickness region around unity and similar degrees of freedom
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Figure 9. Same as Fig. 7 but for the night retrieval path.

compared to the liquid water cloud retrieval at night. The
interesting observation is that the retrieval of optical thick-
ness at night is better for ice cloud in the range between 1
and 10. This is important as it is in this range that semi-
transparent cirrus clouds occur. Without this sensitivity to op-
tical thickness, the cloud top pressure would be significantly
overestimated. Notice that at optical thicknesses below unity,
both the optical thickness and cloud top pressure are overes-
timated. Finally, like the rest of the cases, estimates of uncer-
tainty are overestimated but one can argue that the estimate
at night is better for ice cloud than for liquid water cloud.
The uncertainties for optical thickness and effective radius
are improved relative to liquid water cloud in cases where
the error is also improved and the uncertainties for cloud top
pressure are mostly still below 20 % at optical thicknesses
greater than unity except at large effective radii.

In Fig. 10 we show daytime liquid water cloud retrieval
results as a function of optical thickness τc and cloud top
pressure pc, with otherwise everything else set to our base
state. We perform the retrieval for both a relatively small (for

liquid water droplets) effective radius (re,c = 4 µm) and a rel-
atively large effective radius (re,c = 20 µm). We choose these
values to be well away from the a priori effective radius for
liquid water cloud of 12 µm. The small effective radius re-
trieval suffers from large cost values at optical thicknesses
from 1 to 10 and at cloud top pressure values lower than ap-
proximately 550 hPa, although most liquid water clouds will
be lower in the atmosphere. The number of iterations is con-
sistent with the cost, with more iterations used for higher cost
retrievals. The larger degrees of freedom at large cloud top
pressure values, even with larger optical thicknesses, are due
to the closer proximity to the surface, making it harder to
distinguish the cloud from the surface thermal signals. The
retrieval errors are mostly what we expect for liquid water
cloud. For optical thickness, the errors are small for lower
clouds with an optical thickness greater than approximately
unity (bearing in mind that most liquid water clouds will have
considerably larger optical thicknesses than unity). For ef-
fective radius small errors begin at an optical thickness of
approximately two. Finally, for cloud top pressure the error
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Figure 10. Daytime liquid water cloud retrieval results as a function of optical thickness τc and cloud top pressure pc for an effective radius
of 4 µm (top) and 20 µm; (bottom) otherwise everything else is set to the base state.

is small for optical thicknesses greater than unity for clouds
below 400 hPa. For an effective radius of 20 µm the results
are in general better than for 4 µm. This is not surprising as
the sensitivity shifts closer to 3.7 µm and the other thermal
channels.

Figure 11 shows the same results as Fig. 10 but for ice
cloud. In this case we choose small and large effective radii
of re,c = 10 µm and re,c = 50 µm, respectively, to be well

away from the a priori effective radius for ice cloud of 30 µm.
The results are, in general, better as larger errors are con-
fined to lower optical thicknesses. The cost and number of
iteration plots are much better in the region of large values
that were observed in the corresponding plots for liquid wa-
ter. As we have seen before, for most of the cases of opti-
cal thickness less than unity, the degrees of freedom for ice
increase relative to liquid water. Also, unlike for the small
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Figure 11. Same as Fig. 10 but for ice cloud.

effective radius, the number of degrees of freedom is larger
for optical thicknesses less than unity at all levels, not just
low levels. This is due to the greater sensitivity to larger par-
ticles at thermal wavelengths and the difficulty of separating
the cloud and surface emission signals. Finally, looking at the
effective radius errors for both the liquid water cloud with an
effective radius of 4 (Fig. 10) and the effective radius errors
for ice cloud with an effective radius of 50 (Fig. 11), we can

see the flip in errors that we discussed in reference to Figs. 6
and 7 for small/large liquid water/ice particles.

In Fig. 12 we show daytime liquid water cloud retrieval re-
sults as a function of optical thickness τc and rc,e. In this case
we perform the retrieval for both a relatively small surface
albedo (A= 0.01) and a relatively large albedo (A= 0.9),
with everything else set to our base state. For an albedo of
0.01 almost all the cost results indicate good fits, with only
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Figure 12. Daytime liquid water cloud retrieval results as a function of optical thickness τc and effective radius rc,e for a surface albedo of
0.01 (top) and 0.9 (bottom); otherwise everything else is set to the base state.

a small spike around an optical thickness of unity for small
effective radii, while the number of iterations are all reason-
able. The number of degrees of freedom follows the same
pattern as in Fig. 6, which is the same as this case except
with the base state albedo of 0.2, but the values at low optical
thicknesses are much higher. This is because of the increased
influence of the surface emission signal if we assume the sur-
face emissivity is 1 minus albedo. The errors are almost all

acceptable (even for cloud top pressure at small optical thick-
nesses). These results indicate why aerosol retrievals gener-
ally perform well over ocean and that the retrieval of subvisi-
ble cirrus properties may also be possible over ocean. For an
albedo of 0.9 the results for optical thickness and effective
radius are significantly different and highlight the difficulty
of retrieving these properties over bright surfaces (bearing in
mind that an albedo of 0.9 is typical of fresh snow cover).
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Figure 13. Same as Fig. 12 but for ice cloud.

The number of degrees of freedom is now fixed at 3, the
value we would expect if surface temperature had little ef-
fect. The retrieval of optical thickness is overestimated for
optical thicknesses less than unity, something that we expect
as the surface will look like cloud in this case. More inter-
esting is that optical thickness is underestimated for optical
thicknesses greater than 10. Our first thought is that at these
optical thicknesses the surface should have little effect and

that this error suggests a problem with non-uniqueness and
that we may be getting stuck in a suboptimal minimum. The
retrieval of effective radius in this case is also problematic,
with underestimation at small optical thicknesses and over-
estimation at large values. In fact, the opposite direction of
the errors compared to that of optical thickness further sug-
gests a problem with non-uniqueness.
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For ice cloud (Fig. 13) the results with the low and high
albedos are comparable to that of liquid water, with the dif-
ferences primarily with the large cost values for large opti-
cal thicknesses and large effective radii and the overestima-
tion of cloud top pressure for optical thicknesses less than
unity. In this case it is the overestimation of optical thick-
ness that drives the cloud top pressure solution lower in the
atmosphere.

6 Conclusions

This paper describes the optimal estimation component of
the Community Cloud retrieval for Climate (CC4CL) based
on the Optimal Retrieval of Aerosol and Cloud (ORAC) al-
gorithm. An extensive forward model is described which in-
cludes emission, absorption and multiple scattering of radi-
ation from both solar and thermal sources. The surface is
characterized by a bidirectional reflectance distribution func-
tion (BRDF) specific to either ocean or land. The model’s
“fast” radiative transfer solution is separated into solar and
thermal components and the model’s assumptions and limi-
tations were addressed. Validation was undertaken with a ref-
erence forward model, i.e., a more extensive forward model
that attempts to eliminate some of the most important as-
sumptions in the “fast” solution. Results show that in relation
to the simple scalar operators, for optical thicknesses greater
than 10, the errors are comparable to instrument noise, but
it should be noted that this error is the difference between
the reference forward model and the “fast” forward model
and not a measure of the total errors in forward modeling.
At small optical thicknesses (less than 0.1–1.0) the errors be-
come larger, especially at optical thicknesses approaching the
critical regime of unity, where the contribution of single and
multiple scattering to the total shortwave signal is compara-
ble. Fortunately, these optical thicknesses of less than unity
are uncommon for most cases in cloud remote sensing.

The retrieval method is then described, including the opti-
mal estimation approach, the input measurements and a pri-
ori quantities along with their associated uncertainties, our
choice of the iteration first guess and quantities derived from
the retrieved parameters. Particular attention was paid to the
estimation of the retrieval uncertainty. The performance of
the retrieval method was assessed theoretically by simulat-
ing measurements using a range of values for the retrieval
parameters and then subsequently performing a retrieval on
these simulated measurements to which Gaussian noise lev-
els appropriate for MODIS were added. The errors are less
than 10 % for optical thicknesses larger than 10 and less than
20 % for optical thicknesses larger than unity. For night our
retrieval does not report cloud optical thickness or effective
radius but uses the information content in these values to im-
prove the cloud top pressure results. These results are con-
sistent with our forward model analysis. For optical thick-
nesses less than unity the results become problematic, which

could have implications for the retrieval of subvisible cirrus,
but, as with successful aerosol retrievals over dark surfaces
(such as ocean), the results are comparable to those of opti-
cal thicknesses larger than 10. Finally, compared to the actual
errors our estimation of the retrieval uncertainty is compara-
ble, again, at cloud optical thickness greater than unity.

It is worth noting that the ORAC algorithm is being ex-
tended to retrieve properties in two cloud layers. The publi-
cation for this work is in progress and is expected to have the
citation of McGarragh et al. (2018).

Code availability. ORAC/CC4CL is free and open source software
and is licensed under the GNU General Public License version 3. It
can be downloaded at https://github.com/ORAC-CC/ORAC, while
the code to produce the forward model reflectance, transmission
and emission operators may be downloaded at https://github.com/
ORAC-CC/create_orac_lut.
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